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Abstract

We consider some classes of functional equations posed in PB-spaces, for which we establish existence
and uniqueness of solutions that belong to a cone. An application to integral equations is presented. c©2016
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1. Introduction

Many problems in physics can be described via operator equations posed in a certain space. It is very
important to know if such equations admit solutions and if a solution exists, it is unique. Many authors
studied such questions and considered various classes of operator equations posed in a Banach space (see,
for examples, [1, 2, 3, 7, 9, 12, 13, 14, 15, 16]). In [8], we studied a class of operator equations posed in a
probabilistic Banach space and involving decreasing and convex operators. In this contribution, we continue
our study for other classes of functional equations. Let us start by recalling some basic concepts and results
about probabilistic Banach spaces that will be used through this paper. For more details, the reader is
invited to consult [3, 4, 5, 6, 7, 8, 10, 11].

We denote by D the set of distribution mappings. A probabilistic norm on a R-vector space V w.r.t a
T -norm T is a mapping N : V→ D having the following properties:
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(N1) N(v)(0) = 0 for every v ∈ V;
(N2) N(v)(λ) = 1 for all λ > 0 iff v = 0;

(N3) N(δv)(λ) = N(v)
(
λ
|δ|

)
for all v ∈ V and δ ∈ R, δ 6= 0;

(N4) N(u+ v)(λ+ µ) ≥ T(N(u)(λ), N(v)(µ)) for all u, v ∈ V and λ, µ ≥ 0.
In this case, (V, N,T) is a probabilistic normed space (shortly PN -space).

For topological concepts in PN -spaces, see [8]. A probabilistic Banach space (shortly PB-space) is a
PN -space, for which every Cauchy sequence is convergent.

Let (V, N,T) be a PB-space and Q be a convex subset of V such that Q 6= ∅. Under the conditions:
(Q1) Q = Q;
(Q2) qQ ⊆ Q for every q ≥ 0;
(Q3) −Q ∩Q = {0},
we say that Q is a cone in PB. In this case, the binary relation � defined by

z, w ∈ V, z � w ⇐⇒ w − z ∈ Q

is a partial order in V. For a pair (u, v) that belongs to V× V, we use the notation u ≺ v to indicate that
v − u ∈ Q and u 6= v. In this case, the interval [u, v] is the set of elements z ∈ V such that z − u ∈ Q
and v − z ∈ Q. For a given η ∈ Q, we denote by Qη the set of elements v ∈ V such that v − λη ∈ Q and
µη − v ∈ Q for some λ, µ > 0. The cone Q is normal if there is some constant ρ > 0 such that

(u, v) ∈ V× V, 0 � u � v =⇒ N(u)(x) ≥ N(v)

(
x

ρ

)
, x ∈ R.

Now, we are able to present and establish our obtained results.

2. Main result and consequences

In the sequel, (V, N,T) denotes a PB-space with a normal cone Q. Let ζ : (α, β)→ (0, 1) be a surjective
function and ξ : (α, β)×Q×Q→ (0,∞) be a function having the following properties:
(ξ1) ξ(x, v, w) ∈ (ζ(x), 1) for all x ∈ (α, β), (v, w) ∈ Q×Q;
(ξ2) for every x ∈ (α, β), ξ(x, v, w) is increasing in v (w.r.t �) for w fixed and decreasing in w for v fixed.
We denote by F the set of operators F : Q×Q→ Q such that
(F1) F is mixed monotone;
(F2) for all (x, v, w) ∈ (α, β)×Q×Q, we have

F (ζ(x)v, [ζ(x)]−1w) � ξ(x, v, w)F (v, w).

We denote by G the set of operators G : V→ V such that
(G1) G is increasing;
(G2) for all (p, v) ∈ (0, 1)×Q, we have

G(pv) � pGv.

Our main result in this paper is the following.

Theorem 2.1. Let (F,G) ∈ F × G. Suppose that there exists η ∈ Q, η 6= 0 such that

ζ(x0)

ξ(x0, η, η)
η � GF (η, η) � 1

ζ(x0)
η, (2.1)

for some x0 ∈ (α, β). Then the operator equation

GF (v, v) = v (2.2)

has a unique solution v∗ ∈ Qη.
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Proof. Define the operator H : Q×Q→ V by

H(v, w) = GF (v, w), (v, w) ∈ Q×Q.

Observe that from (G2), we have

G0 � 1

2
G0,

which yields
G0 ∈ Q.

Sine G is increasing, we get H(Q × Q) ⊆ Q. Then H : Q × Q → Q. Let (φ1, ω1), (φ2, ω2) ∈ Q × Q with
φ2 − φ1 ∈ Q and ω1 − ω2 ∈ Q. From (F1), we have

F (φ1, ω1) � F (φ2, ω2).

Then from (G1), we get
GF (φ1, ω1) � GF (φ2, ω2),

that is,
H(φ1, ω1) � H(φ2, ω2).

This proves that H is mixed monotone. Using (F2), (G1) and (G2), for all (x, φ, ω) ∈ (α, β) × Q × Q, we
obtain

H(ζ(x)φ, [ζ(x)]−1ω) = GF (ζ(x)φ, [ζ(x)]−1ω)

� G(ξ(x, φ, ω)F (φ, ω))

� ξ(x, φ, ω)GF (φ, ω)

= ξ(x, φ, ω)H(φ, ω),

that is,
H(ζ(x)φ, [ζ(x)]−1ω) � ξ(x, φ, ω)H(φ, ω), (x, φ, ω) ∈ (α, β)×Q×Q. (2.3)

Since ξ(x0, η, η) ∈ (ζ(x0), 1), there is some positive integer m such that(
ξ(x0, η, η)

ζ(x0)

)m
> [ζ(x0)]

−1. (2.4)

Set
φ0 = [ζ(x0)]

mη and ω0 = [ζ(x0)]
−mη.

Observe that
φ0, ω0 ∈ Qη and φ0 = [ζ(x0)]

2mω0 ≺ ω0.

Moreover, take 0 < ε ≤ [ζ(x0)]
2m, we obtain

φ0 � εω0.

Using (ξ1), (2.1) and (2.3), we obtain

H(φ0, ω0) = H([ζ(x0)]
mη, [ζ(x0)]

−mη)

= H([ζ(x0)][ζ(x0)]
m−1η, [ζ(x0)]

−1[ζ(x0)]
1−mη)

� ξ(x0, [ζ(x0)]
m−1η, [ζ(x0)]

1−mη)H([ζ(x0)]
m−1η, [ζ(x0)]

1−mη)

� ξ(x0, [ζ(x0)]
m−1η, [ζ(x0)]

1−mη)ξ(x0, [ζ(x0)]
m−2η, [ζ(x0)]

2−mη)H([ζ(x0)]
m−2η, [ζ(x0)]

2−mη)

...

� ξ(x0, [ζ(x0)]
m−1η, [ζ(x0)]

1−mη) · · · ξ(x0, η, η)H(η, η)

� [ζ(x0)]
m−1ξ(x0, η, η)H(η, η)

� [ζ(x0)]
mη = φ0.
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On the other hand, from (2.3), we can write

H([ζ(x)]−1φ, ζ(x)ω) � 1

ξ(x, [ζ(x)]−1φ, ζ(x)ω)
H(φ, ω), (x, φ, ω) ∈ (α, β)×Q×Q. (2.5)

Using (ξ2), (2.1), (2.4) and (2.5), we get

H(φ0, ω0) = H([ζ(x0)]
−mη, [ζ(x0)]

mη)

= H([ζ(x0)]
−1[ζ(x0)]

1−mη, [ζ(x0)][ζ(x0)]
m−1η)

� 1

ξ(x0, [ζ(x0)]−mη, [ζ(x0)]mη)
H([ζ(x0)]

1−mη, [ζ(x0)]
m−1η)

� 1

ξ(x0, [ζ(x0)]−mη, [ζ(x0)]mη)

1

ξ(x0, [ζ(x0)]1−mη, [ζ(x0)]m−1η)
H([ζ(x0)]

2−mη, [ζ(x0)]
m−2η)

...

� 1

ξ(x0, [ζ(x0)]−mη, [ζ(x0)]mη)
· · · 1

ξ(x0, [ζ(x0)]−1η, [ζ(x0)(x0)]η)
H(η, η)

�
(

1

ξ(x0, η, η)

)m
H(η, η)

�
(

1

ξ(x0, η, η)

)m 1

ζ(x0)
η

= [ζ(x0)]
−mη = ω0.

As consequence, we have
φ0 � H(φ0, ω0) � H(ω0, φ0) � ω0.

Let
φn+1 = H(φn, ωn), ωn+1 = H(ωn, φn), n = 0, 1, 2, · · · .

Then we have
φ0 � φ1 � ω1 � ω0.

By induction, we obtain easily

φ0 � φ1 � · · · � φn � · · · � ωn � · · · � ω1 � ω0. (2.6)

Set
sn = sup{s > 0 : φn � sωn}, n = 0, 1, 2, · · · .

Then we have
φn � snωn, n = 0, 1, 2, · · · ,

which implies from (2.6) that

φn+1 � φn � snωn � snωn+1, n = 0, 1, 2, · · · ,

which yields
0 < s0 ≤ s1 ≤ · · · ≤ sn ≤ sn+1 ≤ · · · ≤ 1.

Then there exists some s ∈ (0, 1] such that
lim
n→∞

sn = s. (2.7)

Suppose s ∈ (0, 1). We distinguish two cases.
Case 1. sN = s for some positive integer N .
In this case, we get

sn = s, n ≥ N,
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which yields
φn � sωn, n ≥ N.

Since s ∈ (0, 1), there is some xs ∈ (α, β) such that ζ(xs) = s. Using (2.3), (ξ1) and (2.6), for all n ≥ N , we
get

φn+1 = H(φn, ωn)

� H(sωn, s
−1φn)

= H(ζ(xs)ωn, [ζ(xs)]
−1φn)

� ξ(xs, ωn, φn)H(ωn, φn)

� ξ(xs, φ0, ω0)ωn+1.

The above inequality with (ξ1) yield

s = α(xs) < ξ(txs, φ0, ω0) ≤ sn+1 = s, n ≥ N,

which is a contradiction.
Case 2. sn < s for every n.
In this case, we have

0 <
sn
s
< 1, n = 1, 2, 3, · · · .

Then
sn
s

= ζ(qn), n = 1, 2, 3, · · ·

for some qn ∈ (α, β). Then

φn+1 = H(φn, ωn)

� H(snωn, s
−1
n φn)

= H(ζ(qn)sωn, [ζ(qn)]−1s−1φn)

� ξ(qn, sωn, s−1φn)A(sωn, s
−1φn)

� ξ(qn, sφ0, s−1ω0)A(sωn, s
−1φn)

� ξ(qn, sφ0, s−1ω0)H(ζ(xs)ωn, [ζ(xs)]
−1φn)

� ξ(qn, sφ0, s−1ω0)ξ(xs, ωn, φn)H(ωn, φn)

� ξ(qn, sφ0, s−1ω0)ξ(xs, φ0, ω0)ωn+1.

This yields
sn
s
ξ(xs, φ0, ω0) < ξ(qn, sφ0, s

−1ω0)ξ(xs, φ0, ω0) ≤ sn+1.

Passing to the limit as n→∞ and using (2.7), we obtain

ζ(xs) < ξ(xs, φ0, ω0) ≤ s = ζ(xs),

which is a contradiction.
Hence, we proved that

lim
n→∞

sn = 1. (2.8)

Now, for any positive integer q, we have

0 � φn+q − φn � ωn − φn � ωn − snωn = (1− sn)ωn � (1− sn)ω0

and
0 � ωn − ωn+q � ωn − φn � (1− sn)ω0.
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Using (2.8) and Lemma 2.3 in [8], we deduce that {φn} and {ωn} are Cauchy sequences. Then there exist
φ∗, ω∗ ∈ V such that {φn} converges to φ∗ and {ωn} converges to ω∗. By (2.6), we have

φ0 � φn � φ∗ � ω∗ � ωn � ω0, n = 0, 1, 2, · · · . (2.9)

Then we have
o � ω∗ − φ∗ � ωn − φn � (1− sn)ω0.

Passing to the limit as n→∞, using (2.8) and Lemma 2.4 in [8], we obtain φ∗ = ω∗. Set

v∗ = φ∗ = ω∗.

Then we have v∗ ∈ [φ0, ω0]. Since H is mixed monotone, using (2.9), we obtain

φn+1 = H(φn, ωn) � H(v∗, v∗) � H(ωn, φn) = ωn+1.

Passing to the limit as n→∞, we get
v∗ � H(x∗, x∗) � x∗,

which yields
GF (v∗, v∗) = H(v∗, v∗) = v∗.

Let us prove now that v∗ is the unique point in Qη satisfying the above equality. Suppose that w∗ ∈ Qη is
such that

H(w∗, w∗) = w∗.

Let
ρ = sup{0 < c ≤ 1 : cw∗ � v∗ � c−1w∗}.

Observe that ρ ∈ (0, 1] and
ρw∗ � v∗ � ρ−1v∗. (2.10)

As in the proof of s = 1, arguing by contradiction, we can prove that ρ = 1. Then from (2.10), we have

v∗ = w∗.

Thus we proved that v∗ is the unique solution in Qη to the operator equation (2.2).

Now, we present some results that can be deduced from Theorem 2.1.

Let ξi : (α, β)×Q→ (0,∞), i = 1, 2 be two functions with the following properties:
(P1) for all i = 1, 2, we have ξ(x, v) ∈ (ζ(x), 1) for all (x, v) ∈ (α, β)×Q;
(P2) for any x ∈ (α, β), ξ(x, u, v) = min{ξ1(x, u), ξ2(x, v)} is increasing in u for fixed v and decreasing in v
for fixed u.

We denote by T the set of operators T : Q→ Q such that
(T1) T is increasing;
(T2) for all (x, v) ∈ (α, β)×Q, we have

T (ζ(x)v) � ξ1(x, v)Tv.

We denote by S the set of operators S : Q→ Q such that
(S1) S is decreasing;
(S2) for all (x, v) ∈ (α, β)×Q, we have

S([ζ(x)]−1v) � ξ2(x, v)Sv.
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Corollary 2.2. Let (T, S,G) ∈ T × S ×G. Suppose that there exists η ∈ Q, η 6= 0 such that

ζ(x0)

ξ(x0, η, η)
η � G(Tη + Sη) � 1

ζ(x0)
η

for some x0 ∈ (α, β). Then the operator equation

G(Tv + Sv) = v

has a unique solution v∗ ∈ Qη.

Proof. Observe that the operator

F (v, w) = Tu+ Sw, , (v, w) ∈ Q×Q

belongs to the set F . From Theorem 2.1, the operator equation

GF (v, v) = v,

which is equivalent to
G(Tv + Sv) = v

has a unique solution v∗ ∈ Qη.

Let ξ1 : (α, β) × Q → (0,∞) and ξ2 : (α, β) × Q × Q → (0,∞) be two function satisfying the following
assumptions:
(A1) ξ1(x, v), ξ2(x, v, w) ∈ (ζ(x), 1) for all (x, v, w) ∈ (α, β)×Q×Q;
(A2) for any x ∈ (α, β), ξ(x, v, w) = min{ξ1(x, v), ξ2(x, v, w)} is increasing in v for fixed w and decreasing
in w for fixed v.

We denote by B the set of operators B : Q→ Q such that
(B1) B is increasing;
(B2) B(ζ(x)v) � ξ1(x, v)Bv, (x, v) ∈ (α, β)×Q.

We denote by C the set of operators C : Q×Q→ Q such that
(C1) C is mixed monotone;
(C2) C(ζ(x)v, [ζ(x)]−1w) � ξ2(v, w)C(v, w), (x, v, w) ∈ (α, β)×Q×Q.

Corollary 2.3. Let (B,C,G) ∈ B × C × G. Suppose that there exists η ∈ Q, η 6= 0 such that

ζ(x0)

ξ(x0, η, η)
η � G(Bη + C(η, η)) � 1

ζ(x0)
η

for some x0 ∈ (α, β).
Then the operator equation

G(Bv + C(v, v)) = v

has a unique solution in Qη.

Proof. We observe that the operator

F (v, w) = Bv + C(v, w), (v, w) ∈ Q×Q

belongs to the set F . From Theorem 2.1, the operator equation

GF (v, v) = v,

which is equivalent to
G(Bv + C(v, v)) = v

has a unique solution in Qη.
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3. An application to integral equations

Consider the integral equation∫ x

0

∫ 1

0
ϑ(τ, y)[f(τ, v(y)) + g(τ, v(y), v(y))] dy dτ = v(x), x ∈ [0, 1], (3.1)

where ϑ : [0, 1] × [0, 1] → [0,∞), f : [0, 1] × [0,∞) → [0,∞) and g : [0, 1] × [0,∞) × [0,∞) → [0,∞) are
regular functions.

Let (V, N,Tm) be the PB-space, where V = C([0, 1]) is the set of real continuous functions in [0, 1] and
N : V→ D is given by

N(u)(x) =

{
0 if x ≤ 0

x
x+max0≤z≤1 |u(z)| if x > 0

, u ∈ V.

Here Tm is the T -norm given by Tm(µ, λ) = min{µ, λ} for µ, λ ∈ [0, 1]. We consider the normal cone Q
given by

Q = {u ∈ V : u(x) ≥ 0, for all x ∈ [0, 1]}.
Let ξ : (0, 1)→ (0, 1) be a function such that

ξ(x) ∈ (x, 1), x ∈ (0, 1).

Let F be the set of functions f : [0, 1]× [0,∞)→ [0,∞) such that for a fixed 0 ≤ s ≤ 1, the function f(s, ·)
is increasing in [0, 1] and

f(s, xz) ≥ ξ(x)f(s, z), (x, z) ∈ (0, 1)× [0,∞).

Let G be the set of functions g : [0, 1]× [0,∞)× [0,∞)→ [0,∞) such that for a fixed 0 ≤ s ≤ 1, the function
g(s, ·, ·) is mixed monotone and

g(s, xz, x−1w) ≥ ξ(x)g(s, z, w), (x, z, w) ∈ (0, 1)× [0,∞)× [0,∞).

Theorem 3.1. Let (f, g) ∈ F×G. Suppose that there exists η ∈ Q, η 6= 0 and x0 ∈ (0, 1) such that for all
x ∈ [0, 1],

x0
ξ(x0)

η(x) ≤
∫ x

0

∫ 1

0
ϑ(τ, y)[f(τ, η(y)) + g(τ, η(y), η(y))] dy dτ ≤ 1

x0
η(x). (3.2)

Then (3.1) has a unique solution v∗ ∈ Qη.
Proof. Observe that the operator G : V→ V be the operator defined by

(Gv)(x) =

∫ x

0
v(y) dy, x ∈ [0, 1]

belongs to the set G. Let B : Q→ Q be the operator given by

(Bv)(x) =

∫ 1

0
ϑ(x, y)f(x, v(y)) dy, x ∈ [0, 1].

It is not difficult to see that B ∈ B with ζ(x) = x, x ∈ (0, 1) and ξ1(x, v) = ξ(x), (x, v) ∈ (0, 1) × Q. Let
C : Q×Q→ Q be the operator defined by

C(v, w)(x) =

∫ 1

0
ϑ(x, y)g(x, v(y), w(y)) dy, x ∈ [0, 1].

Then C ∈ C with ξ2(x, v, w) = ξ(x), (x, v, w) ∈ (0, 1) × Q × Q. Moreover, from (3.2), there exists η ∈ Q,
η 6= 0 such that

ζ(x0)

ξ(x0)
η � G(Bη + C(η, η)) � 1

ζ(x0)
η,

for some x0 ∈ (0, 1). Using Corollary 2.3, we obtain that the operator equation

G(Bv + C(v, v))) = v,

which is equivalent to the integral equation (3.1), has a unique solution in Qη.
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