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Abstract

Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let Ai : C → H, for i = 1, 2,
be two Li-Lipschitz monotone mappings and let f : C → C be a contraction mapping. It is our purpose in
this paper to introduce an iterative process for finding a point in V I(C,A1)∩ V I(C,A2) under appropriate
conditions. As a consequence, we obtain a convergence theorem for approximating a common solution of
a finite family of variational inequality problems for Lipschitz monotone mappings. Our theorems improve
and unify most of the results that have been proved for this important class of nonlinear operators. c©2016
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1. Introduction

Let C be a nonempty subset of a real Hilbert space H. A mapping A : C → H is called L-Lipschitz if there
exits L ≥ 0 such that

||Ax−Ay| ≤ L||x− y||, ∀x, y ∈ C. (1.1)
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If L = 1, then T is called nonexpansive and if L < 1, then T is called a contraction. It follows that every
contraction mapping is nonexpansive and every nonexpansive mapping is Lipschitz.
A mapping A : C → H is called η-strongly monotone if there exists a positive real number η such that

〈Ax−Ay, x− y〉 ≥ η||x− y||2, for all x, y ∈ C. (1.2)

A is called α-inverse strongly monotone if there exists a positive real number α such that

〈Ax−Ay, x− y〉 ≥ α||Ax−Ay||2, for all x, y ∈ C. (1.3)

We note that any α-inverse strongly monotone A is Lipschitz, that is ||Ax − Ay|| ≤ L||x − y||,∀x, y ∈ C,
where L = 1

α .
A is called monotone if

〈Ax−Ay, x− y〉 ≥ 0, for all x, y ∈ C. (1.4)

Clearly, the class of monotone mappings includes the class of α-inverse strongly monotone and the class of
η-strongly monotone mappings.
Let C be a nonempty, closed and convex subset of H and let A : C → H be a nonlinear mapping. The
variational inequality problem for A and C is the problem of finding a point x∗ ∈ C satisfying

〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C. (1.5)

We denote the solution set of this problem by V I(C,A). We know that the solution set of V I(C,A) is
always closed and convex under the assumption that A is continuous and monotone.
The theory of variational inequality has emerged as a very natural generalization of the theory of boundary
value problems and allows us to consider new problems arising from many fields of applied mathematics,
such as mechanics, physics, engineering, the theory of convex programming, and the theory of control: See,
for instance, [9, 11, 17, 18, 19, 23, 24]. Variational inequalities were introduced and studied by Stampacchia
[13] in 1964. Since then variational inequality problems has been extensively studied in the literature, see
[7, 11, 14, 20, 25, 26, 28, 30, 31, 32] and the reference therein. There are several iterative methods for solving
variational inequality problems. See, e.g., [2, 3, 4, 7, 11, 23, 24, 27]. The basic idea consists of extending the
projected gradient method for constrained optimization, i.e., for the problem of minimizing f(x) subject to
x ∈ C. For x0 ∈ C, compute the sequence {xn} in the following manner:

xn+1 = PC [xn − αn∇f(xn)], n ≥ 0, (1.6)

where {αn} is a positive real sequence satisfying certain conditions and PC is the metric projection onto C.
See [1] for convergence properties of this method for the case in which f : R2 → R is convex and differentiable
function. An immediate extension of the method (1.6) to V I(C,A) is the iterative procedure given by

xn+1 = PC [xn − αnAxn], n ≥ 0. (1.7)

Convergence results for this method require some monotonicity properties of A. Note that for the method
given by (1.7) there is no chance of relaxing the assumption on A to plain monotonicity. The typical example
consists of taking C = R2 and A, a rotation with a π

2 angle. A is monotone and the unique solution of
V I(C,A) is x∗ = 0. However, it is easy to check that ||xn+1|| > ||xn|| for all n ≥ 0 and all αn > 0, therefore
the sequence generated by (1.7) moves away from the solution, independently of the choice of the sequence
αn. To overcome this weakness of the method defined by (1.7), Korpelevich [8] proposed a modification
of the method, called the extragradient algorithm in the finite-dimensional Euclidean space Rn under the
assumption that a set C ⊂ Rn is closed and convex and a mapping A of C into Rn is monotone and
L-Lipschitz continuous, {

yn = PC [xn − λAxn],
xn+1 = PC [xn − λAyn], n ≥ 0,

(1.8)
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for all n ≥ 0, where λ ∈ (0, 1
L). He proved that if V I(C,A) is nonempty, then the sequences {xn} and

{yn}, generated by (1.8), converge to the same point x∗ ∈ V I(C,A). The difference in (1.8) is that A
is evaluated twice and the projection is computed twice at each iteration, but the benefit is significant,
because the resulting algorithm is applicable to the whole class of variational inequalities for monotone
mappings. Korpelevich’s method has received great attention by many authors, who improved it in various
ways; see, e.g., [4, 6, 7, 9, 10, 15, 23, 30] and the references therein. In 2006, Nadezhkina and Takahashi [10]
suggested the following modified Korpelevich’s method for a solution of a variational inequality V I(C,A) for
L-Lipschitz continuous monotone mapping A in infinite-dimensional Hilbert spaces. Let {xn} be a sequence
generated from an arbitrary x0 ∈ C by{

yn = PC [xn − λnAxn],
xn+1 = αnxn + (1− αn)PC [xn − λnAyn], n ≥ 0,

(1.9)

where PC is a metric projection from H onto C, {λn} ⊂ [a, b] for some a, b ∈ (0, 1/L) and {αn} ⊂ [c, d]
for some c, d ∈ (0, 1). Then, they proved that the sequences {xn}, {yn} converge weakly to the minimum-
norm point of V I(C,A). We remark that Korpelevich’s modified method (1.9) has only weak convergence
in the infinite-dimensional Hilbert spaces (see Censor et al. [5] and [4]). So to obtain strong convergence
the original method was modified by several authors. For example in [2, 6, 21] it is proved that some
very interesting Korpelevich-type algorithms strongly converge to a solution of V I(C,A). Recently, Yao
et al. [21] suggested the following modified Korpelevich’s method for a solution of a variational inequality
V I(C,A) for α-inverse strongly monotone mapping A in infinite-dimensional Hilbert spaces. Let {xn} be a
sequence generated from an arbitrary x0 ∈ C by{

yn = PC [xn − λAxn − αnxn],
xn+1 = PC [xn − λAyn + µ(yn − xn)], n ≥ 0,

(1.10)

where PC is a metric projection from H onto C, λ ∈ [a, b] ⊂ (0, 2α), µ ∈ (0, 1) and {αn} ⊂ (0, 1) satisfying
certain conditions. Then, they proved that the sequence {xn} converges strongly to the minimum-norm
point of V I(C,A). One may also see related results in [21]. More recently, Yao et al. [22] investigated the
problem of finding a solution of variational inequality V I(C,A) for α-inverse strongly monotone mapping
A by considering the following iterative algorithm:{

yn = PC [xn − λnAxn + αn(fxn − xn)],
xn+1 = PC [xn − µnAyn + γn(yn − xn)], n ≥ 0,

(1.11)

where f : C → H is a ρ-contractive mapping and {αn}, {λn}, {µn} and {γn} are real sequences satisfying
certain conditions. Then they proved that the sequence {xn} generated by (1.11) converges strongly to
x∗ ∈ V I(C,A).
A natural question arises: can we obtain an iterative scheme which converges strongly to a solution V I(C,A)
of a variational inequality problem for a more general class of monotone mappings?

It is our purpose in this paper to propose an extragradient-type method for solving a common solution
of two variational inequality problems for Lipschitz monotone mappings. As a consequence, we obtain
a convergence theorem for approximating a common solution of a finite family of variational inequality
problems for Lipschitz monotone mappings. The results obtained in this paper improve and extend the
results of Nadezhkina and Takahashi [10], Yao et al. [21] and Yao et al. [22] and some other results in this
direction.

2. Preliminaries

Let C be a nonempty, closed and convex subset of a real Hilbert space H. We remark that for every point
x ∈ H, there exists a unique nearest point in C, denoted by PCx, satisfying

||x− PCx|| ≤ ||x− y|| for all y ∈ C. (2.1)
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The mapping PC is called the metric projection of H onto C. We know that PC is a nonexpansive mapping
of H onto C and is characterized by the following properties (see, e.g., [16]):

PCx ∈ C and 〈x− PCx, PCx− y〉 ≥ 0, for all x ∈ H, y ∈ C and (2.2)

||y − PCx||2 ≤ ||x− y||2 − ||x− PCx||2, for all x ∈ H, y ∈ C. (2.3)

Let A : C → H be a monotone mapping. We note that in the context of variational inequality problem we
have that

x∗ ∈ V I(C,A) if and only if x∗ = PC(x∗ − λAx∗),∀λ > 0. (2.4)

A monotone mapping B : C → 2H is called maximal monotone if its graph G(B) is not properly contained
in the graph of any other monotone mapping. That is, a monotone mapping B is maximal if and only if,
for (x, u) ∈ H ×H, 〈x − y, u − v〉 ≥ 0, for every (y, v) ∈ G(B) implies u ∈ Bx. Let A be a monotone and
L-Lipschitz mapping of C into H and let NCv be the normal cone to C at v ∈ C; i.e.,

NCv = {w ∈ H : 〈v − u,w〉 ≥ 0,∀u ∈ C}.

Define

Bv =

{
Av +NCv, if v ∈ C,
∅, if v /∈ C. (2.5)

Then, B is maximal monotone and 0 ∈ Bv if and only if v ∈ V I(C,A) (see, e.g., [12]).
In the sequel we shall make use of the following lammas.

Lemma 2.1 ([29]). Let H be a real Hilbert space. Then for all xi ∈ H and αi ∈ [0, 1], for i = 1, 2, 3 such
that α1 + α2 + α3 = 1 the following equality holds:

||α1x1 + α2x2 + α3x3||2 =

3∑
i=1

αi||xi||2 −
∑

1≤i,j≤3
αiαj ||xi − xj ||2.

Lemma 2.2. Let H be a real Hilbert space. Then for any given x, y ∈ H, the following inequality holds:

||x+ y||2 ≤ ||x||2 + 2〈y, x+ y〉.

Lemma 2.3 ([18]). Let {an} be a sequence of nonnegative real numbers satisfying the following relation:

an+1 ≤ (1− αn)an + αnδn, n ≥ n0,

where {αn} ⊂ (0, 1) and {δn} ⊂ R satisfying the following conditions: lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞, and

lim sup
n→∞

δn ≤ 0. Then, lim
n→∞

an = 0.

Lemma 2.4 ([9]). Let {an} be sequences of real numbers such that there exists a subsequence {ni} of {n}
such that ani < ani+1, for all i ∈ N. Then there exists a nondecreasing sequence {mk} ⊂ N such that
mk →∞ and the following properties are satisfied by all (sufficiently large) numbers k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.
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3. Main Result

Theorem 3.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let Ai : C → H be
a finite family of Li-Lipschitz monotone mappings with Lipschitz constants Li, for i = 1, 2. Let f : C → C
be a contraction mapping. Assume that F = ∩2i=1V I(C,Ai) is nonempty. Let {xn} be a sequence generated
from an arbitrary x0 ∈ C by

zn = PC [xn − γnA2xn],
yn = PC [xn − γnA1xn],
xn+1 = αnf(xn) + (1− αn)

(
anxn + bnPC [xn − γnA1yn] + cnPC [xn − γnA2zn]

)
,

(3.1)

where PC is a metric projection from H onto C, γn ⊂ [a, b] ⊂ (0, 1
L), for L := max{L1, L2}, {an}, {bn},

{cn} ⊂ [e, 1) ⊂ (0, 1), such that an+bn+cn = 1 and {αn} ⊂ (0, c] ⊂ (0, 1) for all n ≥ 0 satisfies lim
n→∞

αn = 0

and
∑
αn = ∞. Then, {xn} converges strongly to a point x∗ ∈ F which is the unique solution of the

variational inequality 〈(I − f)(x∗), x− x∗〉 ≥ 0 for all x ∈ F .

Proof. Let p ∈ F , un = PC(xn − γnA1yn) and vn = PC(xn − γnA2zn) for all n ≥ 0. Then, from (2.3) we
have

||un − p||2 ≤ ||xn − γnA1yn − p||2 − ||xn − γnA1yn − un||2

= ||xn − p||2 − ||xn − un||2 + 2γn〈A1yn, p− un〉
= ||xn − p||2 − ||xn − un||2 + 2γn

(
〈A1yn −A1p, p− yn〉

+ 〈A1p, p− yn〉+ 〈A1yn, yn − un〉
)

≤ ||xn − p||2 − ||xn − un||2 + 2γn〈A1yn, yn − un〉
= ||xn − p||2 − ||xn − yn||2 − 2〈xn − yn, yn − un〉
− ||yn − un||2 + 2γn〈A1yn, yn − un〉

= ||xn − p||2 − ||xn − yn||2 − ||yn − un||2

+ 2〈xn − γnA1yn − yn, un − yn〉 (3.2)

and from (2.2), we obtain

〈xn − γnA1yn − yn, un − yn〉 = 〈xn − γnA1xn − yn, un − yn〉
+ 〈γnA1xn − γnA1yn, un − yn〉
≤ 〈γnA1xn − γnA1yn, un − yn〉
≤ γnL||xn − yn||||un − yn||. (3.3)

Thus, from (3.2) and (3.3) we get

||un − p||2 ≤ ||xn − p||2 − ||xn − yn||2 − ||yn − un||2

+ 2γnL||xn − yn||||un − yn||
≤ ||xn − p||2 − ||xn − yn||2 − ||yn − un||2

+ γnL(||xn − yn||2 + ||yn − un||2)
≤ ||xn − p||2 + (γnL− 1)||xn − yn||2 + (γnL− 1)||yn − un||2. (3.4)

Likewise, we obtain that

||vn − p||2 ≤ ||xn − p||2 + (γnL− 1)||xn − zn||2 + (γnL− 1)||zn − vn||2. (3.5)

Thus, from (3.1), Lemma 2.1, (3.4) and (3.5) we have the following:

||xn+1 − p||2 =||αnf(xn) + (1− αn)(anxn + bnun + cnvn)− p||2
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≤αn||f(xn)− p||2 + (1− αn)||an(xn − p) + bn(un − p)
+ cn(vn − p)||2

≤αn||f(xn)− p||2 + (1− αn)
[
an||xn − p||2 + bn||un − p||2

+ cn||vn − p||2
]

≤αn||f(xn)− p||2 + (1− αn)an||xn − p||2 + (1− αn)bn
[
||xn − p||2

+ (γnL− 1)||xn − yn||2 + (γnL− 1)||yn − un||2
]

+ (1− αn)cn
[
||xn − p||2 + (γnL− 1)||xn − zn||2

+ (γnL− 1)||zn − vn||2
]

=αn||f(xn)− p||2 + (1− αn)||xn − p||2 + (1− αn)bn

× (γnL− 1)||xn − yn||2 + (1− αn)bn(γnL− 1)

× ||yn − un||2 + (1− αn)cn(γnL− 1)||xn − zn||2

+ (1− αn)cn(γnL− 1)||zn − vn||2. (3.6)

Now, since from the hypotheses, we have γn <
1
L for all n ≥ 1, the inequality (3.6) implies that

||xn+1 − p||2 ≤ αn||f(xn)− p||2 + (1− αn)||xn − p||2. (3.7)

Furthermore, we have that

||f(xn)− p||2 =
[
||f(xn)− f(p)||+ ||f(p)− p||

]2
≤
[
ρ||xn − p||+ ||f(p)− p||

]2
≤ ρ2||xn − p||2 + ||f(p)− p||2 + 2ρ||xn − p||||f(p)− p||
≤ ρ(1 + ρ)||xn − p||2 + (1 + ρ)||f(p)− p||2, (3.8)

where ρ is a contraction constant of f . Substituting (3.8) into (3.7) we get that

||xn+1 − p||2 ≤ (1− αn(1− ρ(1 + ρ)))||xn − p||2 + αn(1 + ρ)||f(p)− p||2.

Therefore, by induction we get that

||xn+1 − p||2 ≤max{||x0 − p||2,
1 + ρ

1− ρ(1 + ρ)
||f(p)− p||2},∀n ≥ 0,

which implies that {xn}, {yn}, {zn}, {un} and {vn} are bounded.
Let x∗ = PFf(x∗). Then, using (3.1), Lemma 2.2, Lemma 2.1, and following the methods used to get (3.6)
we obtain

||xn+1 − x∗||2 =||αn(f(xn)− x∗) + (1− αn)
[
(anxn + bnun + cnvn)− x∗

]
||2

≤(1− αn)||anxn + bnun + cnvn − x∗||2

+ 2αn〈f(xn)− x∗, xn+1 − x∗〉
≤(1− αn)an||xn − x∗||2 + (1− αn)bn||un − x∗||2

+ (1− αn)cn||vn − x∗||2 − (1− αn)bnan||un − xn||2

− (1− αn)cnan||vn − xn||2 + 2αn〈f(xn)− x∗, xn+1 − x∗〉
≤(1− αn)an||xn − x∗||2 + (1− αn)bn

[
||xn − x∗||2

+ (γnL− 1)||xn − yn||2 + (γnL− 1)||yn − un||2
]

+ (1− αn)cn
[
||xn − x∗||2 + (γnL− 1)||xn − zn||2
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+ (γnL− 1)||zn − vn||2
]
− (1− αn)bnan||un − xn||2

− (1− αn)cnan||vn − xn||2 + 2αn〈f(xn)− x∗, xn+1 − x∗〉
=(1− αn)||xn − x∗||2 + (1− αn)bn(γnL− 1)||xn − yn||2

+ (1− αn)bn(γnL− 1)||yn − un||2 + (1− αn)cn(γnL− 1)

× ||xn − zn||2 + (1− αn)cn(γnL− 1)||zn − vn||2

− (1− αn)bnan||un − xn||2 − (1− αn)cnan||vn − xn||2

+ 2αn〈f(xn)− x∗, xn+1 − x∗〉 (3.9)

≤(1− αn)||xn − x∗||2 + 2αn〈f(xn)− x∗, xn+1 − x∗〉. (3.10)

But

〈f(xn)− x∗, xn+1 − x∗〉 =〈f(xn)− x∗, xn − x∗〉+ 〈f(xn)− x∗, xn+1 − xn〉
≤〈f(xn)− f(x∗), xn − x∗〉+ 〈f(x∗)− x∗, xn − x∗〉

+ ||xn+1 − xn||||f(xn)− x∗||
≤ρ||xn − x∗||2 + 〈f(x∗)− x∗, xn − x∗〉

+ ||xn+1 − xn||||f(xn)− x∗||. (3.11)

Thus, substituting (3.11) in (3.10) we obtain that

||xn+1 − x∗||2 ≤(1− αn(1− 2ρ))||xn − x∗||2 + 2αn〈f(x∗)− x∗, xn − x∗〉
+ 2αn||xn+1 − xn||.||f(xn)− x∗||. (3.12)

Now, we consider two cases.
Case 1. Suppose that there exists n0 ∈ N such that {||xn− x∗||} is decreasing for all n ≥ n0. Then, we get
that, {||xn − x∗||)} is convergent. Thus, from (3.9), the fact that γn < b < 1

L for all n ≥ 0 and αn → 0 as
n→∞, we have that

un − xn → 0, vn − xn → 0, yn − xn → 0, zn − xn → 0, zn − vn → 0, yn − un → 0 as n→∞. (3.13)

Moreover, from (3.1) and (3.13) we get that

xn+1 − xn =αn(f(xn)− xn) + (1− αn)
[
bn(un − xn) + cn(vn − xn)

]
→ 0 as n→∞. (3.14)

Furthermore, since {xn} is bounded subset of H which is reflexive, we can choose a subsequence {xnj} of
{xn} such that xnj ⇀ z and lim sup

n→∞
〈f(x∗) − x∗, xn − x∗〉 = lim

j→∞
〈f(x∗) − x∗, xnj − x∗〉. This implies from

(3.13) that unj ⇀ z and vnj ⇀ z.

Now, we show that z ∈ ∩2i=1V I(C,A). But, since Ai, for each i ∈ {1, 2}, is Lipschitz continuous, we have

||A1ynj −A1unj || → 0 as j →∞.

Let

B1x =

{
A1x+NCx, if x ∈ C,
∅, if x /∈ C, (3.15)

where NC(x) is the normal cone to C at x ∈ C given by NC(x) = {w ∈ H : 〈x − u,w〉 ≥ 0 for all u ∈ C}.
Then, B1 is maximal monotone and 0 ∈ B1x if and only if x ∈ V I(C,A1) (see, e.g. [12]). Let (v, w) ∈ G(B1).
Then, we have w ∈ B1v = A1v+NCv and hence w−A1v ∈ NCv. Thus, we get 〈v−u,w−A1v〉 ≥ 0, for all u ∈
C. On the other hand, since unj = PC(xnj−γnjA1ynj ) and v ∈ C, we have 〈xnj−γnjA1ynj−unj , unj−v〉 ≥ 0,
and hence, 〈v − unj , (unj − xnj )/γnj +A1ynj 〉 ≥ 0. Therefore, from w −A1v ∈ NCv and unj ∈ C we get
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〈v − unj , w〉 ≥〈v − unj , A1v〉
≥〈v − unj , A1v〉 − 〈v − unj , (unj − xnj )/γnj +A1ynj 〉
=〈v − unj , A1v −A1unj 〉+ 〈v − unj , A1unj −A1ynj 〉
− 〈v − unj , (unj − xnj )/γnj 〉
≥〈v − unj , A1unj −A1ynj 〉 − 〈v − unj , (unj − xnj )/γnj 〉.

This implies that 〈v − z, w〉 ≥ 0, as j → ∞. Then, maximality of B1 gives that z ∈ B−11 (0). Therefore,
z ∈ V I(C,A1). Similarly, with the use of vnj = PC(xnj − γnjA2znj ) we get that z ∈ V I(C,A2) and hence

z ∈ ∩2i=1V I(C,Ai). Thus, from 2.2, we immediately obtain that

lim sup
n→∞

〈f(x∗)− x∗, xn − x∗〉 = lim
j→∞
〈f(x∗)− x∗, xnj − x∗〉

=〈f(x∗)− x∗, z − x∗〉 ≤ 0. (3.16)

Hence, it follows from (3.12), (3.14), (3.16) and Lemma 2.3 that ||xn − x∗|| → 0 as n → ∞. Consequently,
xn → x∗ = PFf(x∗).
Case 2. Suppose that there exists a subsequence {ni} of {n} such that

||xni − x∗|| < ||xni+1 − x∗||

for all i ∈ N. Then, by Lemma 2.4, there exist a nondecreasing sequence {mk} ⊂ N such that mk →∞, and

||xmk
− x∗|| ≤ ||xmk+1 − x∗|| and ||xk − x∗|| ≤ ||xmk+1 − x∗|| (3.17)

for all k ∈ N. Now, from (3.9), the fact that γn <
1
L for all n ≥ 0 and αn → 0 as n → ∞, we get that

umk
− xmk

→ 0, vmk
− xmk

→ 0, ymk
− xmk

→ 0, zmk
− xmk

→ 0, zmk
− vmk

→ 0, ymk
− umk

→ 0 as k →∞.
Thus, following the method in Case 1, we obtain

lim sup
k→∞

〈f(x∗)− x∗, xmk
− x∗〉 ≤ 0. (3.18)

Now, from (3.12) we have that

||xmk+1 − x∗||2 ≤(1− αmk
(1− 2ρ))||xmk

− x∗||2 + 2αmk
〈f(x∗)− x∗, xmk

− x∗〉
+ 2αmk

||xmk+1 − xmk
||.||f(xmk

)− x∗||. (3.19)

and hence (3.17) and (3.19) imply that

αmk
(1− 2ρ)||xmk

− x∗||2 ≤||xmk
− x∗||2 − ||xmk+1 − x∗||2 + 2αmk

〈f(x∗)− x∗, xmk
− x∗〉

+ 2αmk
||xmk+1 − xmk

||.||f(xmk
)− x∗||.

But the fact that αmk
> 0 implies that

(1− 2ρ)||xmk
− x∗||2 ≤ 2〈f(x∗)− x∗, xmk

− x∗〉+ 2||xmk+1 − xmk
||.||f(xmk

)− x∗||.

Thus, using (3.18) and (3.14) we get that ||xmk
−x∗|| → 0 as k →∞. This together with (3.19) implies that

||xmk+1 − x∗|| → 0 as k →∞. But ||xk − x∗|| ≤ ||xmk+1 − x∗|| for all k ∈ N gives that xk → x∗. Therefore,
from the above two cases, we can conclude that {xn} converges strongly to a point x∗ = PFf(x∗), which
satisfies the variational inequality 〈(I − f)(x∗), x− x∗〉 ≥ 0, for all x ∈ F . The proof is complete.

If, in Theorem 3.1, we assume that f(x) = u ∈ C, a constant mapping, then we get the following corollary.
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Corollary 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let Ai : C → H
be a finite family of Li-Lipschitz monotone mappings with Lipschitz constants Li, for i = 1, 2. Assume that
F = ∩2i=1V I(C,Ai) is nonempty. Let {xn} be a sequence generated from an arbitrary x0, u ∈ C by

zn = PC [xn − γnA2xn],
yn = PC [xn − γnA1xn],
xn+1 = αnu+ (1− αn)

(
anxn + bnPC [xn − γnA1yn] + cnPC [xn − γnA2zn]

)
,

(3.20)

where PC is a metric projection from H onto C, γn ⊂ [a, b] ⊂ (0, 1
L), for L := max{L1, L2}, {an}, {bn},

{cn} ⊂ [e, 1) ⊂ (0, 1), such that an+bn+cn = 1 and {αn} ⊂ (0, c] ⊂ (0, 1) for all n ≥ 0 satisfies lim
n→∞

αn = 0

and
∑
αn = ∞. Then, {xn} converges strongly to a point x∗ ∈ F which is the unique solution of the

variational inequality 〈x∗ − u, x− x∗〉 ≥ 0 for all x ∈ F .

Remark 3.3. We note that when f(x) = u ∈ C we observe that the sequence {xn} converges strongly to the
point x∗ ∈ F which is nearest to u.

If, in Theorem 3.1 we assume only one variational inequality problem for a monotone mapping A, then we
obtain the following corollary.

Corollary 3.4. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let A : C → H
be an L-Lipschitz monotone mapping with Lipschitz constant L. Let f : C → C be a contraction mapping.
Assume that F = V I(C,A) is nonempty. Let {xn} be a sequence generated from an arbitrary x0 ∈ C by{

yn = PC [xn − γnAxn],
xn+1 = αnf(xn) + (1− αn)

(
anxn + (1− an)PC [xn − γnAyn]

)
,

(3.21)

where PC is a metric projection from H onto C, γn ⊂ [a, b] ⊂ (0, 1
L), {an} ⊂ [e, 1) ⊂ (0, 1) and {αn} ⊂

(0, c] ⊂ (0, 1) for all n ≥ 0 satisfies lim
n→∞

αn = 0 and
∑
αn = ∞. Then, {xn} converges strongly to a point

x∗ ∈ F , which is the unique solution of the variational inequality 〈(I − f)(x∗), x− x∗〉 ≥ 0 for all x ∈ F .

If, in Theorem 3.1, we assume that Ai, for i = 1, 2, are αi-inverse strongly monotone mappings, then both
are L-Lipschitz with constant L = max{ 1

α1
, 1
α2
} and hence we get the following corollary.

Corollary 3.5. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let Ai : C → H
be a finite family of αi-inverse strongly monotone mappings. Let f : C → C be a contraction mapping.
Assume that F = ∩2i=1V I(C,Ai) is nonempty. Let {xn} be a sequence generated from an arbitrary x0 ∈ C
by 

zn = PC [xn − γnA2xn],
yn = PC [xn − γnA1xn],
xn+1 = αnf(xn) + (1− αn)

(
anxn + bnPC [xn − γnA1yn] + cnPC [xn − γnA2zn]

)
,

(3.22)

where PC is a metric projection from H onto C, γn ⊂ [a, b] ⊂ (0, 1
L), for L = max{ 1

α1
, 1
α2
}, {an}, {bn}, {cn} ⊂

[e, 1) ⊂ (0, 1), such that an + bn + cn = 1 and {αn} ⊂ (0, c] ⊂ (0, 1) for all n ≥ 0 satisfies lim
n→∞

αn = 0 and∑
αn =∞. Then, {xn} converges strongly to a point x∗ ∈ F , which is the unique solution of the variational

inequality 〈(I − f)(x∗), x− x∗〉 ≥ 0 for all x ∈ F .

We note that the method of proof of Theorem 3.1 provides a convergence theorem for a finite family of
Lipschitzian monotone mappings. In fact, we have the following theorem.

Corollary 3.6. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let Ai : C →
H,for i = 1, 2, ...N , be a finite family of Li-Lipschitz monotone mappings with Lipschitz constants Li, for



M. A. Alghamdi, N. Shahzad, H. Zegeye, J. Nonlinear Sci. Appl. 9 (2016), 1645–1657 1654

i = 1, 2, ..., N . Let f : C → C be a contraction mapping. Assume that F = ∩Ni=1V I(C,Ai) is nonempty. Let
{xn} be a sequence generated from an arbitrary x0 ∈ C by{

yni = PC [xn − γnAixn],

xn+1 = αnf(xn) + (1− αn)
(
bn0xn +

∑N
i=1 bniPC [xn − γnAiyni]),

(3.23)

where PC is a metric projection from H onto C, γn ⊂ [a, b] ⊂ (0, 1
L), for L := max{Li : i = 1, 2, ..., N},

{bni} ⊂ [e, 1) ⊂ (0, 1), such that
∑N

i=0 bni = 1 and {αn} ⊂ (0, c] ⊂ (0, 1) for all n ≥ 0 satisfies lim
n→∞

αn = 0

and
∑
αn = ∞. Then, {xn} converges strongly to a point x∗ ∈ F , which is the unique solution of the

variational inequality 〈(I − f)(x∗), x− x∗〉 ≥ 0 for all x ∈ F .

If, in Theorem 3.1, we assume that C = H, a real Hilbert space, then PC becomes identity mapping and
V I(C,A) = A−1(0) and hence we get the following corollary.

Corollary 3.7. Let H be a real Hilbert space. Let Ai : H → H be a finite family of Li-Lipschitz monotone
mappings with Lipschitz constants Li, for i = 1, 2. Let f : H → H be a contraction mapping. Assume that
F = ∩2i=1A

−1
i (0) is nonempty. Let {xn} be a sequence generated from an arbitrary x0 ∈ C by

zn = xn − γnA2xn,
yn = xn − γnA1xn,
xn+1 = αnf(xn) + (1− αn)

(
anxn + bn(xn − γnA1yn) + cn(xn − γnA2zn)

)
,

(3.24)

where γn ⊂ [a, b] ⊂ (0, 1
L), for L := max{L1, L2}, {an}, {bn}, {cn} ⊂ [e, 1) ⊂ (0, 1), such that an+bn+cn = 1

and {αn} ⊂ (0, c] ⊂ (0, 1) for all n ≥ 0 satisfies lim
n→∞

αn = 0 and
∑
αn =∞. Then, {xn} converges strongly

to a point x∗ ∈ F , which is the unique solution of the variational inequality 〈(I − f)(x∗), x− x∗〉 ≥ 0 for all
x ∈ F .

We note that the method of proof of Theorem 3.1 provides the following theorem for approximating the
unique minimum norm common point of solution of two variational inequality problems.

Theorem 3.8. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let Ai : C → H
be a finite family of Li-Lipschitz monotone mappings with Lipschitz constants Li, for i = 1, 2. Assume that
F = ∩2i=1V I(C,Ai) is nonempty. Let {xn} be a sequence generated from an arbitrary x0 ∈ C by

zn = PC [xn − γnA2xn],
yn = PC [xn − γnA1xn],
xn+1 = PC

[
(1− αn)

(
anxn + bnPC [xn − γnA1yn] + cnPC [xn − γnA2zn])

]
,

(3.25)

where PC is a metric projection from H onto C, γn ⊂ [a, b] ⊂ (0, 1
L), for L := max{L1, L2}, {an}, {bn},

{cn} ⊂ [e, 1) ⊂ (0, 1), such that an+bn+cn = 1 and {αn} ⊂ (0, c] ⊂ (0, 1) for all n ≥ 0 satisfies lim
n→∞

αn = 0

and
∑
αn = ∞. Then, {xn} converges strongly to a unique minimum norm point x∗ of F which is the

unique solution of the variational inequality 〈x∗, x− x∗〉 ≥ 0 for all x ∈ F .

Remark 3.9. Theorem 3.1 provides convergence sequence to a common solution of two variational inequal-
ity problems for Lipschitz monotone mappings whereas Corollary 3.6 provides convergence sequence to a
common solution point of a finite family of variational inequality problems for Lipschitzian monotone map-
pings. In addition, Theorem 3.8 provides convergence sequence to a common minimum norm solution of
two variational inequality problems for monotone mappings.

Remark 3.10. Theorem 3.1 extends Theorem 3.1 of Nadezhkina and Takahashi [10], Yao et al. [21] and
Therem 1 of Yao et al. [22] in the sense that our scheme provides strong convergence to a common solution
of variational inequality problem for a Lipschitz monotone mappings.
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4. Numerical example

Now, we give an example of two monotone mappings satisfying Theorem 3.1 and some numerical experiment
result to explain the conclusion of the theorem as follows:

Example 4.1. Let H = R with absolute value norm. Let C = [−2, 1] and A1, A2 : C → R be defined by

A1x :=

{
−x2, x ∈ [−2, 0],
0, x ∈ (0, 1],

and A2x :=

{
0, x ∈ [−2, 12 ],
3(x− 1

2)2, x ∈ (12 , 1].
(4.1)

Clearly, F = V I(C,A1) ∩ V I(C,A2) = [0, 1] ∩ [−2, 12 ] = [0, 12 ] and A1 and A2 are monotone. Next, we show
that A1 is Lipschitz with L1 = 5. If x, y ∈ [−2, 0], then

|A1x−A1y| = |x2 − y2| = |x+ y||x− y| ≤ 4|x− y| ≤ 5|x− y|. (4.2)

If x, y ∈ (0, 1], then

|A1x−A1y| = 0 ≤ 5|x− y|.

If x ∈ [−2, 0] and y ∈ (0, 1], then

|A1x−A1y| = |x2 − 0| = |x2 − y2 + y2|
≤ |x+ y||x− y|+ y2 ≤ 4|x− y|+ |y − x| ≤ 5|x− y|.

Thus, we get that A1 is Lipschitz monotone mapping with L1 = 5. Similarly, we can show that A2 is
Lipschitz monotone mapping with L2 = 9.
Now, taking αn = 1

10n+100 , γn = 1
n+100 + 0.065, an = bn = 1

n+10 + 0.01, cn = 1 − 2
n+10 − 0.02, and

f(x) = u ∈ C, we observe that conditions of Theorem 3.1 are satisfied and scheme (3.1) provides the data
in Tables 1 and 2 and Figures 1 and 2.
(i) When f(x) = u = 0.6 and x0 = 0.9, we see that the sequence {xn} in (3.1) converges to x∗ = 0.5 as
shown in Table 1 and Figure 1 (see below).

n 0 50 100 300 400 500 700 800

xn 0.9000 0.5777 0.5457 0.5195 0.5159 0.5136 0.5108 0.5100

Table 1
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(ii) When f(x) = u = −1.0 and x0 = 0.8, we see that the sequence {xn} in (3.1) converges to x∗ = 0 as
shown in Table 2 and Figure 2 (see below).

n 0 50 100 1,000 4000 19000 40000 90000

xn 0.8000 0.4312 0.3454 0.0765 -0.0604 -0.1001 -0.0712 -0.0455

Table 2
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