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Abstract

In this paper, a new concept of generalized quasi-partial metric spaces is presented. Some fixed point
results due to Karapinar et. al., [E. Karapinar, I. M. Erhan, A. Öztürk, Math. Comput. Modelling, 57
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1. Introduction

Matthews introduced the concept of a partial metric space by replacing the condition d(x, x) = 0 with
the condition d(x, x) 6 d(x, y) for all x, y [12, 13]. The partial metric space is a generalization of the metric
space and has applications in theoretical computer science [3]. A lot more generalized metric spaces were put
forward by many researchers of fixed point theory, for example, Hitzler and Seda have focused fixed point
theorems on dislocated metric spaces defined by themselves [7], more relevant results based on such spaces
followed in recent years [2, 10, 17, 19]. Czerwik presented the notion of b-metric space [5]. Nakano [16]
introduced the notion of modular spaces as a generalize of metric spaces in 1950. Corresponding fixed point
theorems were studied in the above generalized metric spaces (see, e.g.[1, 4, 8, 11, 14, 15] and the references
therein). Especially, as a further generalization for the metric spaces and partial metric spaces, Karapinar
et al. introduced the notion of a quasi-partial metric space and discussed the existence of fixed points of self-
mappings T on quasi-partial metric spaces [9]: any mapping T of a complete quasi-partial metric spaceX into
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itself that satisfies, for mappings R from X to a complete quasi-partial metric space Y and ψ : R(X)→ R+,
there exist x ∈ X and c > 0 such that the inequality max{qp∗(y, Ty), cqp∗(Ry,RTy)} 6 ψ(Ry) − ψ(RTy)
for all y ∈ O(x, T ), has a fixed point if and only if G(x) = qp∗(x, Tx) is T -orbitally lower semi-continuous
at x. Very recently, Gupta and Gautam (see [6]) have focused on this subject and have generalized some
fixed point theorems from the class of quasi-partial metric spaces to the class of quasi-partial b-metric spaces.

In this paper, inspired by [9], we introduce generalized quasi-partial metric spaces (GQPMS) and gen-
eralize some fixed point theorems on quasi-partial metric spaces to generalized quasi-partial metric spaces.
In the meantime, some examples are provided to verify the effectiveness of the results.

2. Preliminaries

Throughout this paper, N denotes the set of all positive integers and R+ denotes the set of all nonnegative
real numbers.
We begin with the following definition as a recall from[7, 18].

Definition 2.1. Let X be a nonempty set. Suppose that the mapping d : X × X → [0,∞) satisfies the
following conditions:

(d1) d(x, x) = 0 for all x ∈ X;
(d2) d(x, y) = d(y, x) = 0 implies x = y for all x, y ∈ X;
(d3) d(x, y) = d(y, x) for all x, y ∈ X;
(d4) d(x, y) 6 d(x, z) + d(z, y) for all x, y, z ∈ X.
If d satisfies conditions (d1), (d2) and (d4), then d is called a quasi-metric on X. If d satisfies conditions

(d2), (d3) and (d4), then d is called a dislocated metric on X. If it satisfies conditions (d2) and (d4), it is
called a dislocated quasi-metric. If d satisfies conditions (d1)-(d4), then d is called a (standard) metric on
X.

The concept of a quasi-partial metric space was introduced by Karapinar et al.

Definition 2.2 ([9]). A quasi-partial metric on a nonempty set X is a function qp : X×X → R+, satisfying
the following conditions:

(QP1) If qp(x, x) = qp(x, y) = qp(x, y), then x = y;
(QP2) qp(x, x) 6 qp(x, y);
(QP3) qp(x, x) 6 qp(y, x);
(QP4) qp(x, y) + qp(z, z) 6 qp(x, z) + qp(z, y) for all x, y, z ∈ X.

A quasi-partial metric space is a pair (X, qp) such that X is a nonempty set and qp is a quasi-partial
metric on X.

For each quasi-partial metric qp : X ×X → R+, the function dq : X ×X → R+ defined by

dq(x, y) = qp(x, y) + qp(y, x)− qp(x, x)− qp(y, y)

is a (standard) metric on X.
The next Lemma has shown the relationship between quasi-partial metric and standard metric.

Lemma 2.3 ([9]). Let (X, qp) be a quasi-partial metric space and (X, dq) be the corresponding metric space.
Then (X, qp) is complete if and only if (X, dq) is complete.

For each quasi-partial metric qp : X ×X → R+, the function dqp : X ×X → R+ defined by

dqp(x, y) = qp(x, y)− qp(x, x)

is a dislocated quasi-metric.
We introduce the concept of generalized dislocated quasi-metric, a generalization for dislocated quasi-

metric, which is shown as follows:
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Definition 2.4. Let X be a nonempty set. Suppose that the mapping gdq : X ×X → [0,∞) satisfies the
following conditions:

(gdq1) gdq(x, y) = gdq(y, x) = 0 implies x = y for all x, y ∈ X;
(gdq2) If (x, y) ∈ X ×X, {xn}∞n=0 ∈ C(gdq, X, x), then

gdq(x, y) 6 lim sup
n→∞

gdq(xn, y),

where
C(gdq, X, x) =

{
{xn}∞n=0 ⊂ X : lim

n→∞
gdq(x, xn) = lim

n→∞
gdq(xn, x) = 0

}
.

Then gdq is called a generalized dislocated quasi-metric (or simply gdq-metric) on X.

The pair (X, gdq) is then called a generalized dislocated quasi-metric space.

Remark 2.5. Obviously, if the set C(gdq, X, x) is empty for every x ∈ X, then (X, gdq) is a generalized
dislocated quasi-metric space if and only if (gdq1) is satisfied.

Proposition 2.6. Any dislocated quasi-metric on X is a generalized dislocated quasi-metric on X.

Proof. Let d be a dislocated quasi-metric on X. We have just to proof that d satisfies the property (gdq2).
Let x ∈ X and {xn}∞n=0 ∈ C(gdq, X, x). For every y ∈ X, by the property(d2), we have

d(x, y) 6 d(x, xn) + d(xn, y)

for every natural number n. Thus we have d(x, y) 6 lim sup
n→∞

d(xn, y). The property (gdq2) is then satisfied.

Definition 2.7. Let (X, gdq) be a generalized dislocated quasi-metric. Then

(i) A sequence {xn}∞n=0 ⊂ X converges to x ∈ X if and only if lim
n→∞

gdq(x, xn) = lim
n→∞

gdq(xn, x) = 0.

(ii) A sequence {xn}∞n=0 ⊂ X is called a Cauchy sequence if and only if lim
n,m→∞

gdq(xm, xn) and

lim
n,m→∞

gdq(xn, xm) exist (and are finite).

(iii) The generalized dislocated quasi-metric space (X, gdq) is said to be complete if every Cauchy se-
quence {xn}∞n=0 ⊂ X converges with respect to Tgdq to a point x ∈ X such that lim

n→∞
gdq(x, xn) =

lim
n→∞

gdq(xn, x) = 0.

We denote simply gdq-converges to x by xn
gdq−−→ x.

3. Generalized quasi-partial metric spaces

We introduce the concept of generalized quasi-partial metric space and give some properties on such
spaces in this section.

Let X be a nonempty set and qp∗ : X ×X → R+ be a given mapping. For every x ∈ X, let us define
the set
C (qp∗, X, x) =

{
{xn}∞n=0 ⊂ X : lim

n→∞
qp∗(x, xn) = lim

n→∞
qp∗(xn, x) = qp∗(x, x) and lim

n→∞
qp∗(xn, xn) exists

}
.

Definition 3.1. A generalized quasi-partial metric on a nonempty set X is a function qp∗ : X ×X → R+,
satisfying the following conditions:

(GQP1) If qp∗(x, x) = qp∗(x, y) = qp∗(y, y), then x = y.
(GQP2) qp

∗(x, x) 6 qp∗(x, y).
(GQP3) qp

∗(x, x) 6 qp∗(y, x).
(GQP4) If (x, y) ∈ X ×X, {xn}∞n=0 ∈ C (qp∗, X, x), then

qp∗(x, y) + lim
n→∞

qp∗(xn, xn) 6 qp∗(x, x) + lim sup
n→∞

qp∗(xn, y). (3.1)
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A generalized quasi-partial metric space (GQPMS) is a pair (X, qp∗) such that X is a nonempty set and
qp∗ is a generalized quasi-partial metric on X.

Remark 3.2. At least, there exists a constant sequence {xn = x}∞n=0 ∈ C (qp∗, X, x) such that C (qp∗, X, x)
is nonempty for every x ∈ X. In this case, the Inequality (3.1) reduces to qp∗(x, y) 6 lim sup

n→∞
qp∗(xn, y) due

to lim
n→∞

qp∗(xn, xn) = qp∗(x, x).

Proposition 3.3. Any quasi-partial metric on X is a generalized quasi-partial metric on X.

Proof. Let qp be a quasi-partial metric on X. We should just proof that QP4 satisfies the property (GQP4).
Let x ∈ X and {xn}∞n=0 ∈ C (qp,X, x). For every y ∈ X, by the property(QP4), we have

qp(x, y) + qp(xn, xn) 6 qp(x, xn) + qp(xn, y)

for every natural number n. Thus we have

qp(x, y) + lim
n→∞

qp(xn, xn) 6 lim sup
n→∞

qp(x, x) + lim sup
n→∞

qp(xn, y)

= qp(x, x) + lim sup
n→∞

qp(xn, y).

The property (GQP4) is then satisfied.

Next we provide an example of generalized quasi-partial metric space as follow:

Example 3.4. Let X = {n− 1

n
: n ∈ N} and define

qp∗(x, y) = (x− y)2 + x

for any (x, y) ∈ X ×X.
If qp∗(x, x) = qp∗(x, y) = qp∗(y, y), that is, x = (x− y)2 + x = y, then it is obvious that GQP1 holds for

any (x, y) ∈ X ×X. In addition, it is easy to calculate

qp∗(x, x) = x 6 (x− y)2 + x = qp∗(x, y).

Let x = n− 1

n
, y = m− 1

m
for any m,n ∈ N, then

qp∗(x, x) = n− 1

n
, qp∗(y, x) = (m− n)2(1 +

1

mn
)2 + 1− 1

m
.

Calculating

qp∗(y, x)− qp∗(x, x) = [(m− n)(1 +
1

mn
) +

1

2
]2 − 1

4
> 0,

thus, qp∗(x, x) 6 qp∗(y, x) is true, hence GQP2 and GQP3 hold for any (x, y) ∈ X ×X. Moreover, for any

x = n − 1

n
(n ∈ N), we do not find any sequence belonging to C (qp∗, X, x) except for a constant sequence

{ηi = x}∞i=0. Additionally,

qp∗(x, y) = (x− y)2 + x

6 x+ lim sup
i→∞

(ηi − y)2

= x+ lim sup
i→∞

[(ηi − y)2 + ηi]− lim sup
i→∞

ηi

= qp∗(x, x) + lim sup
i→∞

qp∗(ηi, y)− lim sup
i→∞

qp∗(ηi, ηi)

is true for any (x, y) ∈ X ×X, that is, (GQP4) holds, hence (X, qp∗) is a generalized quasi-partial metric
space, but since

qp∗(5− 1

5
, 1− 1

1
) + qp∗(2− 1

2
, 2− 1

2
) =

1467

50
>

972

50
= qp∗(5− 1

5
, 2− 1

2
) + qp∗(2− 1

2
, 1− 1

1
),

(QP4)(triangle inequality) is not true, thus (X, qp∗) is not a quasi-partial metric space.
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Remark 3.5. Proposition 3.3 and Example 3.4 indicate that quasi-partial metric spaces are generalized
quasi-partial metric spaces, but conversely this is not true.

Denote Tqp∗ as the topology induced by the generalized quasi-partial metric qp∗. Next we define conver-
gent sequence, Cauchy sequence, completeness of space and continuous mapping in generalized quasi-partial
metric spaces.

Definition 3.6. Let (X, qp∗) be a generalized quasi-partial metric. Then

(i) A sequence {xn}∞n=0⊂X converges to x ∈ X if and only if qp∗(x, x)= lim
n→∞

qp∗(x, xn) = lim
n→∞

qp∗(xn, x).

(ii) A sequence {xn}∞n=0 ⊂ X is called a Cauchy sequence if and only if lim
n,m→∞

qp∗(xm, xn) and

lim
n,m→∞

qp∗(xn, xm) exist (and are finite).

(iii) The generalized quasi-partial metric space (X, qp∗) is said to be complete if every Cauchy sequence
{xn}∞n=0 ⊂ X converges with respect to Tqp∗ to a point x ∈ X such that

qp∗(x, x) = lim
m,n→∞

qp∗(xm, xn) = lim
m,n→∞

qp∗(xn, xm).

(iv) A mapping f : X → X is said to be continuous at x ∈ X if, for every ε > 0, there exists δ > 0 such
that f(B(x0, δ)) ⊂ B(f(x0), ε).

The relationship between generalized quasi-partial metric and generalized dislocated quasi-metric will
be shown in next proposition.

Proposition 3.7. For each generalized quasi-partial metric qp∗ : X×X → R+, the function gdq : X×X →
R+ defined by

gdq(x, y) = qp∗(x, y)− qp∗(x, x) (3.2)

is a generalized dislocated quasi-metric.

Proof. If gdq(x, y) = gdq(y, x) = 0, then qp∗(x, y) = qp∗(x, x) = qp∗(y, y), it follows that x = y.
If {xn}∞n=0 ∈ C (qp∗, X, x), then

qp∗(x, y) + lim
n→∞

qp∗(xn, xn) 6 lim sup
n→∞

qp∗(xn, y) (3.3)

for all (x, y) ∈ X ×X, on the other hand, following Eq. (3.2)

gdq(xn, y) = qp∗(xn, y)− qp∗(xn, xn)

is true for every n ∈ N. Thus

lim sup
n→∞

gdq(xn, y) = lim sup
n→∞

qp∗(xn, y)− lim sup
n→∞

qp∗(xn, xn)

= lim sup
n→∞

qp∗(xn, y)− lim
n→∞

qp∗(xn, xn),
(3.4)

subsequently, by Eq. (3.2), Inequality (3.3) and Eq. (3.4)

gdq(x, y) = qp∗(x, y)− qp∗(x, x)
6 lim sup

n→∞
qp∗(xn, y)− lim

n→∞
qp∗(xn, xn)

= lim sup
n→∞

gdq(xn, y).

We denote simply qp∗-converges to x by xn
qp∗−−→ x. We state the uniqueness of the limit of a sequence

in a generalized quasi-partial metric space.
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Proposition 3.8. Let (X, qp∗) be a complete generalized quasi-partial metric space, {xn}∞n=0 be a sequence
in X. If {xn}∞n=0 ∈ C (qp∗, X, x) ∩ C (qp∗, X, y) and qp∗(x, y) = qp∗(y, x) for x, y ∈ X, then x = y. In other

words, if xn
qp∗−−→ x, xn

qp∗−−→ y then x = y.

Proof. Assume that xn
qp∗−−→ x and xn

qp∗−−→ y in (X, qp∗), then

qp∗(x, x) = lim
n→∞

qp∗(xn, x) = lim
n→∞

qp∗(x, xn)

and
qp∗(y, y) = lim

n→∞
qp∗(xn, y) = lim

n→∞
qp∗(y, xn).

Since qp∗ is complete, it is obvious that

qp∗(x, x) = lim
n→∞

qp∗(xn, x) = lim
n→∞

qp∗(x, xn),

= lim
m,n→∞

qp∗(xm, xn) = lim
m,n→∞

qp∗(xn, xm)

and
qp∗(y, y) = lim

n→∞
qp∗(xn, y) = lim

n→∞
qp∗(y, xn),

= lim
m,n→∞

qp∗(xm, xn) = lim
m,n→∞

qp∗(xn, xm).

On the other hand, using GQP4, we have

qp∗(x, y) 6 lim sup
n→∞

qp∗(xn, y) + qp∗(x, x)− lim
n→∞

qp∗(xn, xn),

= lim
n→∞

qp∗(xn, y)

= qp∗(y, y)

and

qp∗(y, x) 6 lim sup
n→∞

qp∗(xn, x) + qp∗(y, y)− lim
n→∞

qp∗(xn, xn),

= lim
n→∞

qp∗(xn, x)

= qp∗(x, x).

In combination with GQP2 and GQP3,

qp∗(y, y) = qp∗(x, y), qp∗(x, x) = qp∗(y, x).

Subsequently, from the condition qp∗(x, y) = qp∗(y, x), we get qp∗(x, x) = qp∗(x, y) = qp∗(y, y) which implies
from the property (GQP1) that x = y.

Definition 3.9. We called the generalized quasi-partial metric space satisfying the condition qp∗(x, y) =
qp∗(y, x) a generalized partial metric space.

Lemma 3.10. Let (X, qp∗) be a generalized quasi-partial metric space and (X, gdq) be the corresponding
generalized dislocated quasi-metric space. Then (X, gdq) is complete if (X, qp∗) is complete.

Proof. Since (X, qp∗) is complete, every Cauchy sequence {xn}∞n=0 in X converges with respect to Tqp∗ to
a point x ∈ X such that

qp∗(x, x) = lim
m,n→∞

qp∗(xn, xm) = lim
m,n→∞

qp∗(xm, xn). (3.5)
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Consider a Cauchy sequence {xn}∞i=0 in (X, gdq). We will show that {xn}∞n=0 is Cauchy in (X, qp∗). Since
{xn}∞n=0 is Cauchy in (X, gdq), lim

n→∞
gdq(xn, xm) exists and is finite. On the other hand,

gdq(xn, xm) = qp∗(xn, xm)qp∗(xn, xn)

and
gdq(xm, xn) = qp∗(xm, xn)qp∗(xm, xm)

hold for any m,n ∈ N, hence lim
m,n→∞

qp∗(xn, xm) and lim
m,n→∞

qp∗(xm, xn) exist and are finite. Therefore,

{xn}∞n=0 is a Cauchy sequence in (X, qp∗). Because (X, qp∗) is complete, therefore the sequence {xn}∞i=0

converges with respect to Tqp∗ to a point x ∈ X such that (3.5) holds. In addition,

lim
n→∞

gdq(x, xn) = lim
n→∞

qp∗(x, xn)qp∗(x, x) = 0.

Similarly,
lim
n→∞

gdq(xn, x) = lim
n→∞

qp∗(xn, x) lim
n→∞

qp∗(xn, xn) = 0.

Hence
lim
n→∞

gdq(x, xn) = lim
n→∞

gdq(xn, x) = 0.

Lemma 3.11. Let (X, qp∗) be a generalized quasi-partial metric space. Then the following hold.
(i) If qp∗(x, y) = 0, then x = y.
(ii) If x 6= y, then qp∗(x, y) > 0 and qp∗(y, x) > 0.

The proof is similar to the case of quasi-partial metric space [9], thus we omit it.

4. Main results

In this paper, some fixed point results (see [9]) on quasi-partial metric spaces are extended to generalized
quasi-partial metric spaces.

Definition 4.1 ([9]). Let T : X → X be a self-mapping on X, O(x, T ) = {x, Tx, T 2x, . . .} is called a orbit
of x. A mapping G : X → R+ is T -orbitally lower semi-continuous at x if {xn}∞n=0 is a sequence in O(x, T )
and lim

n→∞
xn = z implies G(z) 6 lim inf

n→∞
G(xn).

The following two lemmas are very useful in the proof of the main theorems.

Lemma 4.2. Let (X, qp∗) be a generalized quasi-partial metric space. Assume that there exist x ∈ X and
xn ∈ O(x, T ) such that lim sup

i→∞
qp∗(ηi, y) <∞ holds for all y ∈ O(x, T ) and {ηi}∞i=0 ∈ C (qp∗, X, xk), then

qp∗(xn, y) <∞

for all y ∈ O(x, T ).

Proof. If {ηi}∞i=0 ∈ C (qp∗, X, xn), then using GQP4,

qp∗(xn, y) 6 qp∗(xn, xn) + lim sup
i→∞

qp∗(ηi, y)− lim sup
i→∞

qp∗(ηi, ηi)

= lim sup
i→∞

qp∗(ηi, xn) + lim sup
i→∞

qp∗(ηi, y)− lim sup
i→∞

qp∗(ηi, ηi)

6 lim sup
i→∞

qp∗(ηi, xn) + lim sup
i→∞

qp∗(ηi, y),

subsequently, qp∗(xn, y) <∞ since lim sup
i→∞

qp∗(ηi, xn) <∞ and lim sup
i→∞

qp∗(ηi, y) <∞.
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Lemma 4.3. Let (X, qp∗) be a generalized quasi-partial metric spaces. Assume that there exist x ∈ X and
xn ∈ O(x, T ) such that lim sup

i→∞
qp∗(ηki , y) <∞ for all y ∈ O(x, T ), {ηki }∞i=0 ∈ C (qp∗, X, xk) and n 6 k < m,

then there exists 0 < Cn <∞ such that

qp∗(xn, xm) 6 Cn

m−1∑
k=n

qp∗(xk, xk+1)

holds for all m > n(m,n ∈ N).

Proof. Set xn, xm ∈ O(x, T ), m > n (m,n ∈ N). Considering the two cases:
Case (i) qp∗(xn, xm) = 0. In this case, obviously,

0 = qp∗(xn, xm) 6 Cn

m−1∑
k=n

qp∗(xk, xk+1)

for arbitrary Cn > 0.
Case (ii) qp∗(xn, xm) > 0. In this case, let us prove that

0 < qp∗(xn, xm) <∞and0 <

m−1∑
k=n

qp∗(xk, xk+1) <∞.

Note that when xn, xm ∈ O(x, T ) and {ηni }∞i=0 ∈ C (qp∗, X, xn), lim sup
i→∞

qp∗(ηni , xm) < ∞ holds, therefore,

we get from Lemma 4.2,
qp∗(xn, xm) <∞

for all m > n.

Assume that

m−1∑
k=n

qp∗(xk, xk+1) = 0, then

qp∗(xk, xk+1) = 0.

From Lemma 3.11, we derive xk = xk+1 for n 6 k < m, that is,

xn = xn+1 = . . . = xm,

hence
qp∗(xn, xm) = 0,

which contradicts qp∗(xn, xm) > 0.
Thus

m−1∑
k=n

qp∗(xk, xk+1) > 0.

On the other hand, because lim sup
i→∞

qp∗(ηki , y) < ∞ for all y ∈ O(x, T ), {ηki }∞i=0 ∈ C (qp∗, X, xk) and

k ∈ {n, n+ 1, . . . ,m− 1}, in combination with Lemma 4.2, it can be deduced

qp∗(xk, xk+1) <∞

for every k ∈ {n, n+ 1, . . . ,m− 1}.
If m <∞, then

0 <
m−1∑
k=n

qp∗(xk, xk+1) <∞.

Therefore there exists 0 < qp∗(xn, xm)
/m−1∑

k=n

qp∗(xk, xk+1) 6 Cn <∞ such that
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qp∗(xn, xm) 6 Cn

m−1∑
k=n

qp∗(xk, xk+1)

holds.
If m =∞, then

m−1∑
k=n

qp∗(xk, xk+1) =
∞∑
k=n

qp∗(xk, xk+1) <∞

or
m−1∑
k=n

qp∗(xk, xk+1) =
∞∑
k=n

qp∗(xk, xk+1) =∞.

Considering the first case, we take qp∗(xn, xm)
/m−1∑

k=n

qp∗(xk, xk+1) 6 Cn < ∞. As for the second case,

qp∗(xn, xm) 6 Cn

∞∑
k=n

qp∗(xk, xk+1) holds for arbitrary Cn (0 < Cn <∞).

Theorem 4.4. Let (X, qp∗) be generalized quasi-partial metric spaces and T : X → X be a self-mapping,
then the following hold

(i) There exists a mapping ψ : X → R+ such that

qp∗(x, Tx) 6 ψ(x)− ψ(Tx) (4.1)

holds for all x ∈ X if and only if
∞∑
n=0

qp∗(Tnx, Tn+1x)

converges for all x ∈ X.

(ii) There exists a mapping ψ : X → R+ such that

qp∗(y, Ty) 6 ψ(y)− ψ(Ty)

holds for all y ∈ O(x, T ) if and only if

∞∑
n=0

qp∗(Tny, Tn+1y)

converges for all y ∈ O(x, T ).

Proof. Proof of (i). First, let us prove the necessity of (i). Take x ∈ X and let

qp∗(x, Tx) 6 ψ(x)− ψ(Tx).

Denote the sequence {xn}∞n=0 in the following way:

x0 = x, xn+1 = Txn = Tn+1x for all n ∈ {0, 1, 2, . . . , },

thus

n∑
k=0

qp∗(xk, xk+1) =

n∑
k=0

qp∗(T kx0, T
k+1x0).
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Set

Sn =

n∑
k=0

qp∗(xk, xk+1).

By (4.1), we obtain

Sn 6
n∑

k=0

[ψ(T kx0)− ψ(T k+1x0)]

= ψ(x0)− ψ(T k+1x0)
6 ψ(x0) = ψ(x),

which implies {Sn} is bounded. On the other hand, {Sn} is non-decreasing by definition and hence it is
convergent.

Next we prove the sufficiency of (i). Define

ψ(x) =

∞∑
k=0

[ψ(T kx)− ψ(T k+1x)], Sn(x) =

n∑
k=0

[ψ(T kx)− ψ(T k+1x)].

Calculating

Sn(x)− Sn(Tx) =
n∑

k=0

qp∗(T kx, T k+1x)−
n∑

k=0

qp∗(T k+1x, T k+2x)

= qp∗(x, Tx)− qp∗(xk+1, xk+2).

(4.2)

Moreover, since
∞∑
n=0

qp∗(Tnx, Tn+1x) converges for all x ∈ X, then

lim
n→∞

qp∗(Tnx, Tn+1x) = 0 and lim
n→∞

Sn(x) = ψ(x).

Letting n→∞ in Eq. (4.2), we get

ψ(x)− ψ(Tx) = qp∗(x, Tx).

Proof of (ii). It can easily be proved using part (i).

We present an example of a generalized quasi-partial metric instead of quasi-partial metric to illustrate
Theorem 4.4.

Example 4.5. Let X =
[
0,
π

6

]
and define

qp∗b(x, y) = tan |x− y|+ x

for any (x, y) ∈ X ×X.
If qp∗(x, x) = qp∗(x, y) = qp∗(y, y), that is, x = tan |x− y|+x = y, then it is obvious that (GQP1) holds for
any (x, y) ∈ X ×X. In addition, since

qp∗(x, x) = x 6 tan |x− y|+ x = qp∗(x, y)

and

qp∗(x, x) = x = |x− y + y|
6 |y − x|+ y

6 tan |y − x|+ y

= qp∗(y, x)

are true, then (GQP2) and (GQP3) hold for any (x, y) ∈ X × X. Moreover, we observe that for every
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x, y ∈ X, if sequence {xn}∞n=0 ∈ C (qp∗, X, x), then

qp∗(x, y) = tan |x− y|+ x

6 x+ lim sup
n→∞

tan |xn − y|

= x+ lim sup
n→∞

(tan |xn − y|+ xn)− lim sup
n→∞

xn

= qp∗(x, x) + lim sup
n→∞

qp∗(xn, y)− lim sup
n→∞

qp∗(xn, xn),

that is, (GQP4) holds, hence (X, qp∗) is a generalized quasi-partial metric space, but since

qp∗(
π

6
, 0) + qp∗(

π

18
,
π

18
) = tan

π

6
+

2π

9
> tan

π

9
+ tan

π

18
+

2π

9
= qp∗(

π

6
,
π

18
) + qp∗(

π

18
, 0),

(QP4) (triangle inequality) does not hold, thus (X, qp∗) is not a quasi-partial metric space.

Define T : X → X as Tx =
x

2
for all x ∈ X, we can verify that the series

∞∑
n=0

qp∗(Tnx, Tn+1x) is

convergent. In fact

∞∑
n=0

qp∗(Tnx, Tn+1x) =
∞∑
n=0

qp∗(
x

2n
,
x

2n+1
)

=

∞∑
n=0

tan
∣∣∣ x
2n
− x

2n+1

∣∣∣+
∣∣∣ x
2n

∣∣∣
=
∞∑
n=0

tan
x

2n+1
+

x

2n
.

Because 0 6
x

2n+1
<
π

6
(n ∈ N ∪ {0}) and it is not difficult to verify that tanx 6

4

3
x when x ∈

[
0,
π

6

]
,

therefore
∞∑
n=0

qp∗(Tnx, Tn+1x) =
∞∑
n=0

tan
x

2n+1
+

x

2n

6
∞∑
n=0

4

3

(
x

2n+1
+

x

2n

)
=

∞∑
n=0

x

2n−1

= 4x.

In addition,

qp∗(x, Tx) = tan
x

2
+ x

6
2x

2
+ x

= 2x.

Define ψ(x) = 4x, then ψ(x)− ψ(Tx) = 2x, the conditions of Theorem 4.4 are satisfied.

The statement on the conditions for the existence of fixed points of operators in the setting generalized
quasi-partial metric spaces will be given in subsequent theorem.

Theorem 4.6. Let (X, qp∗) and (Y, qp∗) be complete generalized quasi-partial metric spaces. Given mappings
R : X → Y , T : X → X and ψ : R(X)→ R+. If there exist x ∈ X and c > 0 such that

max{qp∗(y, Ty), cqp∗(Ry,RTy)} 6 ψ(Ry)− ψ(RTy) (4.3)

holds for all y ∈ O(x, T ) and moreover, assume that lim sup
i→∞

qp∗(ηki , z) < ∞ for all z ∈ O(x, T ) and every

k ∈ N when {ηki }∞i=0 ∈ C (qp∗, X, xk), then
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(i) lim
n→∞

Tnx = ζ exists.

(ii) T (ζ) = ζ iff G(x) = qp∗(x, Tx) is T -orbitally lower semi-continuous at x.

(iii) There exists C > 0 such that qp∗(x, Tnx) 6 Cψ(Rx).

(iv) If y → qp∗(ζ, y) is continuous for ζ ∈ O(x, T ), then there exists C > 0 such that qp∗(Tnx, ζ) 6
Cψ(Rnx) and q(x, ζ) 6 Cψ(Rx).

Proof. Proof of (i).
Denote xn+1 = Txn = Tn+1x, x0 = x. For every fixed n and all m > n (m,n ∈ {0, 1, . . .}), according to
Lemma 4.3, there exists 0 < Cn <∞ such that

qp∗(xn, xm) 6 Cn

m−1∑
k=n

qp∗(xk, xk+1). (4.4)

Taking C = max{C0, C1, C2, . . .}, then

qp∗(xn, xm) 6 C

m−1∑
k=n

qp∗(xk, xk+1). (4.5)

Next, we will prove that the sequence {xn}∞n=0 is a Cauchy sequence.

Following [9], set Sn(x) = C
n∑

k=0

qp∗(xk, xk+1). Using Inequality (4.3),

qp∗(T kx, T k+1x) 6 max{qp∗(T kx, T k+1x), cqp∗(RT kx,RT k+1x)}
6 ψ(RT kx)− ψ(RT k+1x),

thus

Sn(x) 6 C

n∑
k=0

[ψ(RT kx)− ψ(RT k+1x)]

= C(ψ(Rx)− ψ(RT k+1x))
6 Cψ(Rx),

consequently,
∞∑
k=0

qp∗(xk, xk+1) is convergent. Taking the limit as n,m→∞ on the two sides of Inequality

(4.5), we obtain
lim

m,n→∞
qp∗(xn, xm) = lim

m,n→∞
(Sm−1 − Sn) = 0.

Using similar arguments, one can show that

lim
m,n→∞

qp∗(xm, xn) = 0,

that is, the sequence {xn}∞n=0 is Cauchy in (X, qp∗). Since (X, qp∗) is complete, (X, gdq) is also complete by
Lemma 3.10 and hence lim

n→∞
gdq(T

nx, ζ) = lim
n→∞

gdq(ζ, T
nx) = 0, that is, lim

n→∞
Tnx = ζ. Moreover, we get

lim
n→∞

qp∗(Tnx, Tn+1x) = lim
n→∞

qp∗(ζ, ζ) = 0.

Proof of necessity of (ii).

Suppose that Tζ = ζ and {xn}∞n→∞ ∈ O(x, T ) with xn
qp∗−−→ x. Using Lemma 3.10,

qp∗(x, x) = lim
m,n→∞

qp∗(xn, xm) = lim
m,n→∞

qp∗(xm, xn)
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⇒ lim
n→∞

gdq(T
nx, ζ) = lim

n→∞
gdq(ζ, T

nx) = 0.

Then G(ζ) = qp∗(ζ, T ζ) = qp∗(ζ, ζ) 6 lim inf
n→∞

qp∗(xn, Txn) = lim inf
n→∞

G(xn), that is, G(x) = qp∗(x, Tx) is

T -orbitally lower semi-continuous at x.
Proof of sufficiency of (ii).

Assume that xn
qp∗−−→ x and G is T -orbitally lower semi-continuous at x. It can be derived that

0 6 qp∗(ζ, T ζ) = G(ζ) 6 lim inf
n→∞

G(xn)

= lim inf
n→∞

qp∗(Tnx, Tn+1x)

= lim inf
n→∞

qp∗(xn, xn+1)

= qp∗(ζ, ζ) = 0.

It follows from Lemma 3.11 that Tζ = ζ.
Proof of (iii).
The same as the proof of (i), there exists C > 0 such that

qp∗(x, xn) 6 C
n−1∑
k=0

qp∗(xk, xk+1). (4.6)

Using Eq. (4.3),

qp∗(T kx, T k+1x) 6 max{qp∗(T kx, T k+1x), cqp∗(RT kx,RT k+1x)}
6 ψ(RT kx)− ψ(RT k+1x),

thus

qp∗(x, xn) 6 C
n−1∑
k=0

qp∗(xk, xk+1),

6 C

n−1∑
k=0

[ψ(RT kx)− ψ(RTnx)]

= C(ψ(Rx)− ψ(RT k+1x))
6 Cψ(Rx).

Proof of (iv).
Because y → qp∗(ζ, y) is continuous for every fixed ζ ∈ O(x, T ), therefore letting n→∞, q(x, ζ) 6 Cψ(Rx)
holds. We have shown in (4.5)

qp∗(xn, xm) 6 C
m−1∑
k=n

qp∗(xk, xk+1). (4.7)

Similar to the proof of (iii), we derive

qp∗(xn, xm) 6 C
m−1∑
k=n

qp∗(xk, xk+1),

6 C

m−1∑
k=n

[ψ(RT kx)− ψ(RT k+1x)]

= C(ψ(Rnx)− ψ(RTmx))
6 Cψ(Rnx)

for m > n. Letting m→∞, then the inequality q(Tnx, ζ) 6 Cψ(Rnx) follows.

We give an illustrative example for above fixed point theorem in the setting of generalized quasi-partial
metric spaces.
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Example 4.7. Let X =
[
0,
π

6

]
and define qp∗b(x, y) = tan |x− y|+ x for any (x, y) ∈ X ×X, then (X, qp∗)

is a generalized quasi-partial metric space. Define T : X → X as Tx =
x

2
for all x ∈ X; R : X → Y as

Rx = 2x and ψ : R(X)→ R+ as ψ(x) = 2x. Then for c =
1

2
and y ∈

[
0,
π

6

]
,

max
{
qp∗(y, Ty), cqp∗(Ry,RTy)

}
= max

{
qp∗(y,

y

2
),

1

2
qp∗(2y, y)

}
= max

{
tan

y

2
+ y,

1

2
tan y + y

}
.

Since tan θ 6 2θ for θ ∈
[
0,
π

6

]
, then

max
{
qp∗(y, Ty), cqp∗(Ry,RTy)

}
6 2y
= ψ(2y)− ψ(y)
= ψ(Ry)− ψ(RTy).

For every x ∈ X and k ∈ N, when {ηki }∞i=0 ∈ C (qp∗, X, xk), let us prove lim sup
i→∞

qp∗(ηki , z) < ∞ for all

z ∈ O(x, T ). Indeed

lim sup
i→∞

qp∗(ηki , z) = lim
i→∞

(tan |ηki − z|+ ηki )

6 lim
i→∞

(2|ηki − z|+ ηki )

6
2π

6
+
π

6
=
π

2
<∞.

Let C =
π

2
, we now prove that (i)-(iv) of the above theorem hold:

(i). lim
n→∞

Txn = lim
n→∞

x

2n
= 0 = ζ exists.

(ii). By (i), we get ζ = 0. Therefore T (ζ) = T (0) = 0 = ζ holds trivially. Hence whenever G(x) =
qp∗(x, Tx) is T -orbitally lower semi-continuous at x implies Tζ = ζ.
Conversely, let Tζ = ζ and we show that G is T -orbitally lower semi-continuous at x. Let Tζ = ζ and

{xn}∞n→∞ ∈ O(x, T ) with xn
qp∗−−→ ζ = 0, we have

G(ζ) = qp∗(ζ, T ζ) = qp∗(ζ, ζ) = ζ = 0.

On the other hand,

0 = lim inf
n→∞

xn
2

+ xn

6 lim inf
n→∞

tan
xn
2

+ xn

= lim inf
n→∞

qp∗(xn,
xn
2

) = qp∗(xn, Txn)

= lim inf
n→∞

G(xn).

Hence G(ζ) = lim inf
n→∞

G(xn).

(iii).

qp∗(x, Tnx) = qp∗(x,
x

2n
)

= tan
∣∣∣x− x

2n

∣∣∣+ x

6 2x− x

2n−1
+ x

6 3x− x

2n−1

<
π

2
× 4x = Cψ(Rx).
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(iv). Let m > n, then

qp∗(Tnx, Tmx) = qp∗(
x

2n
,
x

2m
)

= tan
∣∣∣ x
2n
− x

2m

∣∣∣+
∣∣∣ x
2n

∣∣∣
= tan

(2m−n − 1)x

2m
+

x

2n

6
(2m−n − 1)x

2m−1
+

x

2n

=
(2m−1 − 2n)x

2n × 2m−1
.

Moreover, since 0 <
(2m−1 − 2n)x

2m−1
< 1 <

π

2
, subsequently, qp∗(Tnx, Tmx) <

π

2
× x

2n
= Cψ(RTnx).

When taking X = Y , g = idX and c = 1 in Theorem 4.6, we can obtain the following corollary
immediately.

Corollary 4.8. Let (X, qp∗) be a complete generalized quasi-partial metric spaces. Given mappings T :
X → X and ψ : X → R+. If there exists x ∈ X such that

qp∗(y, Ty) 6 ψ(y)− ψ(Ty) (4.8)

holds for all y ∈ O(x, T ) and moreover, assume that lim sup
i→∞

qp∗(ηki , z) < ∞ for all z ∈ O(x, T ) and every

k ∈ N when {ηki }∞i=0 ∈ C (qp∗, X, xk), then

(i) lim
n→∞

Tnx = ζ exists.

(ii) T (ζ) = ζ iff G(x) = qp∗(x, Tx) is T -orbitally lower semi-continuous at x.

(iii) There exists C > 0 such that qp∗(x, Tnx) 6 Cψ(x).

(iv) If y → qp∗(ζ, y) is continuous for ζ ∈ O(x, T ), then there exists C > 0 such that qp∗(Tnx, ζ) 6
Cψ(Tnx) and q(x, ζ) 6 Cψ(x).

As a corollary of Theorem 4.6, we can state the subsequent facts.

Corollary 4.9. Let (X, qp∗) be a complete generalized quasi-partial metric spaces. Given mappings T :
X → X and ψ : X → R+. If there exist x ∈ X and 0 < α < 1 such that

qp∗(Ty, T 2y) 6 qp∗(y, Ty) (4.9)

holds for all y ∈ O(x, T ) and moreover, assume that lim sup
i→∞

qp∗(ηki , z) < ∞ for all z ∈ O(x, T ) and every

k ∈ N when {ηki }∞i=0 ∈ C (qp∗, X, xk), then
(i) lim

n→∞
Tnx = ζ exists.

(ii) T (ζ) = ζ iff G(x) = qp∗(x, Tx) is T -orbitally lower semi-continuous at x.

(iii) There exists C > 0 such that qp∗(x, Tnx) 6
C

1− α
qp∗(x, Tx).

Proof. Following [9], taking y = Tnx in (4.9), then

qp∗(Tn+1x, Tn+2x) 6 αqp∗(Tn+1x, Tn+2x)

and
qp∗(Tnx, Tn+1x)− αqp∗(Tnx, Tn+1x) 6 qp∗(Tnx, Tn+1x)− qp∗(Tn+1x, Tn+2x),
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thus

qp∗(Tnx, Tn+1x) 6
1

1− α

(
qp∗(Tnx, Tn+1x)− qp∗(Tn+1x, Tn+2x)

)
.

Set ψ(y) =
1

1− α
qp∗(y, Ty) for all y ∈ O(x, T ), then

qp∗(y, Ty) 6 ψ(y)− ψ(Ty).

The assertions (i)-(iii) follow immediately from Corollary 4.8.

Because quasi-partial metric spaces are special generalized quasi-partial metric spaces, therefore if we
apply Theorem 4.6, Corollary 4.8 and Corollary 4.9 to the setting of quasi-partial metric spaces respectively,
then the following several corollaries can be stated.

Corollary 4.10. Let (X, qp) and (Y, qp) be complete quasi-partial metric spaces. Given mappings R : X →
Y , T : X → X and ψ : R(X)→ R+. If there exist x ∈ X and c > 0 such that

max{qp(y, Ty), cqp(Ry,RTy)} 6 ψ(Ry)− ψ(RTy) (4.10)

holds for all y ∈ O(x, T ) and moreover, assume that lim sup
i→∞

qp(ηki , z) < ∞ for all z ∈ O(x, T ) and every

k ∈ N when {ηki }∞i=0 ∈ C (qp,X, xk), then

(i) lim
n→∞

Tnx = ζ exists.

(ii) T (ζ) = ζ iff G(x) = qp(x, Tx) is T -orbitally lower semi-continuous at x.

(iii) There exists C > 0 such that qp(x, Tnx) 6 Cψ(Rx).

(iv) If y → qp(ζ, y) is continuous for ζ ∈ O(x, T ), then there exists C > 0 such that qp(Tnx, ζ) 6 Cψ(Rnx)
and q(x, ζ) 6 Cψ(Rx).

Corollary 4.11. Let (X, qp) be a complete quasi-partial metric spaces. Given mappings T : X → X and
ψ : X → R+. If there exists x ∈ X such that

qp(y, Ty) 6 ψ(y)− ψ(Ty) (4.11)

holds for all y ∈ O(x, T ) and moreover, assume that lim sup
i→∞

qp(ηki , z) < ∞ for all z ∈ O(x, T ) and every

k ∈ N when {ηki }∞i=0 ∈ C (qp,X, xk), then

(i) lim
n→∞

Tnx = ζ exists.

(ii) T (ζ) = ζ iff G(x) = qp(x, Tx) is T -orbitally lower semi-continuous at x.

(iii) qp(x, Tnx) 6 ψ(x).

(iv) If y → qp(ζ, y) is continuous for ζ ∈ O(x, T ), then there exists C > 0 qp(Tnx, ζ) 6 Cψ(Tnx) and
q(x, ζ) 6 Cψ(x).

Corollary 4.12. Let (X, qp) be a complete generalized quasi-partial metric spaces. Given mappings
T : X → X and ψ : X → R+. If there exist x ∈ X and 0 < α < 1 such that

qp(Ty, T 2y) 6 αqp(y, Ty) (4.12)

holds for all y ∈ O(x, T ) and moreover, assume that lim sup
i→∞

qp(ηki , z) < ∞ for all z ∈ O(x, T ) and every

k ∈ N when {ηki }∞i=0 ∈ C (qp,X, xk), then
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(i) lim
n→∞

Tnx = ζ exists.

(ii) T (ζ) = ζ iff G(x) = qp(x, Tx) is T -orbitally lower semi-continuous at x.

(iii) There exists C > 0 such that qp(x, Tnx) 6
C

1− α
qp(x, Tx).

Remark 4.13. Because quasi-partial metric spaces are special generalized quasi-partial metric spaces and tri-
angle inequality are satisfied on such spaces, as a consequence, Corollary 4.10, Corollary 4.11, and Corollary
4.12 are stated in simpler and better formations in the setting of quasi-partial metric spaces in [9].
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