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1. Introduction and Preliminaries

Let E be a real Banach space and let C be nonempty closed and convex subset of E. Let B : C×C → R
be a function. Recall the following equilibrium problem in the terminology of Blum and Oettli [4].

Find x̄ ∈ C such that B(x̄ y) ≥ 0, ∀y ∈ C.

In this paper, we use Sol(B) to denote the solution set of the equilibrium problem. That is, Sol(B) = {x ∈
C : B(x, y) ≥ 0,∀y ∈ C}. The following restrictions on function B are essential in this paper.

(A-1) B(a, a) ≡ 0,∀a ∈ C;
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(A-2) 0 ≥ B(b, a) +B(a, b),∀a, b ∈ C;

(A-3) b 7→ B(a, b) is convex and weakly lower semi-continuous, ∀a ∈ C;

(A-4) B(a, b) ≥ lim supt↓0B(tc+ (1− t)a, b), ∀a, b, c ∈ C.

The equilibrium problem has been extensively studied based on iterative methods because of its appli-
cations in nonlinear analysis, optimization, economics, game theory, mechanics, medicine and so forth, see
[3], [7]-[11], [14], [17], [18], [25], [27]-[31] and the references therein.

Let E∗ be the dual space of E. Let BE be the unit sphere of E. Recall that E is said to be uniformly
convex if for any a ∈ (0, 2] there exists b > 0 such that for any x, y ∈ BE ,

‖y − x‖ ≥ a implies ‖y + x‖ ≤ 2− 2b.

E is said to be a strictly convex space if and only if ‖y + x‖ < 2 for all x, y ∈ BE and x 6= y. It is known
that a uniformly convex Banach space is reflexive and strictly convex.

Recall that E is said to have a Gâteaux differentiable norm if and only if limt→0
‖x+ty‖−‖x‖

t exists for each
x, y ∈ BE . In this case, we also say that E is smooth. E is said to have a uniformly Gâteaux differentiable
norm if for each y ∈ BE , limt→0

‖x+ty‖−‖x‖
t is attained uniformly for all x ∈ BE . E is also said to have a

uniformly Fréchet differentiable norm iff limt→0
‖x+ty‖−‖x‖

t is attained uniformly for x, y ∈ BE . In this case,
we say that E is uniformly smooth. It is known that a uniformly smooth Banach space is reflexive and
smooth. Recall that E is said to has the Kadec-Klee property if limm→∞ ‖xm − x‖ = 0, for any sequence
{xm} ⊂ E, and x ∈ E with {xn} converges weakly to x, and {‖xn‖} converges strongly to ‖x‖. It is known
that every uniformly convex Banach space has the Kadec-Klee property; see [13] and the references therein.

Recall that the normalized duality mapping J from E to 2E
∗

is defined by

Jx = {x∗ ∈ E∗ : ‖x‖2 = 〈x, x∗〉 = ‖x∗‖2}.

It is known if E is uniformly smooth, then J is uniformly norm-to-norm continuous on every bounded subset
of E; if E is a smooth Banach space, then J is single-valued and demicontinuous, i.e., continuous from the
strong topology of E to the weak star topology of E; if E is smooth, strictly convex and reflexive Banach
space, then J is single-valued, one-to-one and onto.

Let T be a mapping on C. T is said to be closed if for any sequence {xm} ⊂ C such that limm→∞ xm = x′

and limm→∞ Txm = y′, then Tx′ = y′. Let W be a bounded subset of C. Recall that T is said to be uniformly
asymptotically regular on C if and only if lim supn→∞ supx∈W {‖Tnx− Tn+1x‖} = 0. From now on, we use
⇀ and→ to stand for the weak convergence and strong convergence, respectively and use Fix(T ) to denote
the fixed point set of mapping T .

Next, we assume that E is a smooth Banach space which means mapping J is single-valued. Study the
functional

φ(x, y) := ‖x‖2 + ‖y‖2 − 2〈x, Jy〉, ∀x, y ∈ E.

Let C be a closed convex subset of a real Hilbert space H. For any x ∈ H, there exists a unique nearest
point in C, denoted by PCx, such that ‖x − PCx‖ ≤ ‖x − y‖, for all y ∈ C. The operator PC is called the
metric projection from H onto C. It is known that PC is firmly nonexpansive, that is, ‖PCx − PCy‖2 ≤
〈x− y, PCx− PCy〉. In [2], Alber studied a new mapping ProjC in a Banach space E which is an analogue
of PC , the metric projection, in Hilbert spaces. Recall that the generalized projection ProjC : E → C is a
mapping that assigns to an arbitrary point x ∈ E the minimum point of φ(x, y).

Recall that T is said to be asymptotically quasi-φ-nonexpansive in the intermediate sense iff Fix(T ) 6= ∅
and

lim sup
n→∞

sup
p∈Fix(T ),x∈C

(
φ(p, Tnx)− φ(p, x)

)
≤ 0.

Putting ξn = max{0, supp∈Fix(T ),x∈C
(
φ(p, Tnx)− φ(p, x)

)
}, we see ξn → 0 as n→∞. Hence, we have

φ(p, Tnx) ≤ φ(p, x) + ξn, ∀x ∈ C,∀p ∈ Fix(T ).
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T is said to be asymptotically quasi-φ-nonexpansive iff Fix(T ) 6= ∅ and

φ(p, Tnx) ≤ (1 + un)φ(p, x), ∀x ∈ C,∀p ∈ Fix(T ), ∀n ≥ 1,

where {un} is a sequence {un} ⊂ [0,∞) with un → 0 as n→∞.
T is said to be quasi-φ-nonexpansive iff Fix(T ) 6= ∅ and

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C,∀p ∈ Fix(T ).

Recall that p is said to be an asymptotic fixed point of T if and only if C contains a sequence {xn},
where xn ⇀ p such that xn − Txn → 0. Here, we use F̃ ix(T ) to denote the asymptotic fixed point set of T .

T is said to be asymptotically relatively quasi-φ-nonexpansive iff Fix(T ) = F̃ ix(T ) 6= ∅ and

φ(p, Tnx) ≤ (1 + un)φ(p, x), ∀x ∈ C,∀p ∈ Fix(T ) = F̃ ix(T ), ∀n ≥ 1,

where {un} is a sequence {un} ⊂ [0,∞) with un → 0 as n→∞.

T is said to be relatively nonexpansive iff Fix(T ) = F̃ ix(T ) 6= ∅ and

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C,∀p ∈ Fix(T ) = F̃ ix(T ).

Remark 1.1. The class of asymptotically quasi-φ-nonexpansive mappings in the intermediate sense [24] is
reduced to the class of asymptotically quasi-nonexpansive mappings in the intermediate sense, which was
considered in [5] as a non-Lipschitz continuous mappings, in the framework of Hilbert spaces.

Remark 1.2. The class of quasi-φ-nonexpansive mappings [21] is a generalization of relatively nonexpansive
mappings [6]. The class of quasi-φ-nonexpansive mappings do not require the strong restriction that the
fixed point set equals the asymptotic fixed point set.

Remark 1.3. The class of asymptotically quasi-φ-nonexpansive mappings [22] is more desirable than the class
of asymptotically relatively nonexpansive [1] mappings. Asymptotically quasi-φ-nonexpansive mappings are
reduced to asymptotically quasi-nonexpansive mappings in the framework of Hilbert spaces.

In this paper, we study the equilibrium problem in the terminology of Blum and Oettli [4] and a
finite family of asymptotically quasi-φ-nonexpansive mappings in the intermediate sense. With the aid of
generalization projections, we establish a strong theorem in a strictly convex and uniformly smooth Banach
space. The results obtained in this paper mainly improve the corresponding results in [15], [16], [19], [20],
[23], [30]. In order to prove our main results, we also need the following lemmas.

Lemma 1.4 ([2]). Let E be a strictly convex, reflexive, and smooth Banach space and let C be a nonempty,
closed, and convex subset of E. Let x ∈ E. Then

φ(y, x)− φ(ΠCx, x) ≥ φ(y,ΠCx), ∀y ∈ C,

0 ≥ 〈y − x0, Jx− Jx0〉, ∀y ∈ C if and only if x0 = ΠCx.

Lemma 1.5 ([26]). Let r be a positive real number and let E be uniformly convex. Then there exists a
convex, strictly increasing and continuous function cog : [0, 2r]→ R such that cog(0) = 0 and

t‖a‖2 + (1− t)‖b‖2 ≥ ‖(1− t)b+ ta‖2 + t(1− t)cog(‖b− a‖)

for all a, b ∈ Br := {a ∈ E : ‖a‖ ≤ r} and t ∈ [0, 1].

Lemma 1.6 ([4], [21]). Let E be a strictly convex, smooth, and reflexive Banach space and let C be a
closedconvex subset of E. Let B be a function with restrictions (A-1), (A-2), (A-3) and (A-4), from C ×C
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to R. Let x ∈ E and let r > 0. Then there exists z ∈ C such that 〈z − y, Jz − Jx〉+ rB(z, y) ≤ 0, ∀y ∈ C
Define a mapping KB,r by

KB,rx = {z ∈ C : 0 ≤ 〈y − z, Jz − Jx〉+ rB(z, y), ∀y ∈ C}.

The following conclusions hold:

(1) KB,r is single-valued quasi-φ-nonexpansive;

(2) Sol(B) = Fix(KB,r) is convex and closed.

Lemma 1.7 ([24]). Let E be a strictly convex and uniformly smooth Banach space which also has the Kadec-
Klee property. Let C be a convex and closed subset of E and let T be an asymptotically quasi-φ-nonexpansive
mapping in the intermediate sense on C. Fix(T ) is convex.

2. Main results

Theorem 2.1. Let E be a strictly convex and uniformly smooth Banach space which also has the Kadec-Klee
property. Let C be a convex and closed subset of E and let B be a function with restrictions (A-1), (A-2),
(A-3) and (A-4). Let {Tm}Nm=1, where N is some positive integer, be a sequence of asymptotically quasi-φ-
nonexpansive mappings in the intermediate sense on C. Assume that every Tm is uniformly asymptotically
regular and closed and Sol(B)

⋂
∩Nm=1Fix(Tm) is nonempty. Let {α(n,0)}, {α(n,1)}, · · · , {α(n,N)} be real

sequences in (0,1) such that
∑N

m=0 α(n,m) = 1 and lim infn→∞ α(n,0)α(n,m) > 0 for any 1 ≤ m ≤ N . Let
{xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ProjC1x0,

rnB(un, u) ≥ 〈un − u, Jun − Jxn〉, ∀u ∈ Cn,

Jyn =
(∑N

m=1 α(n,m)JT
n
mxn + α(n,0)Jun

)
,

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ (1− α(n,0))ξn + φ(z, xn)},
xn+1 = ProjCn+1x1,

where ξn = max
{

max{supp∈Fix(Tm),x∈C
(
φ(p, Tn

mx)−φ(p, x)
)
, 0} : 1 ≤ m ≤ N

}
, and {rn} is a real sequence

such that lim infn→∞ rn > 0. Then {xn} converges strongly to ProjSol(B)
⋂
∩Nm=1Fix(Tm)x1.

Proof. The proof is split into seven steps.

Step 1. Prove that Sol(B)
⋂
∩Nm=1Fix(Tm) is convex and closed.

Using Lemmas 1.6 and 1.7, we find that Fix(Tm) is convex and Sol(B) is convex and closed. Since Tm
is closed, we find that Fix(Tm) is also closed. So, ProjSol(B)∩∩Nm=1Fix(Tm)x is well defined, for any element
x in E.

Step 2. Prove that Cn is convex and closed.

It is obvious that C1 = C is convex and closed. Assume that Ci is convex and closed for some i ≥ 1. Let
p1, p2 ∈ Ci+1. It follows that p = sp1 + (1− s)p2 ∈ Ci, where s ∈ (0, 1). Since

(1− α(i,0))ξi + φ(p1, xi) ≥ φ(p1, yi),

and
(1− α(i,0))ξi + φ(p2, xi) ≥ φ(p2, yi),
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one has
(1− α(i,0))ξi ≥ 2〈p1, Jxi − Jyi〉 − ‖xi‖2 + ‖yi‖2,

and
(1− α(i,0))ξi ≥ 2〈p2, Jxi − Jyi〉 − ‖xi‖2 + ‖yi‖2.

Using the above two inequalities, one has

φ(p, yi)− φ(p, xi) ≤ (1− α(i,0))ξi.

This shows that Ci+1 is closed and convex. Hence, Cn is a convex and closed set.

Step 3. Prove ∩Nm=1Fix(Tm) ∩ Sol(B) ⊂ Cn.

It is obvious
∩Nm=1Fix(Tm) ∩ Sol(B) ⊂ C1 = C.

Suppose that ∩Nm=1Fix(Tm)∩Sol(B) ⊂ Ci for some positive integer i. For any z ∈ ∩Nm=1Fix(Tm)∩Sol(B) ⊂
Ci, we see that

φ(z, xi) + (1− α(i,0))ξi

≥
N∑

m=1

α(i,m)φ(z, T i
mxi) + α(i,0)φ(z, ui)

≥ ‖z‖2 +
N∑

m=1

α(i,m)‖T i
mxi‖2 + α(i,0)‖Jui‖2

− 2α(i,0)〈z, Jui〉 − 2
N∑

m=1

α(i,m)〈z, JT i
mxi〉

≥ ‖z‖2 + ‖
N∑

m=1

α(i,m)JT
i
mxi + α(i,0)Jui‖2

− 2〈z,
N∑

m=1

α(i,m)JT
i
mxi + α(i,0)Jui〉

= φ(z, yi),

where
ξi = max

{
max{ sup

p∈Fix(Tm),x∈C

(
φ(p, T i

mx)− φ(p, x)
)
, 0} : 1 ≤ m ≤ N

}
.

This shows that z ∈ Ci+1. This implies that ∩Nm=1Fix(Tm) ∩ Sol(B) ⊂ Cn.

Step 4. Prove that {xn} is bounded.

Now, we have 〈xn − z, Jx1 − Jxn〉 ≥ 0, for any z ∈ Cn. It follows that

0 ≤ 〈xn − z, Jx1 − Jxn〉, ∀z ∈ ∩Nm=1Fix(Tm) ∩ Sol(B) ⊂ Cn.

On the other hand, we find from Lemma 1.4,

φ(Proj∩Nm=1Fix(Tm)∩Sol(B)x1, x1)

≥ φ(Proj∩Nm=1Fix(Tm)∩Sol(B)x1, x1)− φ(Proj∩Nm=1Fix(Tm)∩Sol(B)x1, xn)

≥ φ(xn, x1),

which shows that {φ(xn, x1)} is bounded. Hence, {xn} is also bounded. Without loss of generality, we
assume xn ⇀ x̄. Since every Cn is convex and closed. So x̄ ∈ Cn.

Step 5. Prove x̄ ∈ ∩Nm=1Fix(Tm).
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Since x̄ ∈ Cn, one has φ(xn, x1) ≤ φ(x̄, x1). This implies that

φ(x̄, x1) ≤ lim inf
n→∞

(‖xn‖2 + ‖x1‖2 − 2〈xn, Jx1〉) = lim sup
n→∞

φ(xn, x1) ≤ φ(x̄, x1).

Hence, one has
lim
n→∞

φ(xn, x1) = φ(x̄, x1).

It follows that
lim
n→∞

‖xn‖ = ‖x̄‖.

Using the Kadec-Klee property, one obtains that {xn} converges strongly to x̄ as n → ∞. Since xn+1 ∈
Cn+1 ⊂ Cn, we find that

φ(xn+1, x1) ≥ φ(xn, x1),

which shows that {φ(xn, x1)} is nondecreasing. It follows that limn→∞ φ(xn, x1) exists. Since

φ(xn+1, x1)− φ(xn, x1) ≥ φ(xn+1, xn) ≥ 0,

one has limn→∞ φ(xn+1, xn) = 0. Using the fact xn+1 ∈ Cn+1, one sees

φ(xn+1, yn)− φ(xn+1, xn) ≤ (1− α(n,0))ξn.

Since
lim
n→∞

φ(xn+1, xn) = lim
n→∞

ξn = 0,

one has
lim
n→∞

φ(xn+1, yn) = 0.

Therefore, one has
lim
n→∞

(‖yn‖ − ‖xn+1‖) = 0.

This implies that
lim
n→∞

‖Jyn‖ = lim
n→∞

‖yn‖ = ‖x̄‖ = ‖Jx̄‖.

This implies that {Jyn} is bounded. Without loss of generality, we assume that {Jyn} converges weakly to
y∗ ∈ E∗. In view of the reflexivity of E, we see that J(E) = E∗. This shows that there exists an element
y ∈ E such that Jy = y∗. It follows that

φ(xn+1, yn) + 2〈xn+1, Jyn〉 = ‖xn+1‖2 + ‖Jyn‖2.

Taking lim infn→∞, one has 0 ≥ ‖x̄‖2 − 2〈x̄, y∗〉 + ‖y∗‖2 = ‖x̄‖2 + ‖Jy‖2 − 2〈x̄, Jy〉 = φ(x̄, y) ≥ 0. That is,
x̄ = y, which in turn implies that Jx̄ = y∗. Hence, Jyn ⇀ Jx̄ ∈ E∗. Since E is uniformly smooth. Hence,
E∗ is uniformly convex and it has the Kadec-Klee property, we obtain

lim
n→∞

Jyn = Jx̄.

Since J−1 : E∗ → E is demi-continuous and E has the Kadec-Klee property, one gets that yn → x̄, as
n→∞. Using the fact

(‖xn‖+ ‖yn‖)‖yn − xn‖+ 2〈z, Jyn − Jxn〉 ≥ φ(z, xn)− φ(z, yn),

we find
lim
n→∞

(
φ(z, xn)− φ(z, yn)

)
= 0. (2.1)

It follows from Lemma 1.5, that
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φ(z, xn) + (1− α(n,0))ξn − α(n,0)α(n,m)g(‖JTn
mxn − Jun‖)

≥
N∑

m=1

α(n,m)φ(z, Tn
mxn) + α(n,0)φ(z, un)− α(n,0)α(n,m)g(‖JTn

mxn − Jun‖)

≥
N∑

m=0

α(n,m)‖z‖2 +
N∑

m=1

α(n,m)‖Tn
mxn‖2 + α(n,0)‖Jun‖2

− 2α(n,0)〈z, Jun〉 − 2
N∑

m=1

α(n,m)〈z, JTn
mxn〉

− α(n,0)α(n,m)g(‖JTn
mxn − Jun‖)

≥ φ(z, yn).

This implies

0 ≤ α(n,0)α(n,m)g(‖JTn
mxn − Jun‖) ≤

(
φ(z, xn)− φ(z, yn)

)
+ (1− α(n,0))ξn.

Since lim infn→∞ α(n,0)α(n,m) > 0, one sees from 2.1

lim
n→∞

‖Jun − JTn
mxn‖ = 0

for any 1 ≤ m ≤ N. Using the fact

N∑
m=1

α(n,m)(JT
n
mxn − Jun) = Jyn − Jun,

one has {Jun} converges strongly to Jx̄. It follows that JTn
mxn → Jx̄ as n → ∞. Since J−1 : E∗ → E is

demi-continuous, one has Tn
mxn ⇀ x̄. Using the fact

|‖Tn
mxn‖ − ‖x̄‖| = |‖JTn

mxn‖ − ‖Jx̄‖| ≤ ‖JTn
mxn − Jx̄‖,

one has ‖Tn
mxn‖ → ‖x̄‖ as n→∞. Since E has the Kadec-Klee property, one has

lim
n→∞

‖x̄− Tn
mxn‖ = 0.

Since Tm is also uniformly asymptotically regular, one has

lim
n→∞

‖x̄− Tn+1
m xn‖ = 0.

That is, Tm(Tn
mxn) → x̄. Using the closedness of Tm, we find Tmx̄ = x̄. This proves x̄ ∈ Fix(Tm), that is,

x̄ ∈ ∩Nm=1Fix(Tm).

Step 6. Prove x̄ ∈ Sol(B).

Since B is a monotone bifunction, one has

rnB(u, un) ≤ ‖u− un‖‖Jun − Jxn‖.

Since lim infn→∞ rn > 0, we may assume there exists λ > 0 such that rn ≥ λ. It follows that

B(u, un) ≤ ‖u− un‖
‖Jun − Jxn‖

λ
.

Hence, one has B(u, x̄) ≤ 0. For 0 < s < 1, define us = (1−s)x̄+su. This implies that 0 ≥ B(us, x̄). Hence,
we have

sB(us, u) ≥ B(us, us) = 0.
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It follows that B(x̄, u) ≥ 0, ∀u ∈ C. This implies that x̄ ∈ Sol(B).

Step 7. Prove x̄ = Proj∩Nm=1Fix(Tm)∩Sol(B)x1.

Using Lemma 1.5, we find

0 ≤ 〈xn − z, Jx1 − Jxn〉,∀z ∈ ∩Nm=1Fix(Tm) ∩ Sol(B).

Let n→∞, one has
0 ≤ 〈x̄− z, Jx1 − Jx̄〉.

It follows that x̄ = Proj∩Nm=1Fix(Tm)∩Sol(B)x1. This completes the proof.

If N = 1, we have the following result.

Corollary 2.2. Let E be a strictly convex and uniformly smooth Banach space which also has the KKP.
Let C be a convex and closed subset of E and let B be a bifunction with (A-1), (A-2), (A-3) and (A-4).
Let T be an asymptotically quasi-φ-nonexpansive mapping in the intermediate sense on C. Assume that
T is uniformly asymptotically regular and closed and Sol(B)

⋂
Fix(T ) is nonempty. Let {α(n,0)} be a real

sequence in (0,1) such that lim infn→∞ α(n,0)(1− α(n,0)) > 0. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = ProjC1x0,

rnB(un, u) ≥ 〈un − u, Jun − Jxn〉, ∀u ∈ Cn,

yn = J−1
(

(1− α(n,0))JT
nxn + α(n,0)Jun

)
,

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ (1− α(n,0))ξn + φ(z, xn)},
xn+1 = ProjCn+1x1,

where ξn = max{supp∈Fix(T ),x∈C
(
φ(p, Tnx)−φ(p, x)

)
, 0}, and {rn} is a real sequence such that lim infn→∞ rn

> 0. Then {xn} converges strongly to ProjSol(B)∩Fix(T )x1.

If T is the identity mapping, we have the following results on the equilibrium problem.

Corollary 2.3. Let E be a strictly convex and uniformly smooth Banach space which also has the KKP.
Let C be a convex and closed subset of E and let B be a bifunction with (A-1), (A-2), (A-3) and (A-4). Let
N ≥ 1 be some positive integer and assume Sol(B) 6= ∅. Let {α(n,0)}, {α(n,1)}, · · · , {α(n,N)} be real sequences

in (0,1) such that
∑N

m=0 α(n,m) = 1 and lim infn→∞ α(n,0)α(n,m) > 0 for any 1 ≤ m ≤ N . Let {xn} be a
sequence generated by 

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = ProjC1x0,

rnB(un, u) ≥ 〈un − u, Jun − Jxn〉,∀u ∈ Cn,

yn = J−1
(∑N

m=1 α(n,m)Jxn + α(n,0)Jun

)
,

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},
xn+1 = ProjCn+1x1,

where {rn} is a real sequence such that lim infn→∞ rn > 0. Then {xn} converges strongly to ProjSol(B)x1.

In the framework of Hilbert spaces,
√
φ(x, y) = ‖x−y‖, ∀x, y ∈ E. The generalized projection is reduced

to the metric projection and the class of asymptotically-φ-nonexpansive mappings in the intermediate sense
is reduced to the class of asymptotically quasi-nonexpansive mappings in the intermediate sense.
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Corollary 2.4. Let E be a Hilbert space. Let C be a convex and closed subset of E and let B be a
function with (A-1), (A-2), (A-3) and (A-4). Let {Tm}Nm=1, where N is some positive integer, be a
sequence of asymptotically quasi-nonexpansive mappings in the intermediate sense on C. Assume that
every Tm is uniformly asymptotically regular and closed and Sol(B)

⋂
∩Nm=1Fix(Tm) is nonempty. Let

{α(n,0)}, {α(n,1)}, · · · , {α(n,N)} be real sequences in (0,1) such that
∑N

m=0 α(n,m) = 1 and

lim inf
n→∞

α(n,0)α(n,m) > 0

for any 1 ≤ m ≤ N . Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = PC1x0,

rnB(un, u) ≥ 〈un − u, un − xn〉, ∀u ∈ Cn,

yn =
∑N

m=1 α(n,m)T
n
mxn + α(n,0)un,

Cn+1 = {z ∈ Cn : ‖z − yn‖2 ≤ (1− α(n,0))ξn + ‖z − xn‖2},
xn+1 = ProjCn+1x1,

where ξn = max
{

max{supp∈Fix(Tm),x∈C
(
‖p − Tn

mx‖2 − ‖p − x‖2
)
, 0} : 1 ≤ m ≤ N

}
, and {rn} is a real

sequence such that lim infn→∞ rn > 0. Then {xn} converges strongly to PSol(B)
⋂
∩Nm=1Fix(Tm)x1.
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