Research Article

Journal of Nonlinear Science and Applications Print: ISSN 2008-1898 Online: ISSN 2008-1901

Some results on asymptotically quasi- ϕ -nonexpansive mappings in the intermediate sense and Ky Fan inequalities

Hongwei Liang*, Mingliang Zhang

School of Mathematics and Statistics, Henan University, Kaifeng 475000, China.

Communicated by X. Qin

Abstract

In this paper, we study asymptotically quasi- ϕ - nonexpansive mappings in the intermediate sense and Ky Fan inequalities. A convergence theorem is established in a strictly convex and uniformly smooth Banach space. The results presented in the paper improve and extend some recent results. ©2016 All rights reserved.

Keywords: Asymptotically nonexpansive mapping, quasi- ϕ -nonexpansive mapping, fixed point, convergence theorem. 2010 MSC: 65J15, 90C33.

1. Introduction and Preliminaries

Let *E* be a real Banach space and let *C* be nonempty closed and convex subset of *E*. Let $B : C \times C \to \mathbb{R}$ be a function. Recall the following equilibrium problem in the terminology of Blum and Oettli [4].

Find $\bar{x} \in C$ such that $B(\bar{x}y) \ge 0, \forall y \in C$.

In this paper, we use Sol(B) to denote the solution set of the equilibrium problem. That is, $Sol(B) = \{x \in C : B(x, y) \ge 0, \forall y \in C\}$. The following restrictions on function B are essential in this paper.

(A-1) $B(a,a) \equiv 0, \forall a \in C;$

*Corresponding author

Email addresses: hdlianghw@yeah.net (Hongwei Liang), hdzhangml@yeah.net (Mingliang Zhang)

(A-3) $b \mapsto B(a, b)$ is convex and weakly lower semi-continuous, $\forall a \in C$;

(A-4)
$$B(a,b) \ge \limsup_{t \downarrow 0} B(tc + (1-t)a,b), \forall a,b,c \in C.$$

The equilibrium problem has been extensively studied based on iterative methods because of its applications in nonlinear analysis, optimization, economics, game theory, mechanics, medicine and so forth, see [3], [7]-[11], [14], [17], [18], [25], [27]-[31] and the references therein.

Let E^* be the dual space of E. Let B_E be the unit sphere of E. Recall that E is said to be uniformly convex if for any $a \in (0, 2]$ there exists b > 0 such that for any $x, y \in B_E$,

$$||y - x|| \ge a$$
 implies $||y + x|| \le 2 - 2b$.

E is said to be a strictly convex space if and only if ||y + x|| < 2 for all $x, y \in B_E$ and $x \neq y$. It is known that a uniformly convex Banach space is reflexive and strictly convex.

Recall that E is said to have a Gâteaux differentiable norm if and only if $\lim_{t\to 0} \frac{\|x+ty\|-\|x\|}{t}$ exists for each $x, y \in B_E$. In this case, we also say that E is smooth. E is said to have a uniformly Gâteaux differentiable norm if for each $y \in B_E$, $\lim_{t\to 0} \frac{\|x+ty\|-\|x\|}{t}$ is attained uniformly for all $x \in B_E$. E is also said to have a uniformly Fréchet differentiable norm iff $\lim_{t\to 0} \frac{\|x+ty\|-\|x\|}{t}$ is attained uniformly for all $x \in B_E$. E is also said to have a uniformly Fréchet differentiable norm iff $\lim_{t\to 0} \frac{\|x+ty\|-\|x\|}{t}$ is attained uniformly for $x, y \in B_E$. In this case, we say that E is uniformly smooth. It is known that a uniformly smooth Banach space is reflexive and smooth. Recall that E is said to have the Kadec-Klee property if $\lim_{m\to\infty} \|x_m - x\| = 0$, for any sequence $\{x_m\} \subset E$, and $x \in E$ with $\{x_n\}$ converges weakly to x, and $\{\|x_n\|\}$ converges strongly to $\|x\|$. It is known that every uniformly convex Banach space has the Kadec-Klee property; see [13] and the references therein.

Recall that the normalized duality mapping J from E to 2^{E^*} is defined by

$$Jx = \{x^* \in E^* : ||x||^2 = \langle x, x^* \rangle = ||x^*||^2\}.$$

It is known if E is uniformly smooth, then J is uniformly norm-to-norm continuous on every bounded subset of E; if E is a smooth Banach space, then J is single-valued and demicontinuous, i.e., continuous from the strong topology of E to the weak star topology of E; if E is smooth, strictly convex and reflexive Banach space, then J is single-valued, one-to-one and onto.

Let T be a mapping on C. T is said to be closed if for any sequence $\{x_m\} \subset C$ such that $\lim_{m\to\infty} x_m = x'$ and $\lim_{m\to\infty} Tx_m = y'$, then Tx' = y'. Let W be a bounded subset of C. Recall that T is said to be uniformly asymptotically regular on C if and only if $\limsup_{n\to\infty} \sup_{x\in W} \{\|T^nx - T^{n+1}x\|\} = 0$. From now on, we use \rightarrow and \rightarrow to stand for the weak convergence and strong convergence, respectively and use Fix(T) to denote the fixed point set of mapping T.

Next, we assume that E is a smooth Banach space which means mapping J is single-valued. Study the functional

$$\phi(x,y) := \|x\|^2 + \|y\|^2 - 2\langle x, Jy \rangle, \quad \forall x, y \in E$$

Let C be a closed convex subset of a real Hilbert space H. For any $x \in H$, there exists a unique nearest point in C, denoted by $P_C x$, such that $||x - P_C x|| \leq ||x - y||$, for all $y \in C$. The operator P_C is called the metric projection from H onto C. It is known that P_C is firmly nonexpansive, that is, $||P_C x - P_C y||^2 \leq \langle x - y, P_C x - P_C y \rangle$. In [2], Alber studied a new mapping $Proj_C$ in a Banach space E which is an analogue of P_C , the metric projection, in Hilbert spaces. Recall that the generalized projection $Proj_C : E \to C$ is a mapping that assigns to an arbitrary point $x \in E$ the minimum point of $\phi(x, y)$.

Recall that T is said to be asymptotically quasi- ϕ -nonexpansive in the intermediate sense iff $Fix(T) \neq \emptyset$ and

 $\limsup_{n \to \infty} \sup_{p \in Fix(T), x \in C} \left(\phi(p, T^n x) - \phi(p, x) \right) \le 0.$

Putting $\xi_n = \max\{0, \sup_{p \in Fix(T), x \in C} (\phi(p, T^n x) - \phi(p, x))\}$, we see $\xi_n \to 0$ as $n \to \infty$. Hence, we have

$$\phi(p, T^n x) \le \phi(p, x) + \xi_n, \quad \forall x \in C, \forall p \in Fix(T).$$

T is said to be asymptotically quasi- ϕ -nonexpansive iff $Fix(T) \neq \emptyset$ and

$$\phi(p, T^n x) \le (1+u_n)\phi(p, x), \quad \forall x \in C, \forall p \in Fix(T), \forall n \ge 1,$$

where $\{u_n\}$ is a sequence $\{u_n\} \subset [0,\infty)$ with $u_n \to 0$ as $n \to \infty$.

T is said to be quasi- ϕ -nonexpansive iff $Fix(T) \neq \emptyset$ and

 $\phi(p,Tx) \le \phi(p,x), \quad \forall x \in C, \forall p \in Fix(T).$

Recall that p is said to be an asymptotic fixed point of T if and only if C contains a sequence $\{x_n\}$, where $x_n \rightarrow p$ such that $x_n - Tx_n \rightarrow 0$. Here, we use $\widetilde{Fix}(T)$ to denote the asymptotic fixed point set of T. T is said to be asymptotically relatively quasi- ϕ -nonexpansive iff $Fix(T) = \widetilde{Fix}(T) \neq \emptyset$ and

 $\phi(p, T^n x) < (1+u_n)\phi(p, x), \quad \forall x \in C, \forall p \in Fix(T) = \widetilde{Fix}(T), \forall n > 1,$

$$(1) - (1)$$

where $\{u_n\}$ is a sequence $\{u_n\} \subset [0,\infty)$ with $u_n \to 0$ as $n \to \infty$.

T is said to be relatively nonexpansive iff $Fix(T) = Fix(T) \neq \emptyset$ and

 $\phi(p, Tx) \le \phi(p, x), \quad \forall x \in C, \forall p \in Fix(T) = \widetilde{Fix}(T).$

Remark 1.1. The class of asymptotically quasi- ϕ -nonexpansive mappings in the intermediate sense [24] is reduced to the class of asymptotically quasi-nonexpansive mappings in the intermediate sense, which was considered in [5] as a non-Lipschitz continuous mappings, in the framework of Hilbert spaces.

Remark 1.2. The class of quasi- ϕ -nonexpansive mappings [21] is a generalization of relatively nonexpansive mappings [6]. The class of quasi- ϕ -nonexpansive mappings do not require the strong restriction that the fixed point set equals the asymptotic fixed point set.

Remark 1.3. The class of asymptotically quasi- ϕ -nonexpansive mappings [22] is more desirable than the class of asymptotically relatively nonexpansive [1] mappings. Asymptotically quasi- ϕ -nonexpansive mappings are reduced to asymptotically quasi-nonexpansive mappings in the framework of Hilbert spaces.

In this paper, we study the equilibrium problem in the terminology of Blum and Oettli [4] and a finite family of asymptotically quasi- ϕ -nonexpansive mappings in the intermediate sense. With the aid of generalization projections, we establish a strong theorem in a strictly convex and uniformly smooth Banach space. The results obtained in this paper mainly improve the corresponding results in [15], [16], [19], [20], [23], [30]. In order to prove our main results, we also need the following lemmas.

Lemma 1.4 ([2]). Let E be a strictly convex, reflexive, and smooth Banach space and let C be a nonempty, closed, and convex subset of E. Let $x \in E$. Then

 $\phi(y, x) - \phi(\Pi_C x, x) \ge \phi(y, \Pi_C x), \quad \forall y \in C,$

 $0 \ge \langle y - x_0, Jx - Jx_0 \rangle, \forall y \in C \text{ if and only if } x_0 = \prod_C x.$

Lemma 1.5 ([26]). Let r be a positive real number and let E be uniformly convex. Then there exists a convex, strictly increasing and continuous function $cog: [0, 2r] \rightarrow \mathbb{R}$ such that cog(0) = 0 and

$$t||a||^{2} + (1-t)||b||^{2} \ge ||(1-t)b + ta||^{2} + t(1-t)cog(||b-a||)$$

for all $a, b \in B^r := \{a \in E : ||a|| \le r\}$ and $t \in [0, 1]$.

Lemma 1.6 ([4], [21]). Let E be a strictly convex, smooth, and reflexive Banach space and let C be a closed convex subset of E. Let B be a function with restrictions (A-1), (A-2), (A-3) and (A-4), from $C \times C$

to \mathbb{R} . Let $x \in E$ and let r > 0. Then there exists $z \in C$ such that $\langle z - y, Jz - Jx \rangle + rB(z, y) \leq 0, \forall y \in C$ Define a mapping $K^{B,r}$ by

$$K^{B,r}x = \{z \in C : 0 \le \langle y - z, Jz - Jx \rangle + rB(z, y), \quad \forall y \in C\}.$$

The following conclusions hold:

- (1) $K^{B,r}$ is single-valued quasi- ϕ -nonexpansive;
- (2) $Sol(B) = Fix(K^{B,r})$ is convex and closed.

Lemma 1.7 ([24]). Let E be a strictly convex and uniformly smooth Banach space which also has the Kadec-Klee property. Let C be a convex and closed subset of E and let T be an asymptotically quasi- ϕ -nonexpansive mapping in the intermediate sense on C. Fix(T) is convex.

2. Main results

Theorem 2.1. Let *E* be a strictly convex and uniformly smooth Banach space which also has the Kadec-Klee property. Let *C* be a convex and closed subset of *E* and let *B* be a function with restrictions (A-1), (A-2), (A-3) and (A-4). Let $\{T_m\}_{m=1}^N$, where *N* is some positive integer, be a sequence of asymptotically quasi- ϕ nonexpansive mappings in the intermediate sense on *C*. Assume that every T_m is uniformly asymptotically regular and closed and $Sol(B) \cap \bigcap_{m=1}^N Fix(T_m)$ is nonempty. Let $\{\alpha_{(n,0)}\}, \{\alpha_{(n,1)}\}, \dots, \{\alpha_{(n,N)}\}$ be real sequences in (0,1) such that $\sum_{m=0}^N \alpha_{(n,m)} = 1$ and $\liminf_{n\to\infty} \alpha_{(n,0)}\alpha_{(n,m)} > 0$ for any $1 \le m \le N$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_{0} \in E \text{ chosen arbitrarily,} \\ C_{1} = C, \\ x_{1} = Proj_{C_{1}}x_{0}, \\ r_{n}B(u_{n}, u) \geq \langle u_{n} - u, Ju_{n} - Jx_{n} \rangle, \forall u \in C_{n}, \\ Jy_{n} = \left(\sum_{m=1}^{N} \alpha_{(n,m)} JT_{m}^{n}x_{n} + \alpha_{(n,0)} Ju_{n} \right), \\ C_{n+1} = \{ z \in C_{n} : \phi(z, y_{n}) \leq (1 - \alpha_{(n,0)})\xi_{n} + \phi(z, x_{n}) \}, \\ x_{n+1} = Proj_{C_{n+1}}x_{1}, \end{cases}$$

where $\xi_n = \max \{ \max\{\sup_{p \in Fix(T_m), x \in C} (\phi(p, T_m^n x) - \phi(p, x)), 0\} : 1 \le m \le N \}$, and $\{r_n\}$ is a real sequence such that $\liminf_{n \to \infty} r_n > 0$. Then $\{x_n\}$ converges strongly to $\operatorname{Proj}_{Sol(B)} \bigcap_{m=1}^N \operatorname{Fix}(T_m) x_1$.

Proof. The proof is split into seven steps.

Step 1. Prove that $Sol(B) \bigcap \bigcap_{m=1}^{N} Fix(T_m)$ is convex and closed.

Using Lemmas 1.6 and 1.7, we find that $Fix(T_m)$ is convex and Sol(B) is convex and closed. Since T_m is closed, we find that $Fix(T_m)$ is also closed. So, $Proj_{Sol(B)\cap \bigcap_{m=1}^{N}Fix(T_m)}x$ is well defined, for any element x in E.

Step 2. Prove that C_n is convex and closed.

It is obvious that $C_1 = C$ is convex and closed. Assume that C_i is convex and closed for some $i \ge 1$. Let $p_1, p_2 \in C_{i+1}$. It follows that $p = sp_1 + (1 - s)p_2 \in C_i$, where $s \in (0, 1)$. Since

$$(1 - \alpha_{(i,0)})\xi_i + \phi(p_1, x_i) \ge \phi(p_1, y_i),$$

and

$$(1 - \alpha_{(i,0)})\xi_i + \phi(p_2, x_i) \ge \phi(p_2, y_i),$$

one has

$$(1 - \alpha_{(i,0)})\xi_i \ge 2\langle p_1, Jx_i - Jy_i \rangle - \|x_i\|^2 + \|y_i\|^2,$$

and

$$(1 - \alpha_{(i,0)})\xi_i \ge 2\langle p_2, Jx_i - Jy_i \rangle - \|x_i\|^2 + \|y_i\|^2.$$

Using the above two inequalities, one has

$$\phi(p, y_i) - \phi(p, x_i) \le (1 - \alpha_{(i,0)})\xi_i$$

This shows that C_{i+1} is closed and convex. Hence, C_n is a convex and closed set.

Step 3. Prove $\cap_{m=1}^{N} Fix(T_m) \cap Sol(B) \subset C_n$.

It is obvious

$$\bigcap_{m=1}^{N} Fix(T_m) \cap Sol(B) \subset C_1 = C.$$

Suppose that $\cap_{m=1}^{N} Fix(T_m) \cap Sol(B) \subset C_i$ for some positive integer *i*. For any $z \in \cap_{m=1}^{N} Fix(T_m) \cap Sol(B) \subset C_i$, we see that

$$\begin{split} \phi(z, x_i) &+ (1 - \alpha_{(i,0)})\xi_i \\ \geq \sum_{m=1}^N \alpha_{(i,m)} \phi(z, T_m^i x_i) + \alpha_{(i,0)} \phi(z, u_i) \\ \geq \|z\|^2 + \sum_{m=1}^N \alpha_{(i,m)} \|T_m^i x_i\|^2 + \alpha_{(i,0)} \|Ju_i\|^2 \\ &- 2\alpha_{(i,0)} \langle z, Ju_i \rangle - 2 \sum_{m=1}^N \alpha_{(i,m)} \langle z, JT_m^i x_i \rangle \\ \geq \|z\|^2 + \|\sum_{m=1}^N \alpha_{(i,m)} JT_m^i x_i + \alpha_{(i,0)} Ju_i\|^2 \\ &- 2 \langle z, \sum_{m=1}^N \alpha_{(i,m)} JT_m^i x_i + \alpha_{(i,0)} Ju_i \rangle \\ &= \phi(z, y_i), \end{split}$$

where

$$\xi_i = \max \{ \max \{ \sup_{p \in Fix(T_m), x \in C} (\phi(p, T_m^i x) - \phi(p, x)), 0 \} : 1 \le m \le N \}.$$

This shows that $z \in C_{i+1}$. This implies that $\bigcap_{m=1}^{N} Fix(T_m) \cap Sol(B) \subset C_n$.

Step 4. Prove that $\{x_n\}$ is bounded.

Now, we have $\langle x_n - z, Jx_1 - Jx_n \rangle \ge 0$, for any $z \in C_n$. It follows that

$$0 \le \langle x_n - z, Jx_1 - Jx_n \rangle, \quad \forall z \in \cap_{m=1}^N Fix(T_m) \cap Sol(B) \subset C_n$$

On the other hand, we find from Lemma 1.4,

$$\phi(\operatorname{Proj}_{\bigcap_{m=1}^{N} Fix(T_m) \cap Sol(B)} x_1, x_1)$$

$$\geq \phi(\operatorname{Proj}_{\bigcap_{m=1}^{N} Fix(T_m) \cap Sol(B)} x_1, x_1) - \phi(\operatorname{Proj}_{\bigcap_{m=1}^{N} Fix(T_m) \cap Sol(B)} x_1, x_n)$$

$$\geq \phi(x_n, x_1),$$

which shows that $\{\phi(x_n, x_1)\}$ is bounded. Hence, $\{x_n\}$ is also bounded. Without loss of generality, we assume $x_n \rightharpoonup \bar{x}$. Since every C_n is convex and closed. So $\bar{x} \in C_n$.

Step 5. Prove $\bar{x} \in \bigcap_{m=1}^{N} Fix(T_m)$.

Since $\bar{x} \in C_n$, one has $\phi(x_n, x_1) \leq \phi(\bar{x}, x_1)$. This implies that

$$\phi(\bar{x}, x_1) \le \liminf_{n \to \infty} (\|x_n\|^2 + \|x_1\|^2 - 2\langle x_n, Jx_1 \rangle) = \limsup_{n \to \infty} \phi(x_n, x_1) \le \phi(\bar{x}, x_1).$$

Hence, one has

$$\lim_{n \to \infty} \phi(x_n, x_1) = \phi(\bar{x}, x_1).$$

It follows that

$$\lim_{n \to \infty} \|x_n\| = \|\bar{x}\|$$

Using the Kadec-Klee property, one obtains that $\{x_n\}$ converges strongly to \bar{x} as $n \to \infty$. Since $x_{n+1} \in C_{n+1} \subset C_n$, we find that

$$\phi(x_{n+1}, x_1) \ge \phi(x_n, x_1),$$

which shows that $\{\phi(x_n, x_1)\}$ is nondecreasing. It follows that $\lim_{n\to\infty} \phi(x_n, x_1)$ exists. Since

$$\phi(x_{n+1}, x_1) - \phi(x_n, x_1) \ge \phi(x_{n+1}, x_n) \ge 0$$

one has $\lim_{n\to\infty} \phi(x_{n+1}, x_n) = 0$. Using the fact $x_{n+1} \in C_{n+1}$, one sees

$$\phi(x_{n+1}, y_n) - \phi(x_{n+1}, x_n) \le (1 - \alpha_{(n,0)})\xi_n$$

Since

$$\lim_{n \to \infty} \phi(x_{n+1}, x_n) = \lim_{n \to \infty} \xi_n = 0$$

one has

$$\lim_{n \to \infty} \phi(x_{n+1}, y_n) = 0$$

Therefore, one has

$$\lim_{n \to \infty} (\|y_n\| - \|x_{n+1}\|) = 0.$$

This implies that

$$\lim_{n \to \infty} \|Jy_n\| = \lim_{n \to \infty} \|y_n\| = \|\bar{x}\| = \|J\bar{x}\|.$$

This implies that $\{Jy_n\}$ is bounded. Without loss of generality, we assume that $\{Jy_n\}$ converges weakly to $y^* \in E^*$. In view of the reflexivity of E, we see that $J(E) = E^*$. This shows that there exists an element $y \in E$ such that $Jy = y^*$. It follows that

$$\phi(x_{n+1}, y_n) + 2\langle x_{n+1}, Jy_n \rangle = ||x_{n+1}||^2 + ||Jy_n||^2$$

Taking $\liminf_{n\to\infty}$, one has $0 \ge \|\bar{x}\|^2 - 2\langle \bar{x}, y^* \rangle + \|y^*\|^2 = \|\bar{x}\|^2 + \|Jy\|^2 - 2\langle \bar{x}, Jy \rangle = \phi(\bar{x}, y) \ge 0$. That is, $\bar{x} = y$, which in turn implies that $J\bar{x} = y^*$. Hence, $Jy_n \rightharpoonup J\bar{x} \in E^*$. Since E is uniformly smooth. Hence, E^* is uniformly convex and it has the Kadec-Klee property, we obtain

$$\lim_{n \to \infty} Jy_n = J\bar{x}.$$

Since $J^{-1}: E^* \to E$ is demi-continuous and E has the Kadec-Klee property, one gets that $y_n \to \bar{x}$, as $n \to \infty$. Using the fact

$$(\|x_n\| + \|y_n\|)\|y_n - x_n\| + 2\langle z, Jy_n - Jx_n \rangle \ge \phi(z, x_n) - \phi(z, y_n)$$

we find

$$\lim_{n \to \infty} \left(\phi(z, x_n) - \phi(z, y_n) \right) = 0.$$
(2.1)

It follows from Lemma 1.5, that

$$\begin{split} \phi(z,x_{n}) &+ (1-\alpha_{(n,0)})\xi_{n} - \alpha_{(n,0)}\alpha_{(n,m)}g(\|JT_{m}^{n}x_{n} - Ju_{n}\|) \\ \geq \sum_{m=1}^{N} \alpha_{(n,m)}\phi(z,T_{m}^{n}x_{n}) + \alpha_{(n,0)}\phi(z,u_{n}) - \alpha_{(n,0)}\alpha_{(n,m)}g(\|JT_{m}^{n}x_{n} - Ju_{n}\|) \\ \geq \sum_{m=0}^{N} \alpha_{(n,m)}\|z\|^{2} + \sum_{m=1}^{N} \alpha_{(n,m)}\|T_{m}^{n}x_{n}\|^{2} + \alpha_{(n,0)}\|Ju_{n}\|^{2} \\ &- 2\alpha_{(n,0)}\langle z, Ju_{n}\rangle - 2\sum_{m=1}^{N} \alpha_{(n,m)}\langle z, JT_{m}^{n}x_{n}\rangle \\ &- \alpha_{(n,0)}\alpha_{(n,m)}g(\|JT_{m}^{n}x_{n} - Ju_{n}\|) \\ \geq \phi(z,y_{n}). \end{split}$$

This implies

$$0 \le \alpha_{(n,0)}\alpha_{(n,m)}g(\|JT_m^n x_n - Ju_n\|) \le \left(\phi(z, x_n) - \phi(z, y_n)\right) + (1 - \alpha_{(n,0)})\xi_n.$$

Since $\liminf_{n\to\infty} \alpha_{(n,0)}\alpha_{(n,m)} > 0$, one sees from 2.1

$$\lim_{n \to \infty} \|Ju_n - JT_m^n x_n\| = 0$$

for any $1 \leq m \leq N$. Using the fact

$$\sum_{m=1}^{N} \alpha_{(n,m)} (JT_m^n x_n - Ju_n) = Jy_n - Ju_n,$$

one has $\{Ju_n\}$ converges strongly to $J\bar{x}$. It follows that $JT_m^n x_n \to J\bar{x}$ as $n \to \infty$. Since $J^{-1} : E^* \to E$ is demi-continuous, one has $T_m^n x_n \to \bar{x}$. Using the fact

$$|||T_m^n x_n|| - ||\bar{x}||| = |||JT_m^n x_n|| - ||J\bar{x}||| \le ||JT_m^n x_n - J\bar{x}||,$$

one has $||T_m^n x_n|| \to ||\bar{x}||$ as $n \to \infty$. Since E has the Kadec-Klee property, one has

$$\lim_{n \to \infty} \|\bar{x} - T_m^n x_n\| = 0.$$

Since T_m is also uniformly asymptotically regular, one has

$$\lim_{n \to \infty} \|\bar{x} - T_m^{n+1} x_n\| = 0$$

That is, $T_m(T_m^n x_n) \to \bar{x}$. Using the closedness of T_m , we find $T_m \bar{x} = \bar{x}$. This proves $\bar{x} \in Fix(T_m)$, that is, $\bar{x} \in \bigcap_{m=1}^N Fix(T_m)$.

Step 6. Prove $\bar{x} \in Sol(B)$.

Since B is a monotone bifunction, one has

$$r_n B(u, u_n) \le ||u - u_n|| ||Ju_n - Jx_n||.$$

Since $\liminf_{n\to\infty} r_n > 0$, we may assume there exists $\lambda > 0$ such that $r_n \ge \lambda$. It follows that

$$B(u, u_n) \le \|u - u_n\| \frac{\|Ju_n - Jx_n\|}{\lambda}.$$

Hence, one has $B(u, \bar{x}) \leq 0$. For 0 < s < 1, define $u^s = (1-s)\bar{x} + su$. This implies that $0 \geq B(u^s, \bar{x})$. Hence, we have

$$sB(u^s, u) \ge B(u^s, u^s) = 0.$$

It follows that $B(\bar{x}, u) \ge 0$, $\forall u \in C$. This implies that $\bar{x} \in Sol(B)$. Step 7. Prove $\bar{x} = Proj_{\bigcap_{m=1}^{N} Fix(T_m) \cap Sol(B)} x_1$.

Using Lemma 1.5, we find

$$0 \le \langle x_n - z, Jx_1 - Jx_n \rangle, \forall z \in \bigcap_{m=1}^N Fix(T_m) \cap Sol(B).$$

Let $n \to \infty$, one has

$$0 \le \langle \bar{x} - z, Jx_1 - J\bar{x} \rangle.$$

It follows that $\bar{x} = Proj_{\bigcap_{m=1}^{N} Fix(T_m) \cap Sol(B)} x_1$. This completes the proof.

If N = 1, we have the following result.

Corollary 2.2. Let *E* be a strictly convex and uniformly smooth Banach space which also has the KKP. Let *C* be a convex and closed subset of *E* and let *B* be a bifunction with (A-1), (A-2), (A-3) and (A-4). Let *T* be an asymptotically quasi- ϕ -nonexpansive mapping in the intermediate sense on *C*. Assume that *T* is uniformly asymptotically regular and closed and Sol(*B*) \cap Fix(*T*) is nonempty. Let { $\alpha_{(n,0)}$ } be a real sequence in (0,1) such that $\liminf_{n\to\infty} \alpha_{(n,0)}(1-\alpha_{(n,0)}) > 0$. Let { x_n } be a sequence generated by

$$\begin{cases} x_{0} \in E \text{ chosen arbitrarily,} \\ C_{1} = C, x_{1} = Proj_{C_{1}}x_{0}, \\ r_{n}B(u_{n}, u) \geq \langle u_{n} - u, Ju_{n} - Jx_{n} \rangle, \forall u \in C_{n}, \\ y_{n} = J^{-1} \Big((1 - \alpha_{(n,0)})JT^{n}x_{n} + \alpha_{(n,0)}Ju_{n} \Big), \\ C_{n+1} = \{z \in C_{n} : \phi(z, y_{n}) \leq (1 - \alpha_{(n,0)})\xi_{n} + \phi(z, x_{n})\}, \\ x_{n+1} = Proj_{C_{n+1}}x_{1}, \end{cases}$$

where $\xi_n = \max\{\sup_{p \in Fix(T), x \in C} (\phi(p, T^n x) - \phi(p, x)), 0\}$, and $\{r_n\}$ is a real sequence such that $\liminf_{n \to \infty} r_n > 0$. Then $\{x_n\}$ converges strongly to $\operatorname{Proj}_{Sol(B) \cap Fix(T)} x_1$.

If T is the identity mapping, we have the following results on the equilibrium problem.

Corollary 2.3. Let *E* be a strictly convex and uniformly smooth Banach space which also has the KKP. Let *C* be a convex and closed subset of *E* and let *B* be a bifunction with (A-1), (A-2), (A-3) and (A-4). Let $N \ge 1$ be some positive integer and assume $Sol(B) \ne \emptyset$. Let $\{\alpha_{(n,0)}\}, \{\alpha_{(n,1)}\}, \dots, \{\alpha_{(n,N)}\}$ be real sequences in (0,1) such that $\sum_{m=0}^{N} \alpha_{(n,m)} = 1$ and $\liminf_{n\to\infty} \alpha_{(n,0)}\alpha_{(n,m)} > 0$ for any $1 \le m \le N$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_{0} \in E \text{ chosen arbitrarily,} \\ C_{1} = C, x_{1} = Proj_{C_{1}}x_{0}, \\ r_{n}B(u_{n}, u) \geq \langle u_{n} - u, Ju_{n} - Jx_{n} \rangle, \forall u \in C_{n}, \\ y_{n} = J^{-1} \Big(\sum_{m=1}^{N} \alpha_{(n,m)}Jx_{n} + \alpha_{(n,0)}Ju_{n} \Big), \\ C_{n+1} = \{ z \in C_{n} : \phi(z, y_{n}) \leq \phi(z, x_{n}) \}, \\ x_{n+1} = Proj_{C_{n+1}}x_{1}, \end{cases}$$

where $\{r_n\}$ is a real sequence such that $\liminf_{n\to\infty} r_n > 0$. Then $\{x_n\}$ converges strongly to $\operatorname{Proj}_{Sol(B)} x_1$.

In the framework of Hilbert spaces, $\sqrt{\phi(x, y)} = ||x - y||, \forall x, y \in E$. The generalized projection is reduced to the metric projection and the class of asymptotically- ϕ -nonexpansive mappings in the intermediate sense is reduced to the class of asymptotically quasi-nonexpansive mappings in the intermediate sense.

Corollary 2.4. Let *E* be a Hilbert space. Let *C* be a convex and closed subset of *E* and let *B* be a function with (A-1), (A-2), (A-3) and (A-4). Let $\{T_m\}_{m=1}^N$, where *N* is some positive integer, be a sequence of asymptotically quasi-nonexpansive mappings in the intermediate sense on *C*. Assume that every T_m is uniformly asymptotically regular and closed and $Sol(B) \cap \bigcap_{m=1}^N Fix(T_m)$ is nonempty. Let $\{\alpha_{(n,0)}\}, \{\alpha_{(n,1)}\}, \cdots, \{\alpha_{(n,N)}\}$ be real sequences in (0,1) such that $\sum_{m=0}^N \alpha_{(n,m)} = 1$ and

$$\liminf_{n \to \infty} \alpha_{(n,0)} \alpha_{(n,m)} > 0$$

for any $1 \leq m \leq N$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_{0} \in E \text{ chosen arbitrarily,} \\ C_{1} = C, x_{1} = P_{C_{1}}x_{0}, \\ r_{n}B(u_{n}, u) \geq \langle u_{n} - u, u_{n} - x_{n} \rangle, \forall u \in C_{n}, \\ y_{n} = \sum_{m=1}^{N} \alpha_{(n,m)}T_{m}^{n}x_{n} + \alpha_{(n,0)}u_{n}, \\ C_{n+1} = \{z \in C_{n} : \|z - y_{n}\|^{2} \leq (1 - \alpha_{(n,0)})\xi_{n} + \|z - x_{n}\|^{2}\}, \\ x_{n+1} = Proj_{C_{n+1}}x_{1}, \end{cases}$$

where $\xi_n = \max \{ \max\{ \sup_{p \in Fix(T_m), x \in C} (\|p - T_m^n x\|^2 - \|p - x\|^2), 0 \} : 1 \le m \le N \}$, and $\{r_n\}$ is a real sequence such that $\liminf_{n \to \infty} r_n > 0$. Then $\{x_n\}$ converges strongly to $P_{Sol(B) \cap \bigcap_{m=1}^N Fix(T_m)} x_1$.

References

- R. P. Agarwal, Y. J. Cho, X. Qin, Generalized projection algorithms for nonlinear operators, Numer. Funct. Anal. Optim., 28 (2007), 1197–1215.1.3
- [2] Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, (1996).1, 1.4
- [3] B. A. Bin Dehaish, X. Qin, A. Latif, H. Bakodah, Weak and strong convergence of algorithms for the sum of two accretive operators with applications, J. Nonlinear Convex Anal., 16 (2015), 1321–1336.1
- [4] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63 (1994), 123–145.1, 1, 1.6
- [5] R. E. Bruck, T. Kuczumow, S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math., 65 (1993), 169–179.1.1
- [6] D. Butnariu, S. Reich, A. J. Zaslavski, Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal., 7 (2001), 151–174.1.2
- [7] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120.1
- [8] G. Cai, S. Bu, Strong and weak convergence theorems for general mixed equilibrium problems and variational inequality problems and fixed point problems in Hilbert spaces, J. Comput. Appl. Math., **247** (2013), 34–52.
- [9] S. Y. Cho, X. Qin, On the strong convergence of an iterative process for asymptotically strict pseudocontractions and equilibrium problems, Appl. Math. Comput., 235 (2014), 430–438.
- [10] S. Y. Cho, X. Qin, L. Wang, Strong convergence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl., 2014 (2014), 15 pages.
- [11] W. Cholamjiak, P. Cholamjiak, S. Suantai, Convergence of iterative schemes for solving fixed point problems for multi-valued nonself mappings and equilibrium problems, J. Nonlinear Sci. Appl., 8 (2015), 1245–1256.1
- [12] B. S. Choudhury, S. Kundu, A viscosity type iteration by weak contraction for approximating solutions of generalized equilibrium problem, J. Nonlinear Sci. Appl., 5 (2012), 243–251.
- [13] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, (1990).
 1
- [14] S. Dafermos, A. Nagurney, A network formulation of market equilibrium problems and variational inequalities, Oper. Res. Lett., 3 (1984), 247–250.1
- [15] Y. Hao, On generalized quasi-\$\phi\$-nonexpansive mappings and their projection algorithms, Fixed Point Theory Appl., 2013 (2013), 13 pages.1
- [16] Y. Hao, Some results on a modified Mann iterative scheme in a reflexive Banach space, Fixed Point Theory Appl., 2013 (2013), 14 pages. 1
- [17] R. H. He, Coincidence theorem and existence theorems of solutions for a system of Ky Fan type minimax inequalities in FC-spaces, Adv. Fixed Point Theory, 2 (2012), 47–57.1

- [18] H. Iiduka, Fixed point optimization algorithm and its application to network bandwidth allocation, J. Comput. Appl. Math., 236 (2012), 1733–1742.1
- [19] J. K. Kim, Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi-\$\phi\$-nonexpansive mappings, Fixed Point Theory Appl., 2011 (2011), 15 pages. 1
- [20] B. Liu, C. Zhang, Strong convergence theorems for equilibrium problems and quasi-\$\phi\$-nonexpansive mappings, Nonlinear Funct. Anal. Appl., 16 (2011), 365–385.1
- [21] X. Qin, Y. J. Cho, S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math., 225 (2009), 20–30.1.2, 1.6
- [22] X. Qin, S. Y. Cho, S. M. Kang, On hybrid projection methods for asymptotically quasi-φ-nonexpansive mappings, Appl. Math. Comput., 215 (2010), 3874–3883.1.3
- [23] X. Qin, S. Y. Cho, L. Wang, Algorithms for treating equilibrium and fixed point problems, Fixed Point Theory Appl., 2013 (2013), 15 pages.1
- [24] X. Qin, L. Wang, On asymptotically quasi-φ-nonexpansive mappings in the intermediate sense, Abst. Appl. Anal., 2012 (2012), 14 pages. 1.1, 1.7
- [25] J. Shen, L. P. Pang, An approximate bundle method for solving variational inequalities, Commun. Optim. Theory, 1 (2012), 1–18.1
- [26] T. Takahashi, Nonlinear Functional Analysis, Yokohama-Publishers, Tokoyo, (2000)1.5
- [27] N. T. T. Thuy, Convergence rate of the Tikhonov regularization for ill-posed mixed variational inequalities with inverse-strongly monotone perturbations, Nonlinear Funct. Anal. Appl., 5 (2010), 467–479.1
- [28] Z. M. Wang, X. Zhang, Shrinking projection methods for systems of mixed variational inequalities of Browder type, systems of mixed equilibrium problems and fixed point problems, J. Nonlinear Funct. Anal., 2014 (2014), 25 pages.
- [29] H. Zegeye, N. Shahzad, Strong convergence theorem for a common point of solution of variational inequality and fixed point problem, Adv. Fixed Point Theory, 2 (2012), 374–397.
- [30] M. Zhang, Iterative algorithms for a system of generalized variational inequalities in Hilbert spaces, Fixed Point Theory Appl., 2012 (2012), 14 pages. 1
- [31] J. Zhao, Strong convergence theorems for equilibrium problems, fixed point problems of asymptotically nonexpansive mappings and a general system of variational inequalities, Nonlinear Funct. Anal. Appl. 16 (2011), 447–464.