Some results on asymptotically quasi- ϕ-nonexpansive mappings in the intermediate sense and Ky Fan inequalities

Hongwei Liang*, Mingliang Zhang
School of Mathematics and Statistics, Henan University, Kaifeng 475000, China.

Communicated by X. Qin

Abstract

In this paper, we study asymptotically quasi- ϕ - nonexpansive mappings in the intermediate sense and Ky Fan inequalities. A convergence theorem is established in a strictly convex and uniformly smooth Banach space. The results presented in the paper improve and extend some recent results. © 2016 All rights reserved.

Keywords: Asymptotically nonexpansive mapping, quasi- ϕ-nonexpansive mapping, fixed point, convergence theorem.
2010 MSC: 65J15, 90C33.

1. Introduction and Preliminaries

Let E be a real Banach space and let C be nonempty closed and convex subset of E. Let $B: C \times C \rightarrow \mathbb{R}$ be a function. Recall the following equilibrium problem in the terminology of Blum and Oettli [4].

$$
\text { Find } \bar{x} \in C \text { such that } B(\bar{x} y) \geq 0, \forall y \in C .
$$

In this paper, we use $\operatorname{Sol}(B)$ to denote the solution set of the equilibrium problem. That is, $\operatorname{Sol}(B)=\{x \in$ $C: B(x, y) \geq 0, \forall y \in C\}$. The following restrictions on function B are essential in this paper.
(A-1) $B(a, a) \equiv 0, \forall a \in C$;

[^0](A-2) $0 \geq B(b, a)+B(a, b), \forall a, b \in C$;
(A-3) $b \mapsto B(a, b)$ is convex and weakly lower semi-continuous, $\forall a \in C$;
$(\mathrm{A}-4) \quad B(a, b) \geq \lim \sup _{t \downarrow 0} B(t c+(1-t) a, b), \forall a, b, c \in C$.
The equilibrium problem has been extensively studied based on iterative methods because of its applications in nonlinear analysis, optimization, economics, game theory, mechanics, medicine and so forth, see [3], [7]-[11], [14], [17], [18], [25], [27]-[31] and the references therein.

Let E^{*} be the dual space of E. Let B_{E} be the unit sphere of E. Recall that E is said to be uniformly convex if for any $a \in(0,2]$ there exists $b>0$ such that for any $x, y \in B_{E}$,

$$
\|y-x\| \geq a \quad \text { implies } \quad\|y+x\| \leq 2-2 b
$$

E is said to be a strictly convex space if and only if $\|y+x\|<2$ for all $x, y \in B_{E}$ and $x \neq y$. It is known that a uniformly convex Banach space is reflexive and strictly convex.

Recall that E is said to have a Gâteaux differentiable norm if and only if $\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}$ exists for each $x, y \in B_{E}$. In this case, we also say that E is smooth. E is said to have a uniformly Gâteaux differentiable norm if for each $y \in B_{E}, \lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}$ is attained uniformly for all $x \in B_{E}$. E is also said to have a uniformly Fréchet differentiable norm iff $\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}$ is attained uniformly for $x, y \in B_{E}$. In this case, we say that E is uniformly smooth. It is known that a uniformly smooth Banach space is reflexive and smooth. Recall that E is said to has the Kadec-Klee property if $\lim _{m \rightarrow \infty}\left\|x_{m}-x\right\|=0$, for any sequence $\left\{x_{m}\right\} \subset E$, and $x \in E$ with $\left\{x_{n}\right\}$ converges weakly to x, and $\left\{\left\|x_{n}\right\|\right\}$ converges strongly to $\|x\|$. It is known that every uniformly convex Banach space has the Kadec-Klee property; see [13] and the references therein.

Recall that the normalized duality mapping J from E to $2^{E^{*}}$ is defined by

$$
J x=\left\{x^{*} \in E^{*}:\|x\|^{2}=\left\langle x, x^{*}\right\rangle=\left\|x^{*}\right\|^{2}\right\}
$$

It is known if E is uniformly smooth, then J is uniformly norm-to-norm continuous on every bounded subset of E; if E is a smooth Banach space, then J is single-valued and demicontinuous, i.e., continuous from the strong topology of E to the weak star topology of E; if E is smooth, strictly convex and reflexive Banach space, then J is single-valued, one-to-one and onto.

Let T be a mapping on $C . T$ is said to be closed if for any sequence $\left\{x_{m}\right\} \subset C$ such that $\lim _{m \rightarrow \infty} x_{m}=x^{\prime}$ and $\lim _{m \rightarrow \infty} T x_{m}=y^{\prime}$, then $T x^{\prime}=y^{\prime}$. Let W be a bounded subset of C. Recall that T is said to be uniformly asymptotically regular on C if and only if $\lim \sup _{n \rightarrow \infty} \sup _{x \in W}\left\{\left\|T^{n} x-T^{n+1} x\right\|\right\}=0$. From now on, we use \rightharpoonup and \rightarrow to stand for the weak convergence and strong convergence, respectively and use $F i x(T)$ to denote the fixed point set of mapping T.

Next, we assume that E is a smooth Banach space which means mapping J is single-valued. Study the functional

$$
\phi(x, y):=\|x\|^{2}+\|y\|^{2}-2\langle x, J y\rangle, \quad \forall x, y \in E .
$$

Let C be a closed convex subset of a real Hilbert space H. For any $x \in H$, there exists a unique nearest point in C, denoted by $P_{C} x$, such that $\left\|x-P_{C} x\right\| \leq\|x-y\|$, for all $y \in C$. The operator P_{C} is called the metric projection from H onto C. It is known that P_{C} is firmly nonexpansive, that is, $\left\|P_{C} x-P_{C} y\right\|^{2} \leq$ $\left\langle x-y, P_{C} x-P_{C} y\right\rangle$. In [2], Alber studied a new mapping Proj${ }_{C}$ in a Banach space E which is an analogue of P_{C}, the metric projection, in Hilbert spaces. Recall that the generalized projection $\operatorname{Proj}_{C}: E \rightarrow C$ is a mapping that assigns to an arbitrary point $x \in E$ the minimum point of $\phi(x, y)$.

Recall that T is said to be asymptotically quasi- ϕ-nonexpansive in the intermediate sense iff $F i x(T) \neq \emptyset$ and

$$
\limsup _{n \rightarrow \infty} \sup _{p \in F i x(T), x \in C}\left(\phi\left(p, T^{n} x\right)-\phi(p, x)\right) \leq 0
$$

Putting $\xi_{n}=\max \left\{0, \sup _{p \in \operatorname{Fix}(T), x \in C}\left(\phi\left(p, T^{n} x\right)-\phi(p, x)\right)\right\}$, we see $\xi_{n} \rightarrow 0$ as $n \rightarrow \infty$. Hence, we have

$$
\phi\left(p, T^{n} x\right) \leq \phi(p, x)+\xi_{n}, \quad \forall x \in C, \forall p \in F i x(T)
$$

T is said to be asymptotically quasi- ϕ-nonexpansive iff $F i x(T) \neq \emptyset$ and

$$
\phi\left(p, T^{n} x\right) \leq\left(1+u_{n}\right) \phi(p, x), \quad \forall x \in C, \forall p \in \operatorname{Fix}(T), \forall n \geq 1
$$

where $\left\{u_{n}\right\}$ is a sequence $\left\{u_{n}\right\} \subset[0, \infty)$ with $u_{n} \rightarrow 0$ as $n \rightarrow \infty$.
T is said to be quasi- ϕ-nonexpansive iff $F i x(T) \neq \emptyset$ and

$$
\phi(p, T x) \leq \phi(p, x), \quad \forall x \in C, \forall p \in F i x(T)
$$

Recall that p is said to be an asymptotic fixed point of T if and only if C contains a sequence $\left\{x_{n}\right\}$, where $x_{n} \rightharpoonup p$ such that $x_{n}-T x_{n} \rightarrow 0$. Here, we use $\widetilde{F i x}(T)$ to denote the asymptotic fixed point set of T.
T is said to be asymptotically relatively quasi- ϕ-nonexpansive iff $F i x(T)=\widetilde{F i x}(T) \neq \emptyset$ and

$$
\phi\left(p, T^{n} x\right) \leq\left(1+u_{n}\right) \phi(p, x), \quad \forall x \in C, \forall p \in F i x(T)=\widetilde{F i x}(T), \forall n \geq 1
$$

where $\left\{u_{n}\right\}$ is a sequence $\left\{u_{n}\right\} \subset[0, \infty)$ with $u_{n} \rightarrow 0$ as $n \rightarrow \infty$.
T is said to be relatively nonexpansive iff $\operatorname{Fix}(T)=\widetilde{\operatorname{Fix}}(T) \neq \emptyset$ and

$$
\phi(p, T x) \leq \phi(p, x), \quad \forall x \in C, \forall p \in F i x(T)=\widetilde{F i x}(T)
$$

Remark 1.1. The class of asymptotically quasi- ϕ-nonexpansive mappings in the intermediate sense [24] is reduced to the class of asymptotically quasi-nonexpansive mappings in the intermediate sense, which was considered in [5] as a non-Lipschitz continuous mappings, in the framework of Hilbert spaces.

Remark 1.2. The class of quasi- ϕ-nonexpansive mappings [21] is a generalization of relatively nonexpansive mappings [6]. The class of quasi- ϕ-nonexpansive mappings do not require the strong restriction that the fixed point set equals the asymptotic fixed point set.

Remark 1.3. The class of asymptotically quasi- ϕ-nonexpansive mappings [22] is more desirable than the class of asymptotically relatively nonexpansive [1] mappings. Asymptotically quasi- ϕ-nonexpansive mappings are reduced to asymptotically quasi-nonexpansive mappings in the framework of Hilbert spaces.

In this paper, we study the equilibrium problem in the terminology of Blum and Oettli 4] and a finite family of asymptotically quasi- ϕ-nonexpansive mappings in the intermediate sense. With the aid of generalization projections, we establish a strong theorem in a strictly convex and uniformly smooth Banach space. The results obtained in this paper mainly improve the corresponding results in [15], [16], [19], [20], [23], [30]. In order to prove our main results, we also need the following lemmas.

Lemma $1.4([2])$. Let E be a strictly convex, reflexive, and smooth Banach space and let C be a nonempty, closed, and convex subset of E. Let $x \in E$. Then

$$
\phi(y, x)-\phi\left(\Pi_{C} x, x\right) \geq \phi\left(y, \Pi_{C} x\right), \quad \forall y \in C
$$

$0 \geq\left\langle y-x_{0}, J x-J x_{0}\right\rangle, \forall y \in C$ if and only if $x_{0}=\Pi_{C} x$.

Lemma $1.5([26])$. Let r be a positive real number and let E be uniformly convex. Then there exists a convex, strictly increasing and continuous function $\operatorname{cog}:[0,2 r] \rightarrow \mathbb{R}$ such that $\operatorname{cog}(0)=0$ and

$$
t\|a\|^{2}+(1-t)\|b\|^{2} \geq\|(1-t) b+t a\|^{2}+t(1-t) \operatorname{cog}(\|b-a\|)
$$

for all $a, b \in B^{r}:=\{a \in E:\|a\| \leq r\}$ and $t \in[0,1]$.

Lemma 1.6 ([4], [21]). Let E be a strictly convex, smooth, and reflexive Banach space and let C be a closedconvex subset of E. Let B be a function with restrictions (A-1), (A-2), (A-3) and (A-4), from $C \times C$
to \mathbb{R}. Let $x \in E$ and let $r>0$. Then there exists $z \in C$ such that $\langle z-y, J z-J x\rangle+r B(z, y) \leq 0, \forall y \in C$ Define a mapping $K^{B, r}$ by

$$
K^{B, r} x=\{z \in C: 0 \leq\langle y-z, J z-J x\rangle+r B(z, y), \quad \forall y \in C\}
$$

The following conclusions hold:
(1) $K^{B, r}$ is single-valued quasi- ϕ-nonexpansive;
(2) $\operatorname{Sol}(B)=\operatorname{Fix}\left(K^{B, r}\right)$ is convex and closed.

Lemma 1.7 ([24]). Let E be a strictly convex and uniformly smooth Banach space which also has the KadecKlee property. Let C be a convex and closed subset of E and let T be an asymptotically quasi- ϕ-nonexpansive mapping in the intermediate sense on $C . F i x(T)$ is convex.

2. Main results

Theorem 2.1. Let E be a strictly convex and uniformly smooth Banach space which also has the Kadec-Klee property. Let C be a convex and closed subset of E and let B be a function with restrictions ($A-1$), ($A-2$), (A-3) and (A-4). Let $\left\{T_{m}\right\}_{m=1}^{N}$, where N is some positive integer, be a sequence of asymptotically quasi- ϕ nonexpansive mappings in the intermediate sense on C. Assume that every T_{m} is uniformly asymptotically regular and closed and $\operatorname{Sol}(B) \bigcap \cap \cap_{m=1}^{N} F i x\left(T_{m}\right)$ is nonempty. Let $\left\{\alpha_{(n, 0)}\right\},\left\{\alpha_{(n, 1)}\right\}, \cdots,\left\{\alpha_{(n, N)}\right\}$ be real sequences in $(0,1)$ such that $\sum_{m=0}^{N} \alpha_{(n, m)}=1$ and $\liminf _{n \rightarrow \infty} \alpha_{(n, 0)} \alpha_{(n, m)}>0$ for any $1 \leq m \leq N$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in E \text { chosen arbitrarily, } \\
C_{1}=C \\
x_{1}=\operatorname{Proj}_{C_{1}} x_{0} \\
r_{n} B\left(u_{n}, u\right) \geq\left\langle u_{n}-u, J u_{n}-J x_{n}\right\rangle, \forall u \in C_{n} \\
J y_{n}=\left(\sum_{m=1}^{N} \alpha_{(n, m)} J T_{m}^{n} x_{n}+\alpha_{(n, 0)} J u_{n}\right) \\
C_{n+1}=\left\{z \in C_{n}: \phi\left(z, y_{n}\right) \leq\left(1-\alpha_{(n, 0)}\right) \xi_{n}+\phi\left(z, x_{n}\right)\right\} \\
x_{n+1}=\operatorname{Proj}_{C_{n+1}} x_{1}
\end{array}\right.
$$

where $\xi_{n}=\max \left\{\max \left\{\sup _{p \in F i x\left(T_{m}\right), x \in C}\left(\phi\left(p, T_{m}^{n} x\right)-\phi(p, x)\right), 0\right\}: 1 \leq m \leq N\right\}$, and $\left\{r_{n}\right\}$ is a real sequence such that $\lim \inf _{n \rightarrow \infty} r_{n}>0$. Then $\left\{x_{n}\right\}$ converges strongly to $\operatorname{Proj}_{\operatorname{Sol}(B) \cap \cap_{m=1}^{N} F i x\left(T_{m}\right)} x_{1}$.

Proof. The proof is split into seven steps.
Step 1. Prove that $\operatorname{Sol}(B) \bigcap \cap_{m=1}^{N} F i x\left(T_{m}\right)$ is convex and closed.
Using Lemmas 1.6 and 1.7 , we find that $F i x\left(T_{m}\right)$ is convex and $\operatorname{Sol}(B)$ is convex and closed. Since T_{m} is closed, we find that $\operatorname{Fix}\left(T_{m}\right)$ is also closed. So, $\operatorname{Proj}_{\operatorname{Sol}(B) \cap \cap_{m=1}^{N} F i x\left(T_{m}\right)} x$ is well defined, for any element x in E.

Step 2. Prove that C_{n} is convex and closed.
It is obvious that $C_{1}=C$ is convex and closed. Assume that C_{i} is convex and closed for some $i \geq 1$. Let $p_{1}, p_{2} \in C_{i+1}$. It follows that $p=s p_{1}+(1-s) p_{2} \in C_{i}$, where $s \in(0,1)$. Since

$$
\left(1-\alpha_{(i, 0)}\right) \xi_{i}+\phi\left(p_{1}, x_{i}\right) \geq \phi\left(p_{1}, y_{i}\right)
$$

and

$$
\left(1-\alpha_{(i, 0)}\right) \xi_{i}+\phi\left(p_{2}, x_{i}\right) \geq \phi\left(p_{2}, y_{i}\right)
$$

one has

$$
\left(1-\alpha_{(i, 0)}\right) \xi_{i} \geq 2\left\langle p_{1}, J x_{i}-J y_{i}\right\rangle-\left\|x_{i}\right\|^{2}+\left\|y_{i}\right\|^{2}
$$

and

$$
\left(1-\alpha_{(i, 0)}\right) \xi_{i} \geq 2\left\langle p_{2}, J x_{i}-J y_{i}\right\rangle-\left\|x_{i}\right\|^{2}+\left\|y_{i}\right\|^{2}
$$

Using the above two inequalities, one has

$$
\phi\left(p, y_{i}\right)-\phi\left(p, x_{i}\right) \leq\left(1-\alpha_{(i, 0)}\right) \xi_{i}
$$

This shows that C_{i+1} is closed and convex. Hence, C_{n} is a convex and closed set.
Step 3. Prove $\cap_{m=1}^{N} \operatorname{Fix}\left(T_{m}\right) \cap \operatorname{Sol}(B) \subset C_{n}$.
It is obvious

$$
\cap_{m=1}^{N} F i x\left(T_{m}\right) \cap \operatorname{Sol}(B) \subset C_{1}=C .
$$

Suppose that $\cap_{m=1}^{N} \operatorname{Fix}\left(T_{m}\right) \cap \operatorname{Sol}(B) \subset C_{i}$ for some positive integer i. For any $z \in \cap_{m=1}^{N} F i x\left(T_{m}\right) \cap \operatorname{Sol}(B) \subset$ C_{i}, we see that

$$
\begin{aligned}
& \phi\left(z, x_{i}\right)+\left(1-\alpha_{(i, 0)}\right) \xi_{i} \\
& \geq \sum_{m=1}^{N} \alpha_{(i, m)} \phi\left(z, T_{m}^{i} x_{i}\right)+\alpha_{(i, 0)} \phi\left(z, u_{i}\right) \\
& \geq\|z\|^{2}+\sum_{m=1}^{N} \alpha_{(i, m)}\left\|T_{m}^{i} x_{i}\right\|^{2}+\alpha_{(i, 0)}\left\|J u_{i}\right\|^{2} \\
& \quad-2 \alpha_{(i, 0)}\left\langle z, J u_{i}\right\rangle-2 \sum_{m=1}^{N} \alpha_{(i, m)}\left\langle z, J T_{m}^{i} x_{i}\right\rangle \\
& \geq\|z\|^{2}+\left\|\sum_{m=1}^{N} \alpha_{(i, m)} J T_{m}^{i} x_{i}+\alpha_{(i, 0)} J u_{i}\right\|^{2} \\
& \quad-2\left\langle z, \sum_{m=1}^{N} \alpha_{(i, m)} J T_{m}^{i} x_{i}+\alpha_{(i, 0)} J u_{i}\right\rangle \\
& =\phi\left(z, y_{i}\right),
\end{aligned}
$$

where

$$
\xi_{i}=\max \left\{\max \left\{\sup _{p \in \operatorname{Fix}\left(T_{m}\right), x \in C}\left(\phi\left(p, T_{m}^{i} x\right)-\phi(p, x)\right), 0\right\}: 1 \leq m \leq N\right\}
$$

This shows that $z \in C_{i+1}$. This implies that $\cap_{m=1}^{N} F i x\left(T_{m}\right) \cap \operatorname{Sol}(B) \subset C_{n}$.
Step 4. Prove that $\left\{x_{n}\right\}$ is bounded.
Now, we have $\left\langle x_{n}-z, J x_{1}-J x_{n}\right\rangle \geq 0$, for any $z \in C_{n}$. It follows that

$$
0 \leq\left\langle x_{n}-z, J x_{1}-J x_{n}\right\rangle, \quad \forall z \in \cap_{m=1}^{N} F i x\left(T_{m}\right) \cap \operatorname{Sol}(B) \subset C_{n}
$$

On the other hand, we find from Lemma 1.4 ,

$$
\begin{aligned}
& \phi\left(\operatorname{Proj}_{\cap_{m=1}^{N} \operatorname{Fix}\left(T_{m}\right) \cap \operatorname{Sol}(B)} x_{1}, x_{1}\right) \\
& \geq \phi\left(\operatorname{Proj}_{\cap_{m=1}^{N} \operatorname{Fix}\left(T_{m}\right) \cap \operatorname{Sol}(B)} x_{1}, x_{1}\right)-\phi\left(\operatorname{Proj}_{\cap_{m=1}^{N} \operatorname{Fix}\left(T_{m}\right) \cap \operatorname{Sol}(B)} x_{1}, x_{n}\right) \\
& \geq \phi\left(x_{n}, x_{1}\right)
\end{aligned}
$$

which shows that $\left\{\phi\left(x_{n}, x_{1}\right)\right\}$ is bounded. Hence, $\left\{x_{n}\right\}$ is also bounded. Without loss of generality, we assume $x_{n} \rightharpoonup \bar{x}$. Since every C_{n} is convex and closed. So $\bar{x} \in C_{n}$.

Step 5. Prove $\bar{x} \in \cap_{m=1}^{N} \operatorname{Fix}\left(T_{m}\right)$.

Since $\bar{x} \in C_{n}$, one has $\phi\left(x_{n}, x_{1}\right) \leq \phi\left(\bar{x}, x_{1}\right)$. This implies that

$$
\phi\left(\bar{x}, x_{1}\right) \leq \liminf _{n \rightarrow \infty}\left(\left\|x_{n}\right\|^{2}+\left\|x_{1}\right\|^{2}-2\left\langle x_{n}, J x_{1}\right\rangle\right)=\limsup _{n \rightarrow \infty} \phi\left(x_{n}, x_{1}\right) \leq \phi\left(\bar{x}, x_{1}\right)
$$

Hence, one has

$$
\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{1}\right)=\phi\left(\bar{x}, x_{1}\right)
$$

It follows that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\|\bar{x}\|
$$

Using the Kadec-Klee property, one obtains that $\left\{x_{n}\right\}$ converges strongly to \bar{x} as $n \rightarrow \infty$. Since $x_{n+1} \in$ $C_{n+1} \subset C_{n}$, we find that

$$
\phi\left(x_{n+1}, x_{1}\right) \geq \phi\left(x_{n}, x_{1}\right)
$$

which shows that $\left\{\phi\left(x_{n}, x_{1}\right)\right\}$ is nondecreasing. It follows that $\lim _{n \rightarrow \infty} \phi\left(x_{n}, x_{1}\right)$ exists. Since

$$
\phi\left(x_{n+1}, x_{1}\right)-\phi\left(x_{n}, x_{1}\right) \geq \phi\left(x_{n+1}, x_{n}\right) \geq 0
$$

one has $\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=0$. Using the fact $x_{n+1} \in C_{n+1}$, one sees

$$
\phi\left(x_{n+1}, y_{n}\right)-\phi\left(x_{n+1}, x_{n}\right) \leq\left(1-\alpha_{(n, 0)}\right) \xi_{n}
$$

Since

$$
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, x_{n}\right)=\lim _{n \rightarrow \infty} \xi_{n}=0
$$

one has

$$
\lim _{n \rightarrow \infty} \phi\left(x_{n+1}, y_{n}\right)=0
$$

Therefore, one has

$$
\lim _{n \rightarrow \infty}\left(\left\|y_{n}\right\|-\left\|x_{n+1}\right\|\right)=0
$$

This implies that

$$
\lim _{n \rightarrow \infty}\left\|J y_{n}\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}\right\|=\|\bar{x}\|=\|J \bar{x}\|
$$

This implies that $\left\{J y_{n}\right\}$ is bounded. Without loss of generality, we assume that $\left\{J y_{n}\right\}$ converges weakly to $y^{*} \in E^{*}$. In view of the reflexivity of E, we see that $J(E)=E^{*}$. This shows that there exists an element $y \in E$ such that $J y=y^{*}$. It follows that

$$
\phi\left(x_{n+1}, y_{n}\right)+2\left\langle x_{n+1}, J y_{n}\right\rangle=\left\|x_{n+1}\right\|^{2}+\left\|J y_{n}\right\|^{2}
$$

Taking $\liminf \inf _{n \rightarrow \infty}$, one has $0 \geq\|\bar{x}\|^{2}-2\left\langle\bar{x}, y^{*}\right\rangle+\left\|y^{*}\right\|^{2}=\|\bar{x}\|^{2}+\|J y\|^{2}-2\langle\bar{x}, J y\rangle=\phi(\bar{x}, y) \geq 0$. That is, $\bar{x}=y$, which in turn implies that $J \bar{x}=y^{*}$. Hence, $J y_{n} \rightharpoonup J \bar{x} \in E^{*}$. Since E is uniformly smooth. Hence, E^{*} is uniformly convex and it has the Kadec-Klee property, we obtain

$$
\lim _{n \rightarrow \infty} J y_{n}=J \bar{x}
$$

Since $J^{-1}: E^{*} \rightarrow E$ is demi-continuous and E has the Kadec-Klee property, one gets that $y_{n} \rightarrow \bar{x}$, as $n \rightarrow \infty$. Using the fact

$$
\left(\left\|x_{n}\right\|+\left\|y_{n}\right\|\right)\left\|y_{n}-x_{n}\right\|+2\left\langle z, J y_{n}-J x_{n}\right\rangle \geq \phi\left(z, x_{n}\right)-\phi\left(z, y_{n}\right)
$$

we find

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\phi\left(z, x_{n}\right)-\phi\left(z, y_{n}\right)\right)=0 \tag{2.1}
\end{equation*}
$$

It follows from Lemma 1.5, that

$$
\begin{aligned}
& \phi\left(z, x_{n}\right)+\left(1-\alpha_{(n, 0)}\right) \xi_{n}-\alpha_{(n, 0)} \alpha_{(n, m)} g\left(\left\|J T_{m}^{n} x_{n}-J u_{n}\right\|\right) \\
& \geq \sum_{m=1}^{N} \alpha_{(n, m)} \phi\left(z, T_{m}^{n} x_{n}\right)+\alpha_{(n, 0)} \phi\left(z, u_{n}\right)-\alpha_{(n, 0)} \alpha_{(n, m)} g\left(\left\|J T_{m}^{n} x_{n}-J u_{n}\right\|\right) \\
& \geq \sum_{m=0}^{N} \alpha_{(n, m)}\|z\|^{2}+\sum_{m=1}^{N} \alpha_{(n, m)}\left\|T_{m}^{n} x_{n}\right\|^{2}+\alpha_{(n, 0)}\left\|J u_{n}\right\|^{2} \\
& \quad-2 \alpha_{(n, 0)}\left\langle z, J u_{n}\right\rangle-2 \sum_{m=1}^{N} \alpha_{(n, m)}\left\langle z, J T_{m}^{n} x_{n}\right\rangle \\
& \quad-\alpha_{(n, 0)} \alpha_{(n, m)} g\left(\left\|J T_{m}^{n} x_{n}-J u_{n}\right\|\right) \\
& \geq \phi\left(z, y_{n}\right)
\end{aligned}
$$

This implies

$$
0 \leq \alpha_{(n, 0)} \alpha_{(n, m)} g\left(\left\|J T_{m}^{n} x_{n}-J u_{n}\right\|\right) \leq\left(\phi\left(z, x_{n}\right)-\phi\left(z, y_{n}\right)\right)+\left(1-\alpha_{(n, 0)}\right) \xi_{n}
$$

Since $\lim \inf _{n \rightarrow \infty} \alpha_{(n, 0)} \alpha_{(n, m)}>0$, one sees from 2.1

$$
\lim _{n \rightarrow \infty}\left\|J u_{n}-J T_{m}^{n} x_{n}\right\|=0
$$

for any $1 \leq m \leq N$. Using the fact

$$
\sum_{m=1}^{N} \alpha_{(n, m)}\left(J T_{m}^{n} x_{n}-J u_{n}\right)=J y_{n}-J u_{n}
$$

one has $\left\{J u_{n}\right\}$ converges strongly to $J \bar{x}$. It follows that $J T_{m}^{n} x_{n} \rightarrow J \bar{x}$ as $n \rightarrow \infty$. Since $J^{-1}: E^{*} \rightarrow E$ is demi-continuous, one has $T_{m}^{n} x_{n} \rightharpoonup \bar{x}$. Using the fact

$$
\left|\left\|T_{m}^{n} x_{n}\right\|-\|\bar{x}\|\right|=\left|\left\|J T_{m}^{n} x_{n}\right\|-\|J \bar{x}\|\right| \leq\left\|J T_{m}^{n} x_{n}-J \bar{x}\right\|
$$

one has $\left\|T_{m}^{n} x_{n}\right\| \rightarrow\|\bar{x}\|$ as $n \rightarrow \infty$. Since E has the Kadec-Klee property, one has

$$
\lim _{n \rightarrow \infty}\left\|\bar{x}-T_{m}^{n} x_{n}\right\|=0
$$

Since T_{m} is also uniformly asymptotically regular, one has

$$
\lim _{n \rightarrow \infty}\left\|\bar{x}-T_{m}^{n+1} x_{n}\right\|=0
$$

That is, $T_{m}\left(T_{m}^{n} x_{n}\right) \rightarrow \bar{x}$. Using the closedness of T_{m}, we find $T_{m} \bar{x}=\bar{x}$. This proves $\bar{x} \in F i x\left(T_{m}\right)$, that is, $\bar{x} \in \cap_{m=1}^{N} \operatorname{Fix}\left(T_{m}\right)$.

Step 6. Prove $\bar{x} \in \operatorname{Sol}(B)$.
Since B is a monotone bifunction, one has

$$
r_{n} B\left(u, u_{n}\right) \leq\left\|u-u_{n}\right\|\left\|J u_{n}-J x_{n}\right\|
$$

Since $\liminf \lim _{n \rightarrow \infty} r_{n}>0$, we may assume there exists $\lambda>0$ such that $r_{n} \geq \lambda$. It follows that

$$
B\left(u, u_{n}\right) \leq\left\|u-u_{n}\right\| \frac{\left\|J u_{n}-J x_{n}\right\|}{\lambda}
$$

Hence, one has $B(u, \bar{x}) \leq 0$. For $0<s<1$, define $u^{s}=(1-s) \bar{x}+s u$. This implies that $0 \geq B\left(u^{s}, \bar{x}\right)$. Hence, we have

$$
s B\left(u^{s}, u\right) \geq B\left(u^{s}, u^{s}\right)=0
$$

It follows that $B(\bar{x}, u) \geq 0, \forall u \in C$. This implies that $\bar{x} \in \operatorname{Sol}(B)$.
Step 7. Prove $\bar{x}=\operatorname{Proj}_{\cap_{m=1}^{N} F i x\left(T_{m}\right) \cap \operatorname{Sol}(B) x_{1} .}$
Using Lemma 1.5, we find

$$
0 \leq\left\langle x_{n}-z, J x_{1}-J x_{n}\right\rangle, \forall z \in \cap_{m=1}^{N} F i x\left(T_{m}\right) \cap \operatorname{Sol}(B)
$$

Let $n \rightarrow \infty$, one has

$$
0 \leq\left\langle\bar{x}-z, J x_{1}-J \bar{x}\right\rangle
$$

It follows that $\bar{x}=\operatorname{Proj} \cap_{\cap_{m=1}^{N}} F i x\left(T_{m}\right) \cap \operatorname{Sol}(B) x_{1}$. This completes the proof.
If $N=1$, we have the following result.
Corollary 2.2. Let E be a strictly convex and uniformly smooth Banach space which also has the KKP. Let C be a convex and closed subset of E and let B be a bifunction with (A-1), (A-2), ($A-3$) and ($A-4$). Let T be an asymptotically quasi- ϕ-nonexpansive mapping in the intermediate sense on C. Assume that T is uniformly asymptotically regular and closed and $\operatorname{Sol}(B) \bigcap \operatorname{Fix}(T)$ is nonempty. Let $\left\{\alpha_{(n, 0)}\right\}$ be a real sequence in $(0,1)$ such that $\liminf _{n \rightarrow \infty} \alpha_{(n, 0)}\left(1-\alpha_{(n, 0)}\right)>0$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in E \text { chosen arbitrarily, } \\
C_{1}=C, x_{1}=\operatorname{Proj}_{C_{1}} x_{0} \\
r_{n} B\left(u_{n}, u\right) \geq\left\langle u_{n}-u, J u_{n}-J x_{n}\right\rangle, \forall u \in C_{n} \\
y_{n}=J^{-1}\left(\left(1-\alpha_{(n, 0)}\right) J T^{n} x_{n}+\alpha_{(n, 0)} J u_{n}\right) \\
C_{n+1}=\left\{z \in C_{n}: \phi\left(z, y_{n}\right) \leq\left(1-\alpha_{(n, 0)}\right) \xi_{n}+\phi\left(z, x_{n}\right)\right\}, \\
x_{n+1}=\operatorname{Proj}_{C_{n+1}} x_{1}
\end{array}\right.
$$

where $\xi_{n}=\max \left\{\sup _{p \in F i x(T), x \in C}\left(\phi\left(p, T^{n} x\right)-\phi(p, x)\right), 0\right\}$, and $\left\{r_{n}\right\}$ is a real sequence such that $\liminf _{n \rightarrow \infty} r_{n}$ >0. Then $\left\{x_{n}\right\}$ converges strongly to $\operatorname{Proj}_{\operatorname{Sol}(B) \cap F i x(T)} x_{1}$.

If T is the identity mapping, we have the following results on the equilibrium problem.
Corollary 2.3. Let E be a strictly convex and uniformly smooth Banach space which also has the KKP. Let C be a convex and closed subset of E and let B be a bifunction with (A-1), (A-2), (A-3) and (A-4). Let $N \geq 1$ be some positive integer and assume $\operatorname{Sol}(B) \neq \emptyset$. Let $\left\{\alpha_{(n, 0)}\right\},\left\{\alpha_{(n, 1)}\right\}, \cdots,\left\{\alpha_{(n, N)}\right\}$ be real sequences in $(0,1)$ such that $\sum_{m=0}^{N} \alpha_{(n, m)}=1$ and $\liminf _{n \rightarrow \infty} \alpha_{(n, 0)} \alpha_{(n, m)}>0$ for any $1 \leq m \leq N$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in E \text { chosen arbitrarily }, \\
C_{1}=C, x_{1}=\operatorname{Proj}_{C_{1}} x_{0} \\
r_{n} B\left(u_{n}, u\right) \geq\left\langle u_{n}-u, J u_{n}-J x_{n}\right\rangle, \forall u \in C_{n}, \\
y_{n}=J^{-1}\left(\sum_{m=1}^{N} \alpha_{(n, m)} J x_{n}+\alpha_{(n, 0)} J u_{n}\right), \\
C_{n+1}=\left\{z \in C_{n}: \phi\left(z, y_{n}\right) \leq \phi\left(z, x_{n}\right)\right\}, \\
x_{n+1}=\operatorname{Proj}_{C_{n+1}} x_{1},
\end{array}\right.
$$

where $\left\{r_{n}\right\}$ is a real sequence such that $\liminf _{n \rightarrow \infty} r_{n}>0$. Then $\left\{x_{n}\right\}$ converges strongly to $\operatorname{Proj}_{\operatorname{Sol}(B)} x_{1}$.
In the framework of Hilbert spaces, $\sqrt{\phi(x, y)}=\|x-y\|, \forall x, y \in E$. The generalized projection is reduced to the metric projection and the class of asymptotically- ϕ-nonexpansive mappings in the intermediate sense is reduced to the class of asymptotically quasi-nonexpansive mappings in the intermediate sense.

Corollary 2.4. Let E be a Hilbert space. Let C be a convex and closed subset of E and let B be a function with (A-1), (A-2), (A-3) and (A-4). Let $\left\{T_{m}\right\}_{m=1}^{N}$, where N is some positive integer, be a sequence of asymptotically quasi-nonexpansive mappings in the intermediate sense on C. Assume that every T_{m} is uniformly asymptotically regular and closed and $\operatorname{Sol}(B) \cap \cap_{m=1}^{N} F i x\left(T_{m}\right)$ is nonempty. Let $\left\{\alpha_{(n, 0)}\right\},\left\{\alpha_{(n, 1)}\right\}, \cdots,\left\{\alpha_{(n, N)}\right\}$ be real sequences in $(0,1)$ such that $\sum_{m=0}^{N} \alpha_{(n, m)}=1$ and

$$
\liminf _{n \rightarrow \infty} \alpha_{(n, 0)} \alpha_{(n, m)}>0
$$

for any $1 \leq m \leq N$. Let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{0} \in E \text { chosen arbitrarily, } \\
C_{1}=C, x_{1}=P_{C_{1}} x_{0} \\
r_{n} B\left(u_{n}, u\right) \geq\left\langle u_{n}-u, u_{n}-x_{n}\right\rangle, \forall u \in C_{n} \\
y_{n}=\sum_{m=1}^{N} \alpha_{(n, m)} T_{m}^{n} x_{n}+\alpha_{(n, 0)} u_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|z-y_{n}\right\|^{2} \leq\left(1-\alpha_{(n, 0)}\right) \xi_{n}+\left\|z-x_{n}\right\|^{2}\right\} \\
x_{n+1}=\operatorname{Proj}_{C_{n+1}} x_{1}
\end{array}\right.
$$

where $\xi_{n}=\max \left\{\max \left\{\sup _{p \in \operatorname{Fix}\left(T_{m}\right), x \in C}\left(\left\|p-T_{m}^{n} x\right\|^{2}-\|p-x\|^{2}\right), 0\right\}: 1 \leq m \leq N\right\}$, and $\left\{r_{n}\right\}$ is a real sequence such that $\liminf _{n \rightarrow \infty} r_{n}>0$. Then $\left\{x_{n}\right\}$ converges strongly to $P_{\operatorname{Sol}(B) \cap \cap \cap_{m=1}^{N} F i x\left(T_{m}\right)} x_{1}$.

References

[1] R. P. Agarwal, Y. J. Cho, X. Qin, Generalized projection algorithms for nonlinear operators, Numer. Funct. Anal. Optim., 28 (2007), 1197-1215. 1.3
[2] Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, (1996). 1, 1.4
[3] B. A. Bin Dehaish, X. Qin, A. Latif, H. Bakodah, Weak and strong convergence of algorithms for the sum of two accretive operators with applications, J. Nonlinear Convex Anal., 16 (2015), 1321-1336.1
[4] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63 (1994), 123-145. 1, 1, 1.6
[5] R. E. Bruck, T. Kuczumow, S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math., 65 (1993), 169-179.1.1
[6] D. Butnariu, S. Reich, A. J. Zaslavski, Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal., 7 (2001), 151-174. 1.2
[7] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103-120. 1
[8] G. Cai, S. Bu, Strong and weak convergence theorems for general mixed equilibrium problems and variational inequality problems and fixed point problems in Hilbert spaces, J. Comput. Appl. Math., 247 (2013), 34-52.
[9] S. Y. Cho, X. Qin, On the strong convergence of an iterative process for asymptotically strict pseudocontractions and equilibrium problems, Appl. Math. Comput., 235 (2014), 430-438.
[10] S. Y. Cho, X. Qin, L. Wang, Strong convergence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl., 2014 (2014), 15 pages.
[11] W. Cholamjiak, P. Cholamjiak, S. Suantai, Convergence of iterative schemes for solving fixed point problems for multi-valued nonself mappings and equilibrium problems, J. Nonlinear Sci. Appl., 8 (2015), 1245-1256. 1
[12] B. S. Choudhury, S. Kundu, A viscosity type iteration by weak contraction for approximating solutions of generalized equilibrium problem, J. Nonlinear Sci. Appl., 5 (2012), 243-251.
[13] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, (1990). 1
[14] S. Dafermos, A. Nagurney, A network formulation of market equilibrium problems and variational inequalities, Oper. Res. Lett., 3 (1984), 247-250. 1
[15] Y. Hao, On generalized quasi- ϕ-nonexpansive mappings and their projection algorithms, Fixed Point Theory Appl., 2013 (2013), 13 pages. 1
[16] Y. Hao, Some results on a modified Mann iterative scheme in a reflexive Banach space, Fixed Point Theory Appl., 2013 (2013), 14 pages. 1
[17] R. H. He, Coincidence theorem and existence theorems of solutions for a system of Ky Fan type minimax inequalities in FC-spaces, Adv. Fixed Point Theory, 2 (2012), 47-57. 1
[18] H. Iiduka, Fixed point optimization algorithm and its application to network bandwidth allocation, J. Comput. Appl. Math., 236 (2012), 1733-1742. 1
[19] J. K. Kim, Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi- ϕ-nonexpansive mappings, Fixed Point Theory Appl., 2011 (2011), 15 pages. 1
[20] B. Liu, C. Zhang, Strong convergence theorems for equilibrium problems and quasi- ϕ-nonexpansive mappings, Nonlinear Funct. Anal. Appl., 16 (2011), 365-385. 1
[21] X. Qin, Y. J. Cho, S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math., 225 (2009), 20-30.1.2 1.6
[22] X. Qin, S. Y. Cho, S. M. Kang, On hybrid projection methods for asymptotically quasi- ϕ-nonexpansive mappings, Appl. Math. Comput., 215 (2010), 3874-3883.1.3
[23] X. Qin, S. Y. Cho, L. Wang, Algorithms for treating equilibrium and fixed point problems, Fixed Point Theory Appl., 2013 (2013), 15 pages. 1
[24] X. Qin, L. Wang, On asymptotically quasi- ϕ-nonexpansive mappings in the intermediate sense, Abst. Appl. Anal., 2012 (2012), 14 pages. 1.1, 1.7
[25] J. Shen, L. P. Pang, An approximate bundle method for solving variational inequalities, Commun. Optim. Theory, 1 (2012), 1-18. 1
[26] T. Takahashi, Nonlinear Functional Analysis, Yokohama-Publishers, Tokoyo, (2000) 1.5
[27] N. T. T. Thuy, Convergence rate of the Tikhonov regularization for ill-posed mixed variational inequalities with inverse-strongly monotone perturbations, Nonlinear Funct. Anal. Appl., 5 (2010), 467-479. 1
[28] Z. M. Wang, X. Zhang, Shrinking projection methods for systems of mixed variational inequalities of Browder type, systems of mixed equilibrium problems and fixed point problems, J. Nonlinear Funct. Anal., 2014 (2014), 25 pages.
[29] H. Zegeye, N. Shahzad, Strong convergence theorem for a common point of solution of variational inequality and fixed point problem, Adv. Fixed Point Theory, 2 (2012), 374-397.
[30] M. Zhang, Iterative algorithms for a system of generalized variational inequalities in Hilbert spaces, Fixed Point Theory Appl., 2012 (2012), 14 pages. 1
[31] J. Zhao, Strong convergence theorems for equilibrium problems, fixed point problems of asymptotically nonexpansive mappings and a general system of variational inequalities, Nonlinear Funct. Anal. Appl. 16 (2011), 447-464. 1

[^0]: *Corresponding author
 Email addresses: hdlianghw@yeah.net (Hongwei Liang), hdzhangml@yeah.net (Mingliang Zhang)

