# Stability of cubic and quartic $\rho$-functional inequalities in fuzzy normed spaces 

Choonkill Parka ${ }^{\text {a }}$ Sungsik Yun ${ }^{\text {b,* }}$<br>${ }^{a}$ Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.<br>${ }^{b}$ Department of Financial Mathematics, Hanshin University, Gyeonggi-do 18101, Korea.

Communicated by Y. J. Cho


#### Abstract

In this paper, we solve the following cubic $\rho$-functional inequality $$
\begin{align*} & N(f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-12 f(x)  \tag{1}\\ & \left.-\rho\left(4 f\left(x+\frac{y}{2}\right)+4 f\left(x-\frac{y}{2}\right)-f(x+y)-f(x-y)-6 f(x)\right), t\right) \geq \frac{t}{t+\varphi(x, y)} \end{align*}
$$


and the following quartic $\rho$-functional inequality

$$
\begin{align*}
& N(f(2 x+y)+f(2 x-y)-4 f(x+y)-4 f(x-y)-24 f(x)+6 f(y)  \tag{2}\\
& \left.-\rho\left(8 f\left(x+\frac{y}{2}\right)+8 f\left(x-\frac{y}{2}\right)-2 f(x+y)-2 f(x-y)-12 f(x)+3 f(y)\right), t\right) \geq \frac{t}{t+\varphi(x, y)}
\end{align*}
$$

in fuzzy normed spaces, where $\rho$ is a fixed real number with $\rho \neq 2$.
Using the direct method, we prove the Hyers-Ulam stability of the cubic $\rho$-functional inequality (1) and the quartic $\rho$-functional inequality (2) in fuzzy Banach spaces. © 2016 All rights reserved.

Keywords: fuzzy Banach space, cubic $\rho$-functional inequality, quartic $\rho$-functional inequality, Hyers-Ulam stability.
2010 MSC: 39B52, 46S40, 39B52, 39B62, 26E50, 47S40.

## 1. Introduction and preliminaries

Katsaras [11] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure

[^0]on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view [6, 15, 33]. In particular, Bag and Samanta [2], following Cheng and Mordeson [5], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [14]. They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [3].

We use the definition of fuzzy normed spaces given in [2, 18, 19] to investigate the Hyers-Ulam stability of cubic $\rho$-functional inequalities and quartic $\rho$-functional inequalities in fuzzy Banach spaces.

Definition $1.1([2,18,19,20])$. Let $X$ be a real vector space. A function $N: X \times \mathbb{R} \rightarrow[0,1]$ is called a fuzzy norm on $X$ if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,
$\left(N_{1}\right) N(x, t)=0$ for $t \leq 0$;
$\left(N_{2}\right) x=0$ if and only if $N(x, t)=1$ for all $t>0$;
$\left(N_{3}\right) N(c x, t)=N\left(x, \frac{t}{|c|}\right)$ if $c \neq 0$;
$\left(N_{4}\right) N(x+y, s+t) \geq \min \{N(x, s), N(y, t)\} ;$
$\left(N_{5}\right) N(x, \cdot)$ is a non-decreasing function of $\mathbb{R}$ and $\lim _{t \rightarrow \infty} N(x, t)=1$;
$\left(N_{6}\right)$ for $x \neq 0, N(x, \cdot)$ is continuous on $\mathbb{R}$.
The pair $(X, N)$ is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are given in [18].
Definition $1.2\left([2,18,[19,20])\right.$. Let $(X, N)$ be a fuzzy normed vector space. A sequence $\left\{x_{n}\right\}$ in $X$ is said to be convergent or converge if there exists an $x \in X$ such that $\lim _{n \rightarrow \infty} N\left(x_{n}-x, t\right)=1$ for all $t>0$. In this case, $x$ is called the limit of the sequence $\left\{x_{n}\right\}$ and we denote it by $N$ - $\lim _{n \rightarrow \infty} x_{n}=x$.

Definition $1.3([2,18,19,20])$. Let $(X, N)$ be a fuzzy normed vector space. A sequence $\left\{x_{n}\right\}$ in $X$ is called Cauchy if for each $\varepsilon>0$ and each $t>0$ there exists an $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ and all $p>0$, we have $N\left(x_{n+p}-x_{n}, t\right)>1-\varepsilon$.

It is well-known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping $f: X \rightarrow Y$ between fuzzy normed vector spaces $X$ and $Y$ is continuous at a point $x_{0} \in X$ if for each sequence $\left\{x_{n}\right\}$ converging to $x_{0}$ in $X$, then the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to $f\left(x_{0}\right)$. If $f: X \rightarrow Y$ is continuous at each $x \in X$, then $f: X \rightarrow Y$ is said to be continuous on $X$ (see [3]).

The stability problem of functional equations originated from a question of Ulam [32] concerning the stability of group homomorphisms. Hyers [8] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Th. M. Rassias [26] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Th. M. Rassias theorem was obtained by Găvruta [7] by replacing the unbounded Cauchy difference by a general control function in the spirit of Th. M. Rassias' approach. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [4, 10, 12, 13, 17, 23, 24, 25, 27, 28, 29, 30, 31]).

In [9], Jun and Kim considered the following cubic functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) \tag{1.1}
\end{equation*}
$$

It is easy to show that the function $f(x)=x^{3}$ satisfies the functional equation 1.1 , which is called a cubic functional equation and every solution of the cubic functional equation is said to be a cubic mapping.

In [16], Lee et al. considered the following quartic functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=4 f(x+y)+4 f(x-y)+24 f(x)-6 f(y) \tag{1.2}
\end{equation*}
$$

It is easy to show that the function $f(x)=x^{4}$ satisfies the functional equation $(1.2)$, which is called a quartic functional equation and every solution of the quartic functional equation is said to be a quartic mapping.

Park [21, 22] defined additive $\rho$-functional inequalities and proved the Hyers-Ulam stability of the additive $\rho$-functional inequalities in Banach spaces and non-Archimedean Banach spaces.

In Section 2, we solve the cubic $\rho$-functional inequality (1) and prove the Hyers-Ulam stability of the cubic $\rho$-functional inequality (1) in fuzzy Banach spaces by using the direct method.

In Section 3, we solve the quartic $\rho$-functional inequality (2) and prove the Hyers-Ulam stability of the quartic $\rho$-functional inequality (2) in fuzzy Banach spaces by using the direct method.

Throughout this paper, assume that $\rho$ is a fixed real number with $\rho \neq 2$.

## 2. Cubic $\rho$-functional inequality (1)

Lemma 2.1. Let $f: X \rightarrow Y$ be a mapping satisfying

$$
\begin{align*}
& f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-12 f(x)  \tag{2.1}\\
& \quad=\rho\left(4 f\left(x+\frac{y}{2}\right)+4 f\left(x-\frac{y}{2}\right)-f(x+y)-f(x-y)-6 f(x)\right)
\end{align*}
$$

for all $x, y \in X$. Then $f: X \rightarrow Y$ is cubic.
Proof. Letting $y=0$ in 2.1), we get $2 f(2 x)-16 f(x)=0$ and so $f(2 x)=8 f(x)$ for all $x \in X$. Thus

$$
\begin{aligned}
& f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-12 f(x) \\
& =\rho\left(4 f\left(x+\frac{y}{2}\right)+4 f\left(x-\frac{y}{2}\right)-f(x+y)-f(x-y)-6 f(x)\right) \\
& =\frac{\rho}{2}(f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-12 f(x))
\end{aligned}
$$

and so $f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-12 f(x)=0$ for all $x, y \in X$, as desired.
We prove the Hyers-Ulam stability of the cubic $\rho$-functional inequality (1) in fuzzy Banach spaces.
Theorem 2.2. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\Phi(x, y):=\sum_{j=1}^{\infty} 8^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}\right)<\infty \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be a mapping satisfying

$$
\begin{align*}
& N(f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-12 f(x)  \tag{2.3}\\
& \left.-\rho\left(4 f\left(x+\frac{y}{2}\right)+4 f\left(x-\frac{y}{2}\right)-f(x+y)-f(x-y)-6 f(x)\right), t\right) \geq \frac{t}{t+\varphi(x, y)}
\end{align*}
$$

for all $x, y \in X$ and all $t>0$. Then $C(x):=N-\lim _{n \rightarrow \infty} 8^{n} f\left(\frac{x}{2^{n}}\right)$ exists for each $x \in X$ and defines a cubic mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
N(f(x)-C(x), t) \geq \frac{t}{t+\frac{1}{16} \Phi(x, 0)} \tag{2.4}
\end{equation*}
$$

for all $x \in X$ and all $t>0$.
Proof. Letting $y=0$ in 2.3), we get

$$
\begin{equation*}
N(2 f(2 x)-16 f(x), t) \geq \frac{t}{t+\varphi(x, 0)} \tag{2.5}
\end{equation*}
$$

and so $N\left(f(x)-8 f\left(\frac{x}{2}\right), \frac{t}{2}\right) \geq \frac{t}{t+\varphi\left(\frac{x}{2}, 0\right)}$ for all $x \in X$. Hence

$$
N\left(f(x)-8 f\left(\frac{x}{2}\right), t\right) \geq \frac{2 t}{2 t+\varphi\left(\frac{x}{2}, 0\right)}=\frac{t}{t+\frac{1}{2} \varphi\left(\frac{x}{2}, 0\right)}
$$

for all $x \in X$. Hence

$$
\begin{aligned}
N & \left(8^{l} f\left(\frac{x}{2^{l}}\right)-8^{m} f\left(\frac{x}{2^{m}}\right), t\right) \\
& \geq \min \left\{N\left(8^{l} f\left(\frac{x}{2^{l}}\right)-8^{l+1} f\left(\frac{x}{2^{l+1}}\right), t\right), \cdots, N\left(8^{m-1} f\left(\frac{x}{2^{m-1}}\right)-8^{m} f\left(\frac{x}{2^{m}}\right), t\right)\right\} \\
& =\min \left\{N\left(f\left(\frac{x}{2^{l}}\right)-8 f\left(\frac{x}{2^{l+1}}\right), \frac{t}{8^{l}}\right), \cdots, N\left(f\left(\frac{x}{2^{m-1}}\right)-8 f\left(\frac{x}{2^{m}}\right), \frac{t}{8^{m-1}}\right)\right\} \\
& \geq \min \left\{\frac{\frac{t}{8^{l}}}{\frac{t}{8^{l}}+\frac{1}{2} \varphi\left(\frac{x}{2^{l+1}}, 0\right)}, \cdots, \frac{t}{\frac{t}{8^{m-1}}+\frac{1}{2} \varphi\left(\frac{x}{2^{m}}, 0\right)}\right\} \\
& =\min \left\{\frac{t}{t+\frac{8^{l+1}}{16} \varphi\left(\frac{x}{2^{l+1}}, 0\right)}, \cdots, \frac{t}{t+\frac{8^{m}}{16} \varphi\left(\frac{x}{2^{m}}, 0\right)}\right\} \\
& \geq \frac{t}{t+\frac{1}{16} \sum_{j=l+1}^{m} 8^{j} \varphi\left(\frac{x}{2^{j}}, 0\right)}
\end{aligned}
$$

for all nonnegative integers $m$ and $l$ with $m>l$ and all $x \in X$ and all $t>0$. It follows from (2.2) and (2.6) that the sequence $\left\{8^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since $Y$ is complete, the sequence $\left\{8^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $C: X \rightarrow Y$ by

$$
C(x):=N-\lim _{n \rightarrow \infty} 8^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.6), we get (2.4).
By (2.3),

$$
\begin{gathered}
N\left(8^{n}\left(f\left(\frac{2 x+y}{2^{n}}\right)+f\left(\frac{2 x-y}{2^{n}}\right)-2 f\left(\frac{x+y}{2^{n}}\right)-2 f\left(\frac{x-y}{2^{n}}\right)-12 f\left(\frac{x}{2^{n}}\right)\right)\right. \\
\left.-8^{n} \rho\left(4 f\left(\frac{x+\frac{y}{2}}{2^{n}}\right)+4 f\left(\frac{x-\frac{y}{2}}{2^{n}}\right)-f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x-y}{2^{n}}\right)-6 f\left(\frac{x}{2^{n}}\right)\right), 8^{n} t\right) \\
\geq \geq \frac{t}{t+\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}
\end{gathered}
$$

for all $x, y \in X$, all $t>0$ and all $n \in \mathbb{N}$. So

$$
\begin{gathered}
N\left(8^{n}\left(f\left(\frac{2 x+y}{2^{n}}\right)+f\left(\frac{2 x-y}{2^{n}}\right)-2 f\left(\frac{x+y}{2^{n}}\right)-2 f\left(\frac{x-y}{2^{n}}\right)-12 f\left(\frac{x}{2^{n}}\right)\right)\right. \\
\left.-8^{n} \rho\left(4 f\left(\frac{x+\frac{y}{2}}{2^{n}}\right)+4 f\left(\frac{x-\frac{y}{2}}{2^{n}}\right)-f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x-y}{2^{n}}\right)-6 f\left(\frac{x}{2^{n}}\right)\right), t\right) \\
\geq \frac{\frac{t}{8^{n}}}{\frac{t}{8^{n}}+\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}=\frac{t}{t+8^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}
\end{gathered}
$$

Since $\lim _{n \rightarrow \infty} \frac{t}{t+8^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)}=1$ for all $x, y \in X$ and all $t>0$,

$$
\begin{aligned}
& C(2 x+y)+C(2 x-y)-2 C(x+y)-2 C(x-y)-12 C(x) \\
& \quad=\rho\left(4 C\left(x+\frac{y}{2}\right)+4 C\left(x-\frac{y}{2}\right)-C(x+y)-C(x-y)-6 C(x)\right)
\end{aligned}
$$

for all $x, y \in X$. By Lemma 2.1, the mapping $C: X \rightarrow Y$ is cubic, as desired.
Corollary 2.3. Let $\theta \geq 0$ and let $p$ be a real number with $p>3$. Let $X$ be a normed vector space with norm $\|\cdot\|$. Let $f: X \rightarrow Y$ be a mapping satisfying

$$
\begin{align*}
& N(f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-12 f(x)  \tag{2.7}\\
& \left.-\rho\left(4 f\left(x+\frac{y}{2}\right)+4 f\left(x-\frac{y}{2}\right)-f(x+y)-f(x-y)-6 f(x)\right), t\right) \geq \frac{t}{t+\theta\left(\|x\|^{p}+\|y\|^{p}\right)}
\end{align*}
$$

for all $x, y \in X$ and all $t>0$. Then $C(x):=N-\lim _{n \rightarrow \infty} 8^{n} f\left(\frac{x}{2^{n}}\right)$ exists for each $x \in X$ and defines a cubic mapping $C: X \rightarrow Y$ such that

$$
N(f(x)-C(x), t) \geq \frac{2\left(2^{p}-8\right) t}{2\left(2^{p}-8\right) t+\theta\|x\|^{p}}
$$

for all $x \in X$ and all $t>0$.
Proof. The proof follows from Theorem 2.2 by taking $\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in X$.
Theorem 2.4. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\Phi(x, y):=\sum_{j=0}^{\infty} \frac{1}{8^{j}} \varphi\left(2^{j} x, 2^{j} y\right)<\infty
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be a mapping satisfying 2.3). Then $C(x):=N-\lim _{n \rightarrow \infty} \frac{1}{8^{n}} f\left(2^{n} x\right)$ exists for each $x \in X$ and defines a cubic mapping $C: X \rightarrow Y$ such that

$$
N(f(x)-C(x), t) \geq \frac{t}{t+\frac{1}{16} \Phi(x, 0)}
$$

for all $x \in X$ and all $t>0$.
Proof. It follows from (2.5) that

$$
N\left(f(x)-\frac{1}{8} f(2 x), \frac{1}{16} t\right) \geq \frac{t}{t+\varphi(x, 0)}
$$

and so

$$
N\left(f(x)-\frac{1}{8} f(2 x), t\right) \geq \frac{16 t}{16 t+\varphi(x, 0)}=\frac{t}{t+\frac{1}{16} \varphi(x, 0)}
$$

for all $x \in X$ and all $t>0$.
The rest of the proof is similar to the proof of Theorem 2.2 .
Corollary 2.5. Let $\theta \geq 0$ and let $p$ be a real number with $0<p<3$. Let $X$ be a normed vector space with norm $\|\cdot\|$. Let $f: X \rightarrow Y$ be a mapping satisfying 2.7). Then $C(x):=N-\lim _{n \rightarrow \infty} \frac{1}{8^{n}} f\left(2^{n} x\right)$ exists for each $x \in X$ and defines a cubic mapping $C: X \rightarrow Y$ such that

$$
N(f(x)-C(x), t) \geq \frac{2\left(8-2^{p}\right) t}{2\left(8-2^{p}\right) t+\theta\|x\|^{p}}
$$

for all $x \in X$ and all $t>0$.
Proof. The proof follows from Theorem 2.4 by taking $\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in X$.

## 3. Quartic $\rho$-functional inequality (2)

In this section, we solve and investigate the quartic $\rho$-functional inequality (2) in fuzzy Banach spaces.
Lemma 3.1. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& f(2 x+y)+f(2 x-y)-4 f(x+y)-4 f(x-y)-24 f(x)+6 f(y)  \tag{3.1}\\
& \quad=\rho\left(8 f\left(x+\frac{y}{2}\right)+8 f\left(x-\frac{y}{2}\right)-2 f(x+y)-2 f(x-y)-12 f(x)+3 f(y)\right)
\end{align*}
$$

for all $x, y \in X$. Then $f: X \rightarrow Y$ is quartic.

Proof. Letting $y=0$ in (3.1), we get $2 f(2 x)-32 f(x)=0$ and so $f(2 x)=16 f(x)$ for all $x \in X$. Thus

$$
\begin{aligned}
& f(2 x+y)+f(2 x-y)-4 f(x+y)-4 f(x-y)-24 f(x)+6 f(y) \\
& =\rho\left(8 f\left(x+\frac{y}{2}\right)+8 f\left(x-\frac{y}{2}\right)-2 f(x+y)-2 f(x-y)-12 f(x)+3 f(y)\right) \\
& =\frac{\rho}{2}(f(2 x+y)+f(2 x-y)-4 f(x+y)-4 f(x-y)-24 f(x)+6 f(y))
\end{aligned}
$$

and so $f(2 x+y)+f(2 x-y)-4 f(x+y)-4 f(x-y)-24 f(x)+6 f(y)=0$ for all $x, y \in X$.
We prove the Hyers-Ulam stability of the quartic $\rho$-functional inequality (2) in fuzzy Banach spaces.
Theorem 3.2. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\Phi(x, y):=\sum_{j=1}^{\infty} 16^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}\right)<\infty \tag{3.2}
\end{equation*}
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& N(f(2 x+y)+f(2 x-y)-4 f(x+y)-4 f(x-y)-24 f(x)+6 f(y)  \tag{3.3}\\
& \left.-\rho\left(8 f\left(x+\frac{y}{2}\right)+8 f\left(x-\frac{y}{2}\right)-2 f(x+y)-2 f(x-y)-12 f(x)+3 f(y)\right), t\right) \geq \frac{t}{t+\varphi(x, y)}
\end{align*}
$$

for all $x, y \in X$ and all $t>0$. Then $Q(x):=N-\lim _{n \rightarrow \infty} 16^{n} f\left(\frac{x}{2^{n}}\right)$ exists for each $x \in X$ and defines a quartic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
N(f(x)-Q(x), t) \geq \frac{t}{t+\frac{1}{32} \Phi(x, 0)} \tag{3.4}
\end{equation*}
$$

for all $x \in X$ and all $t>0$.
Proof. Letting $y=0$ in (3.3), we get

$$
\begin{equation*}
N(2 f(2 x)-32 f(x), t)=N(32 f(x)-2 f(2 x), t) \geq \frac{t}{t+\varphi(x, 0)} \tag{3.5}
\end{equation*}
$$

and so $N\left(f(x)-16 f\left(\frac{x}{2}\right), \frac{t}{2}\right) \geq \frac{t}{t+\varphi\left(\frac{x}{2}, 0\right)}$ for all $x \in X$. Hence

$$
N\left(f(x)-16 f\left(\frac{x}{2}\right), t\right) \geq \frac{2 t}{2 t+\varphi\left(\frac{x}{2}, 0\right)}=\frac{t}{t+\frac{1}{2} \varphi\left(\frac{x}{2}, 0\right)}
$$

for all $x \in X$. Hence

$$
\begin{align*}
N & \left(16^{l} f\left(\frac{x}{2^{l}}\right)-16^{m} f\left(\frac{x}{2^{m}}\right), t\right)  \tag{3.6}\\
& \geq \min \left\{N\left(16^{l} f\left(\frac{x}{2^{l}}\right)-16^{l+1} f\left(\frac{x}{2^{l+1}}\right), t\right), \cdots, N\left(16^{m-1} f\left(\frac{x}{2^{m-1}}\right)-16^{m} f\left(\frac{x}{2^{m}}\right), t\right)\right\} \\
& =\min \left\{N\left(f\left(\frac{x}{2^{l}}\right)-16 f\left(\frac{x}{2^{l+1}}\right), \frac{t}{16^{l}}\right), \cdots, N\left(f\left(\frac{x}{2^{m-1}}\right)-16 f\left(\frac{x}{2^{m}}\right), \frac{t}{16^{m-1}}\right)\right\} \\
& \geq \min \left\{\frac{\frac{t}{16^{l}}}{\frac{t}{16^{l}}+\frac{1}{2} \varphi\left(\frac{x}{2^{l+1}}, 0\right)}, \cdots, \frac{t}{\frac{t}{16^{m-1}}+\frac{1}{2} \varphi\left(\frac{x}{2^{m}}, 0\right)}\right\} \\
& =\min \left\{\frac{t}{t+\frac{16^{l+1}}{32} \varphi\left(\frac{x}{2^{l+1}}, 0\right)}, \cdots, \frac{t}{t+\frac{16^{m}}{32} \varphi\left(\frac{x}{2^{m}}, 0\right)}\right\} \\
& \geq \frac{t}{t+\frac{1}{32} \sum_{j=l+1}^{m} 16^{j} \varphi\left(\frac{x}{2^{j}}, 0\right)}
\end{align*}
$$

for all nonnegative integers $m$ and $l$ with $m>l$ and all $x \in X$ and all $t>0$. It follows from (3.2) and (3.6) that the sequence $\left\{16^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since $Y$ is complete, the sequence $\left\{16^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
Q(x):=N-\lim _{n \rightarrow \infty} 16^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (3.6), we get (3.4).
By the same method as in the proof of Theorem 2.2, it follows from 3.3) that

$$
\begin{aligned}
& Q(2 x+y)+Q(2 x-y)-4 Q(x+y)-4 Q(x-y)-24 Q(x)+6 Q(y) \\
& =\rho\left(8 Q\left(x+\frac{y}{2}\right)+8 Q\left(x-\frac{y}{2}\right)-2 Q(x+y)-2 Q(x-y)-12 Q(x)+3 Q(y)\right)
\end{aligned}
$$

for all $x, y \in X$. By Lemma 3.1, the mapping $Q: X \rightarrow Y$ is quartic.
Corollary 3.3. Let $\theta \geq 0$ and let $p$ be a real number with $p>4$. Let $X$ be a normed vector space with norm $\|\cdot\|$. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& N(f(2 x+y)+f(2 x-y)-4 f(x+y)-4 f(x-y)-24 f(x)+6 f(y)  \tag{3.7}\\
& \left.-\rho\left(8 f\left(x+\frac{y}{2}\right)+8 f\left(x-\frac{y}{2}\right)-2 f(x+y)-2 f(x-y)-12 f(x)+3 f(y)\right), t\right) \\
& \geq \frac{t}{t+\theta\left(\|x\|^{p}+\|y\|^{p}\right.}
\end{align*}
$$

for all $x, y \in X$ and all $t>0$. Then $Q(x):=N-\lim _{n \rightarrow \infty} 16^{n} f\left(\frac{x}{2^{n}}\right)$ exists for each $x \in X$ and defines $a$ quartic mapping $Q: X \rightarrow Y$ such that

$$
N(f(x)-Q(x), t) \geq \frac{2\left(2^{p}-16\right) t}{2\left(2^{p}-16\right) t+\theta\|x\|^{p}}
$$

for all $x \in X$ and all $t>0$.
Proof. The proof follows from Theorem 3.2 by taking $\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in X$.
Theorem 3.4. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\Phi(x, y):=\sum_{j=0}^{\infty} \frac{1}{16^{j}} \varphi\left(2^{j} x, 2^{j} y\right)<\infty
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and 3.3). Then $Q(x):=N$ $\lim _{n \rightarrow \infty} \frac{1}{16^{n}} f\left(2^{n} x\right)$ exists for each $x \in X$ and defines a quartic mapping $Q: X \rightarrow Y$ such that

$$
N(f(x)-Q(x), t) \geq \frac{t}{t+\frac{1}{32} \Phi(x, 0)}
$$

for all $x \in X$ and all $t>0$.
Proof. It follows from (3.5) that

$$
N\left(f(x)-\frac{1}{16} f(2 x), \frac{1}{32} t\right) \geq \frac{t}{t+\varphi(x, 0)}
$$

and so

$$
N\left(f(x)-\frac{1}{16} f(2 x), t\right) \geq \frac{32 t}{32 t+\varphi(x, 0)}=\frac{t}{t+\frac{1}{32} \varphi(x, 0)}
$$

for all $x \in X$ and all $t>0$.
The rest of the proof is similar to the proof of Theorem 3.2.

Corollary 3.5. Let $\theta \geq 0$ and let $p$ be a real number with $0<p<4$. Let $X$ be a normed vector space with norm $\|\cdot\|$. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and 3.7 . Then $Q(x):=N-\lim _{n \rightarrow \infty} \frac{1}{16^{n}} f\left(2^{n} x\right)$ exists for each $x \in X$ and defines a quartic mapping $Q: X \rightarrow Y$ such that

$$
N(f(x)-Q(x), t) \geq \frac{2\left(16-2^{p}\right) t}{2\left(16-2^{p}\right) t+\theta\|x\|^{p}}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 3.4 by taking $\varphi(x, y):=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in X$.

## Acknowledgments

S. Yun was supported by Hanshin University Research Grant.

## References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.11
[2] T. Bag, S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11 (2003), 687-705. 1 1.1, 1.2, 1.3
[3] T. Bag, S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151 (2005), 513-547.1. 1
[4] I. Chang, Y. Lee, Additive and quadratic type functional equation and its fuzzy stability, Results Math., 63 (2013), 717-730. 1
[5] S. C. Cheng, J. M. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86 (1994), 429-436.1
[6] C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets and Systems, 48 (1992), 239-248. 1
[7] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.1
[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224. 1
[9] K. Jun, H. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274 (2002), 267-278. 1
[10] S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001.1
[11] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12 (1984), 143-154. 1
[12] H. Kim, M. Eshaghi Gordji, A. Javadian, I. Chang, Homomorphisms and derivations on unital C ${ }^{*}$-algebras related to Cauchy-Jensen functional inequality, J. Math. Inequal., 6 (2012), 557-565. 1
[13] H. Kim, J. Lee, E. Son, Approximate functional inequalities by additive mappings, J. Math. Inequal., 6 (2012), 461-471.1
[14] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 336-344.1
[15] S. V. Krishna, K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems, 63 (1994), 207-217. 1
[16] S. Lee, S. Im, I. Hwang, Quartic functional equations, J. Math. Anal. Appl., 307 (2005), 387-394. 1
[17] J. Lee, C. Park, D. Shin, An AQCQ-functional equation in matrix normed spaces, Results Math., 64 (2013), 305-318. 1
[18] A. K. Mirmostafaee, M. Mirzavaziri, M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, 159 (2008), 730-738.1, 1.1, 1, 1.2, 1.3
[19] A. K. Mirmostafaee, M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, 159 (2008), 720-729.1, 1.1, 1.2, 1.3
[20] A. K. Mirmostafaee, M. S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sci., 178 (2008), 3791-3798. $1.1,1.2,1.3$
[21] C. Park, Additive $\rho$-functional inequalities and equations, J. Math. Inequal., 9 (2015), 17-26. 1
[22] C. Park, Additive $\rho$-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal., 9 (2015), 397407. 1
[23] C. Park, K. Ghasemi, S. G. Ghaleh, S. Jang, Approximate n-Jordan *-homomorphisms in $C^{*}$-algebras, J. Comput. Anal. Appl., 15 (2013), 365-368. 1
[24] C. Park, A. Najati, S. Jang, Fixed points and fuzzy stability of an additive-quadratic functional equation, J. Comput. Anal. Appl., 15 (2013), 452-462. 1
[25] C. Park, T. M. Rassias, Fixed points and generalized Hyers-Ulam stability of quadratic functional equations, J. Math. Inequal., 1 (2007), 515-528.1
[26] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. 1
[27] S. Schin, D. Ki, J. Chang, M. Kim, Random stability of quadratic functional equations: a fixed point approach, J. Nonlinear Sci. Appl., 4 (2011), 37-49. 1
[28] S. Shagholi, M. Bavand Savadkouhi, M. Eshaghi Gordji, Nearly ternary cubic homomorphism in ternary Fréchet algebras, J. Comput. Anal. Appl., 13 (2011), 1106-1114. 1
[29] S. Shagholi, M. Eshaghi Gordji, M. Bavand Savadkouhi, Stability of ternary quadratic derivation on ternary Banach algebras, J. Comput. Anal. Appl., 13 (2011), 1097-1105.1
[30] D. Shin, C. Park, Sh. Farhadabadi, On the superstability of ternary Jordan $C^{*}$-homomorphisms, J. Comput. Anal. Appl., 16 (2014), 964-973.1
[31] D. Shin, C. Park, S. Farhadabadi, Stability and superstability of $J^{*}$-homomorphisms and $J^{*}$-derivations for a generalized Cauchy-Jensen equation, J. Comput. Anal. Appl., 17 (2014), 125-134. 1
[32] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, (1960). 1 .
[33] J. Z. Xiao, X. H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets and Systems, 133 (2003), 389-399. 1


[^0]:    *Corresponding author
    Email addresses: baak@hanyang.ac.kr (Choonkill Park), ssyun@hs.ac.kr (Sungsik Yun)

