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Abstract

In this paper, we solve the following cubic ρ-functional inequality

N(f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x) (1)

−ρ
(

4f
(
x+

y

2

)
+ 4f

(
x− y

2

)
− f(x+ y)− f(x− y)− 6f(x)

)
, t) ≥ t

t+ ϕ(x, y)

and the following quartic ρ-functional inequality

N(f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y) (2)

−ρ
(

8f
(
x+

y

2

)
+ 8f

(
x− y

2

)
− 2f(x+ y)− 2f(x− y)− 12f(x) + 3f(y)

)
, t) ≥ t

t+ ϕ(x, y)

in fuzzy normed spaces, where ρ is a fixed real number with ρ 6= 2.
Using the direct method, we prove the Hyers-Ulam stability of the cubic ρ-functional inequality (1) and

the quartic ρ-functional inequality (2) in fuzzy Banach spaces. c©2016 All rights reserved.

Keywords: fuzzy Banach space, cubic ρ-functional inequality, quartic ρ-functional inequality, Hyers-Ulam
stability.
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1. Introduction and preliminaries

Katsaras [11] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure
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on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view
[6, 15, 33]. In particular, Bag and Samanta [2], following Cheng and Mordeson [5], gave an idea of fuzzy
norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [14]. They
established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some
properties of fuzzy normed spaces [3].

We use the definition of fuzzy normed spaces given in [2, 18, 19] to investigate the Hyers-Ulam stability
of cubic ρ-functional inequalities and quartic ρ-functional inequalities in fuzzy Banach spaces.

Definition 1.1 ([2, 18, 19, 20]). Let X be a real vector space. A function N : X × R → [0, 1] is called a
fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c|) if c 6= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1;
(N6) for x 6= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are given in [18].

Definition 1.2 ([2, 18, 19, 20]). Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is said
to be convergent or converge if there exists an x ∈ X such that limn→∞N(xn − x, t) = 1 for all t > 0. In
this case, x is called the limit of the sequence {xn} and we denote it by N -limn→∞ xn = x.

Definition 1.3 ([2, 18, 19, 20]). Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is called
Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such that for all n ≥ n0 and all p > 0, we
have N(xn+p − xn, t) > 1− ε.

It is well-known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each Cauchy
sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector space is
called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is continuous at a
point x0 ∈ X if for each sequence {xn} converging to x0 in X, then the sequence {f(xn)} converges to f(x0).
If f : X → Y is continuous at each x ∈ X, then f : X → Y is said to be continuous on X (see [3]).

The stability problem of functional equations originated from a question of Ulam [32] concerning the
stability of group homomorphisms. Hyers [8] gave a first affirmative partial answer to the question of Ulam
for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by Th. M. Rassias
[26] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Th. M.
Rassias theorem was obtained by Găvruta [7] by replacing the unbounded Cauchy difference by a general
control function in the spirit of Th. M. Rassias’ approach. The stability problems of several functional
equations have been extensively investigated by a number of authors and there are many interesting results
concerning this problem (see [4, 10, 12, 13, 17, 23, 24, 25, 27, 28, 29, 30, 31]).

In [9], Jun and Kim considered the following cubic functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x). (1.1)

It is easy to show that the function f(x) = x3 satisfies the functional equation (1.1), which is called a cubic
functional equation and every solution of the cubic functional equation is said to be a cubic mapping.

In [16], Lee et al. considered the following quartic functional equation

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y). (1.2)

It is easy to show that the function f(x) = x4 satisfies the functional equation (1.2), which is called a quartic
functional equation and every solution of the quartic functional equation is said to be a quartic mapping.
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Park [21, 22] defined additive ρ-functional inequalities and proved the Hyers-Ulam stability of the additive
ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces.

In Section 2, we solve the cubic ρ-functional inequality (1) and prove the Hyers-Ulam stability of the
cubic ρ-functional inequality (1) in fuzzy Banach spaces by using the direct method.

In Section 3, we solve the quartic ρ-functional inequality (2) and prove the Hyers-Ulam stability of the
quartic ρ-functional inequality (2) in fuzzy Banach spaces by using the direct method.

Throughout this paper, assume that ρ is a fixed real number with ρ 6= 2.

2. Cubic ρ-functional inequality (1)

Lemma 2.1. Let f : X → Y be a mapping satisfying

f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x) (2.1)

= ρ
(

4f
(
x+

y

2

)
+ 4f

(
x− y

2

)
− f(x+ y)− f(x− y)− 6f(x)

)
for all x, y ∈ X. Then f : X → Y is cubic.

Proof. Letting y = 0 in (2.1), we get 2f(2x)− 16f(x) = 0 and so f(2x) = 8f(x) for all x ∈ X. Thus

f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)

= ρ
(

4f
(
x+

y

2

)
+ 4f

(
x− y

2

)
− f(x+ y)− f(x− y)− 6f(x)

)
=
ρ

2
(f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x))

and so f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x) = 0 for all x, y ∈ X, as desired.

We prove the Hyers-Ulam stability of the cubic ρ-functional inequality (1) in fuzzy Banach spaces.

Theorem 2.2. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=

∞∑
j=1

8jϕ
( x

2j
,
y

2j

)
<∞ (2.2)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying

N(f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x) (2.3)

−ρ
(

4f
(
x+

y

2

)
+ 4f

(
x− y

2

)
− f(x+ y)− f(x− y)− 6f(x)

)
, t) ≥ t

t+ ϕ(x, y)

for all x, y ∈ X and all t > 0. Then C(x) := N -limn→∞ 8nf
(

x
2n

)
exists for each x ∈ X and defines a cubic

mapping C : X → Y such that

N (f(x)− C(x), t) ≥ t

t+ 1
16Φ(x, 0)

(2.4)

for all x ∈ X and all t > 0.

Proof. Letting y = 0 in (2.3), we get

N(2f(2x)− 16f(x), t) ≥ t

t+ ϕ(x, 0)
(2.5)

and so N
(
f(x)− 8f

(
x
2

)
, t2
)
≥ t

t+ϕ(x
2
,0)

for all x ∈ X. Hence

N
(
f(x)− 8f

(x
2

)
, t
)
≥ 2t

2t+ ϕ
(
x
2 , 0
) =

t

t+ 1
2ϕ
(
x
2 , 0
)
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for all x ∈ X. Hence

N
(

8lf
( x

2l

)
− 8mf

( x

2m

)
, t
)

(2.6)

≥ min
{
N
(

8lf
( x

2l

)
− 8l+1f

( x

2l+1

)
, t
)
, · · · , N

(
8m−1f

( x

2m−1

)
− 8mf

( x

2m

)
, t
)}

= min

{
N

(
f
( x

2l

)
− 8f

( x

2l+1

)
,
t

8l

)
, · · · , N

(
f
( x

2m−1

)
− 8f

( x

2m

)
,

t

8m−1

)}
≥ min

{
t
8l

t
8l

+ 1
2ϕ
(

x
2l+1 , 0

) , · · · , t
8m−1

t
8m−1 + 1

2ϕ
(

x
2m , 0

)}

= min

{
t

t+ 8l+1

16 ϕ
(

x
2l+1 , 0

) , · · · , t

t+ 8m

16 ϕ
(

x
2m , 0

)}
≥ t

t+ 1
16

∑m
j=l+1 8jϕ

(
x
2j
, 0
)

for all nonnegative integers m and l with m > l and all x ∈ X and all t > 0. It follows from (2.2) and
(2.6) that the sequence {8nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
{8nf( x

2n )} converges. So one can define the mapping C : X → Y by

C(x) := N - lim
n→∞

8nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.6), we get (2.4).
By (2.3),

N

(
8n
(
f

(
2x+ y

2n

)
+ f

(
2x− y

2n

)
− 2f

(
x+ y

2n

)
− 2f

(
x− y

2n

)
− 12f

( x
2n

))
−8nρ

(
4f

(
x+ y

2

2n

)
+ 4f

(
x− y

2

2n

)
− f

(
x+ y

2n

)
− f

(
x− y

2n

)
− 6f

( x
2n

))
, 8nt

)
≥≥ t

t+ ϕ
(

x
2n ,

y
2n

)
for all x, y ∈ X, all t > 0 and all n ∈ N. So

N

(
8n
(
f

(
2x+ y

2n

)
+ f

(
2x− y

2n

)
− 2f

(
x+ y

2n

)
− 2f

(
x− y

2n

)
− 12f

( x
2n

))
−8nρ

(
4f

(
x+ y

2

2n

)
+ 4f

(
x− y

2

2n

)
− f

(
x+ y

2n

)
− f

(
x− y

2n

)
− 6f

( x
2n

))
, t

)
≥

t
8n

t
8n + ϕ

(
x
2n ,

y
2n

) =
t

t+ 8nϕ
(

x
2n ,

y
2n

) .
Since limn→∞

t
t+8nϕ( x

2n
, y
2n )

= 1 for all x, y ∈ X and all t > 0,

C(2x+ y) + C(2x− y)− 2C(x+ y)− 2C(x− y)− 12C(x)

= ρ(4C(x+
y

2
) + 4C(x− y

2
)− C(x+ y)− C(x− y)− 6C(x))

for all x, y ∈ X. By Lemma 2.1, the mapping C : X → Y is cubic, as desired.

Corollary 2.3. Let θ ≥ 0 and let p be a real number with p > 3. Let X be a normed vector space with norm
‖ · ‖. Let f : X → Y be a mapping satisfying

N (f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x) (2.7)

−ρ
(

4f
(
x+

y

2

)
+ 4f

(
x− y

2

)
− f(x+ y)− f(x− y)− 6f(x)

)
, t
)
≥ t

t+ θ(‖x‖p + ‖y‖p)
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for all x, y ∈ X and all t > 0. Then C(x) := N -limn→∞ 8nf( x
2n ) exists for each x ∈ X and defines a cubic

mapping C : X → Y such that

N (f(x)− C(x), t) ≥ 2(2p − 8)t

2(2p − 8)t+ θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y) := θ(‖x‖p + ‖y‖p) for all x, y ∈ X.

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑
j=0

1

8j
ϕ
(
2jx, 2jy

)
<∞

for all x, y ∈ X. Let f : X → Y be a mapping satisfying (2.3). Then C(x) := N -limn→∞
1
8n f (2nx) exists

for each x ∈ X and defines a cubic mapping C : X → Y such that

N (f(x)− C(x), t) ≥ t

t+ 1
16Φ(x, 0)

for all x ∈ X and all t > 0.

Proof. It follows from (2.5) that

N

(
f(x)− 1

8
f(2x),

1

16
t

)
≥ t

t+ ϕ(x, 0)

and so

N

(
f(x)− 1

8
f(2x), t

)
≥ 16t

16t+ ϕ(x, 0)
=

t

t+ 1
16ϕ(x, 0)

for all x ∈ X and all t > 0.
The rest of the proof is similar to the proof of Theorem 2.2.

Corollary 2.5. Let θ ≥ 0 and let p be a real number with 0 < p < 3. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be a mapping satisfying (2.7). Then C(x) := N -limn→∞

1
8n f(2nx) exists for

each x ∈ X and defines a cubic mapping C : X → Y such that

N (f(x)− C(x), t) ≥ 2(8− 2p)t

2(8− 2p)t+ θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.4 by taking ϕ(x, y) := θ(‖x‖p + ‖y‖p) for all x, y ∈ X.

3. Quartic ρ-functional inequality (2)

In this section, we solve and investigate the quartic ρ-functional inequality (2) in fuzzy Banach spaces.

Lemma 3.1. Let f : X → Y be a mapping satisfying f(0) = 0 and

f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y) (3.1)

= ρ
(

8f
(
x+

y

2

)
+ 8f

(
x− y

2

)
− 2f (x+ y)− 2f (x− y)− 12f (x) + 3f (y)

)
for all x, y ∈ X. Then f : X → Y is quartic.
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Proof. Letting y = 0 in (3.1), we get 2f(2x)− 32f(x) = 0 and so f(2x) = 16f(x) for all x ∈ X. Thus

f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y)

= ρ
(

8f
(
x+

y

2

)
+ 8f

(
x− y

2

)
− 2f (x+ y)− 2f (x− y)− 12f (x) + 3f (y)

)
=
ρ

2
(f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y))

and so f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y) = 0 for all x, y ∈ X.

We prove the Hyers-Ulam stability of the quartic ρ-functional inequality (2) in fuzzy Banach spaces.

Theorem 3.2. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑
j=1

16jϕ
( x

2j
,
y

2j

)
<∞ (3.2)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

N (f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y) (3.3)

−ρ
(

8f
(
x+

y

2

)
+ 8f

(
x− y

2

)
− 2f (x+ y)− 2f (x− y)− 12f (x) + 3f (y)

)
, t
)
≥ t

t+ ϕ(x, y)

for all x, y ∈ X and all t > 0. Then Q(x) := N -limn→∞ 16nf
(

x
2n

)
exists for each x ∈ X and defines a

quartic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ t

t+ 1
32Φ(x, 0)

(3.4)

for all x ∈ X and all t > 0.

Proof. Letting y = 0 in (3.3), we get

N (2f(2x)− 32f (x) , t) = N (32f (x)− 2f(2x), t) ≥ t

t+ ϕ(x, 0)
(3.5)

and so N
(
f(x)− 16f

(
x
2

)
, t2
)
≥ t

t+ϕ(x
2
,0)

for all x ∈ X. Hence

N
(
f(x)− 16f

(x
2

)
, t
)
≥ 2t

2t+ ϕ
(
x
2 , 0
) =

t

t+ 1
2ϕ
(
x
2 , 0
)

for all x ∈ X. Hence

N
(

16lf
( x

2l

)
− 16mf

( x

2m

)
, t
)

(3.6)

≥ min
{
N
(

16lf
( x

2l

)
− 16l+1f

( x

2l+1

)
, t
)
, · · · , N

(
16m−1f

( x

2m−1

)
− 16mf

( x

2m

)
, t
)}

= min

{
N

(
f
( x

2l

)
− 16f

( x

2l+1

)
,
t

16l

)
, · · · , N

(
f
( x

2m−1

)
− 16f

( x

2m

)
,

t

16m−1

)}
≥ min

{
t

16l

t
16l

+ 1
2ϕ
(

x
2l+1 , 0

) , · · · , t
16m−1

t
16m−1 + 1

2ϕ
(

x
2m , 0

)}

= min

{
t

t+ 16l+1

32 ϕ
(

x
2l+1 , 0

) , · · · , t

t+ 16m

32 ϕ
(

x
2m , 0

)}
≥ t

t+ 1
32

∑m
j=l+1 16jϕ

(
x
2j
, 0
)
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for all nonnegative integers m and l with m > l and all x ∈ X and all t > 0. It follows from (3.2) and
(3.6) that the sequence {16nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
{16nf( x

2n )} converges. So one can define the mapping Q : X → Y by

Q(x) := N - lim
n→∞

16nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (3.6), we get (3.4).
By the same method as in the proof of Theorem 2.2, it follows from (3.3) that

Q(2x+ y) +Q(2x− y)− 4Q(x+ y)− 4Q(x− y)− 24Q(x) + 6Q(y)

= ρ
(

8Q
(
x+

y

2

)
+ 8Q

(
x− y

2

)
− 2Q (x+ y)− 2Q (x− y)− 12Q (x) + 3Q (y)

)
for all x, y ∈ X. By Lemma 3.1, the mapping Q : X → Y is quartic.

Corollary 3.3. Let θ ≥ 0 and let p be a real number with p > 4. Let X be a normed vector space with norm
‖ · ‖. Let f : X → Y be a mapping satisfying f(0) = 0 and

N(f(2x+ y) + f(2x− y)− 4f(x+ y)− 4f(x− y)− 24f(x) + 6f(y) (3.7)

−ρ
(

8f
(
x+

y

2

)
+ 8f

(
x− y

2

)
− 2f (x+ y)− 2f (x− y)− 12f (x) + 3f (y)

)
, t)

≥ t

t+ θ(‖x‖p + ‖y‖p

for all x, y ∈ X and all t > 0. Then Q(x) := N -limn→∞ 16nf( x
2n ) exists for each x ∈ X and defines a

quartic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ 2(2p − 16)t

2(2p − 16)t+ θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.2 by taking ϕ(x, y) := θ(‖x‖p + ‖y‖p) for all x, y ∈ X.

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function such that

Φ(x, y) :=
∞∑
j=0

1

16j
ϕ
(
2jx, 2jy

)
<∞

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (3.3). Then Q(x) := N -
limn→∞

1
16n f (2nx) exists for each x ∈ X and defines a quartic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ t

t+ 1
32Φ(x, 0)

for all x ∈ X and all t > 0.

Proof. It follows from (3.5) that

N

(
f(x)− 1

16
f(2x),

1

32
t

)
≥ t

t+ ϕ(x, 0)

and so

N

(
f(x)− 1

16
f(2x), t

)
≥ 32t

32t+ ϕ(x, 0)
=

t

t+ 1
32ϕ(x, 0)

for all x ∈ X and all t > 0.
The rest of the proof is similar to the proof of Theorem 3.2.
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Corollary 3.5. Let θ ≥ 0 and let p be a real number with 0 < p < 4. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be a mapping satisfying f(0) = 0 and (3.7). Then Q(x) := N -limn→∞

1
16n f(2nx)

exists for each x ∈ X and defines a quartic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ 2(16− 2p)t

2(16− 2p)t+ θ‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.4 by taking ϕ(x, y) := θ(‖x‖p + ‖y‖p) for all x, y ∈ X.
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