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Abstract

Recently Abbas [M. Abbas, Fixed Point Theory, 13 (2012), 3–10] introduced the concept of f−almost
contraction which in turn extended the class of multivalued almost contraction mapping and obtained co-
incidence point results for this new class of mappings. The aim of this paper is to introduce the notion
of dynamic process for generalized (f, L)− almost F−contraction mappings and to obtain coincidence and
common fixed point results for such process. It is worth mentioning that our results do not rely on the com-
monly used range inclusion condition. We provide some examples to support our results. As an application
of our results, we obtain the existence and uniqueness of solutions of dynamic programming and integral
equations. Our results provide extension as well as substantial generalizations and improvements of several
well known results in the existing comparable literature. c©2016 All rights reserved.
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1. Introduction and Preliminaries

Let (X, d) be a metric space. Let CB(X) (CL(X)) be the family of all nonempty closed and bounded
(nonempty closed) subsets of X. For A,B ∈ CL(X) define a set

EA,B = {ε > 0 : A ⊆ Nε(B), B ⊆ Nε(A)}.
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The Hausdorff metric H on CL(X) induced by metric d is given as:

H(A,B) =

{
inf EA,B if EA,B 6= ∅,
∞ if EA,B = ∅.

Let f : X → X and T : X → CL(X). A hybrid pair {f, T} is said to satisfy range inclusion condition if
f(X) ⊆ T (X).

A point x in X is called a fixed point of T if x ∈ Tx. The set of all fixed points of T is denoted by
F (T ). Furthermore, a point x in X is called a coincidence point of f and T if fx ∈ Tx. The set of all such
points is denoted by C(f, T ). If for some point x in X, we have x = fx ∈ Tx, then a point x is called a
common fixed point of f and T. We denote set of all common fixed points of f and T by F (f, T ). A mapping
T : X → CL(X) is said to be continuous at p ∈ X if for any sequence {xn} in X with lim

n→∞
d(xn, p) = 0, we

have lim
n→∞

H(Txn, Tp) = 0.

Let x0 be an arbitrary but fixed element in X. The set

D(f, T, x0) =
{

(fxn)n∈N∪{0} : fxn ∈ Txn−1 for all n ∈ N
}

is called a generalized dynamic process of f and T starting at x0. Note that D(f, T, x0) reduces to dynamic
process of T starting at x0 if f = IX (an identity map on X) [21]. The generalized dynamic process
D(f, T, x0) will simply be written as (fxn). The sequence {xn} for which (fxn) is a generalized dynamic
process is called f iterative sequence of T starting at x0.

Note that, if hybrid pair {f, T} is said to satisfy range inclusion condition, then for any x0 ∈ X,
construction of f iterative sequence of T starting at x0 is immediate and hence D(f, T, x0) is nonemtpy.

There are many situations where D(f, T, x0) is nonempty even the range inclusion condition does not
hold. Following are the examples of such cases:

Example 1.1. Let X = [0,∞). Define f : X → X and T : X → CL(X) by f(x) = 2x, Tx = [1 + x,∞),
respectively. Note that, one can construct several f iterative sequences of T starting at some point x0 ∈ X.

xn =
3

2
(1 + xn−1)

is an f iterative sequence of T starting at 0.

Example 1.2. Let X = [0,∞). Define f : X → X and T : X → CL(X) by f(x) = x2, Tx = [2 + x,∞),
respectively. The sequence {xn}, where

xn =
√
xn−1 + 2

is an f iterative sequence of T starting at a point 0.

Example 1.3. Let X = R. Define f : X → X and T : X → CL(X) by f(x) = x−1
2 and

Tx =

{
[14 ,

x
2 ] when x > 0,

{0} otherwise,

respectively. Define a sequence {xn} by xn = xn−1 + 1. If x0 = 1, then

f(x1) =
1

2
∈ Tx0 = [

1

4
,
1

2
],

f(x2) = 1 ∈ Tx1 = [
1

4
, 1],

f(x3) =
3

2
∈ Tx2 = [

1

4
,
3

2
] and so on.

Here

D(f, T, 1) = {1

2
, 1,

3

2
, 2,

5

2
, ...}

is a generalized dynamic process of f and T starting at x0 = 1.
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Berinde [11] introduced the following concept of a weak contraction mapping.

Definition 1.4 ([11]). Let (X, d) be a metric space. A self mapping f on X is called a weak contraction
if there exist constants θ ∈ (0, 1) and L ≥ 0 such that

d(fx, fy) ≤ θd(x, y) + Ld(y, fx)

holds for every x, y in X.

For more discussion on weak contraction mappings, we refer to [13, 15] and references therein.
Berinde and Berinde [14] extended the notion of weak contraction mappings as follows:

Definition 1.5 ([12, 14]). A mapping T : X → CL(X) is called a multivalued weak contraction if there
exist two constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θd(x, y) + Ld(y, Tx) (1.1)

holds for every x, y in X.

Following definition of a generalized multivalued (θ, L)−strict almost contraction mapping is due to
Berinde [12] .

Definition 1.6 ([12]). A mapping T : X → CL(X) is called generalized multivalued (θ, L)−strict almost
contraction mapping if there exist two constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θd(x, y) + Lmin{d(y, Tx), d(x, Ty), d(x, Tx), d(y, Ty)} (1.2)

holds for every x, y in X.

We have following fixed point theorem in [12].

Theorem 1.7. Let (X, d) be a complete metric space and T : X → CL(X) be a generalized multivalued
(θ, L)−strict almost contraction mapping. Then F (T ) 6= ∅. Moreover, for any p ∈ F (T ), T is continuous at
p.

Kamran [20] extended the notion of a multivalued weak contraction mapping to a hybrid pair {f, T}
of single valued mapping f and multivalued mapping T. For more discussion on multivalued mappings, we
refer to [5, 6, 8, 17, 18, 22] and references therein.

Definition 1.8. Let (X, d) be a metric space and f a self map on X. A multivalued mapping T : X →
CL(X) is called generalized multivalued (f, θ, L)−weak contraction mapping if there exist two constants
θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θd(fx, fy) + Ld(fy, Tx) (1.3)

holds for every x, y in X.

Abbas [1] extended the above definition as follows.

Definition 1.9 ([1]). Let (X, d) be a metric space and f a self map on X. A multivalued mapping
T : X → CL(X) is called generalized multivalued (f, θ, L)−almost contraction mapping if there exist two
constants θ ∈ (0, 1) and L ≥ 0 such that

H(Tx, Ty) ≤ θM(x, y) + LN(x, y) (1.4)

holds for every x, y in X, where

M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty),
d(fx, Ty) + d(fy, Tx)

2
},

N(x, y) = min{d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)}.
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Let z be the collection of all mappings F : R+ → R which satisfy the following conditions:

C1 F is strictly increasing, that is, for all α, β ∈ R+ such that α < β ⇒ F (α) < F (β);

C2 For every sequence {αn}n∈N of positive numbers lim
n→∞

αn = 0 if and only if lim
n→∞

F (αn) = −∞;

C3 There exist k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

Wardowski [27] introduced the following concept of F−contraction mappings.

Definition 1.10 ([27]). Let (X, d) be a metric space. A self map f on X is said to be an F−contraction
on X if there exists τ > 0 such that

d(fx, fy) > 0⇒ τ + F (d(fx, fy)) ≤ F (d(x, y)) (1.5)

for all x, y ∈ X, where F ∈ z.

Remark 1.11 ([27]). Every F−contraction mapping is continuous.

Abbas et al. [2] extended the concept of F− contraction mapping and obtained common fixed point
results. They employed their results to obtain fixed points of a generalized nonexpansive mappings on star
shaped subsets of normed linear spaces. Recently, Minak [23] proved some fixed point results for Ciric type
generalized F− contractions on complete metric spaces.

Sgroi and Vetro [26] proved the following result to obtain fixed point of multivalued mappings as a
generalization of Nadler’s Theorem [24].

Theorem 1.12 ([26]). Let (X, d) be a complete metric space and T : X → CL(X) a multivalued mapping.
Assume that there exists an F ∈ z and τ ∈ R+ such that

2τ + F (H(Tx, Ty)) ≤ F (αd(x, y) + βd(x, Tx) + γd(y, Ty) + δd(x, Ty) + Ld(y, Tx))

for all x, y ∈ X, with Tx 6= Ty, where α, β, γ, δ, L ≥ 0, α + β + γ + 2δ = 1 and γ 6= 1. Then T has a fixed
point.

Acar et al. [3] proved the following result.

Theorem 1.13 ([3]). Let (X, d) be a complete metric space and T : X → K(X) (Compact subsets of X).
Assume that there exist an F ∈ z and τ ∈ R+ such that for any x, y ∈ X, we have

H(Tx, Ty) > 0 =⇒ τ + F (H(Tx, Ty)) ≤ F (M(x, y)),

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2
}.

Then T has a fixed point if T or F is continuous,

Recently, Altun et al. [7] proved the following result.

Theorem 1.14 ([7]). Let (X, d) be a complete metric space and T : X → CB(X). Assume that there exist
an F ∈ z and τ, λ ∈ R+ such that for any x, y ∈ X, we have

H(Tx, Ty) > 0 implies that τ + F (H(Tx, Ty)) ≤ F (d(x, y) + λd(y, Tx)).

Then the mapping T is multivalued weakly Picard operator.

For the definition of multivalued weakly Picard operator and the related results, we refer to [14].
Now, we give the following definition.
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Definition 1.15. Let f be a self map on metric space X and T : X → CL(X) be a multivalued mapping,
then T is called generalized multivalued (f, L)−almost F−contraction mapping if there exist F ∈ z and
τ ∈ R+ and L ≥ 0 such that

2τ + F (H(Tx, Ty)) ≤ F (M(x, y) + LN(x, y)) (1.6)

for every x, y in X, with Tx 6= Ty and

M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty),
d(fx, Ty) + d(fy, Tx)

2
},

N(x, y) = min{d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)}).

Remark 1.16. Take F (x) = lnx in the Definition 1.15. Then (1.6) becomes

2τ + ln(H(Tx, Ty)) ≤ ln(M(x, y) + LN(x, y),

that is,

H(Tx, Ty)) ≤ e−2τM(x, y) + e−2τLN(x, y)

= θ1M(x, y) + L1N(x, y),

where θ1 = e−2τ ∈ (0, 1) and L1 = e−2τL ≥ 0. Thus we obtain the generalized multivalued (f, θ1, L1)−almost
contraction mapping [1].

Remark 1.17. Take α = β = γ =
1

4
, δ =

1

8
= L. Note that α+β+γ+ 2δ = 1. Then a contraction condition

in Theorem 1.12 becomes

2τ + F (H(Tx, Ty)) ≤ F
(

1

4

(
d(x, y) + (d(x, Tx) + d(y, Ty)) +

d(x, Ty) + d(y, Tx)

2

))
≤ F

(
1

4
(4M(x, y))

)
= F ((M(x, y) + 0N(x, y)))

for all x, y ∈ X, with Tx 6= Ty. Thus, for L = 0 and f = IX in

M(x, y) = max{d(fx, fy), d(fx, Tx), d(fy, Ty),
d(fx, Ty) + d(fy, Tx)

2
},

N(x, y) = min{d(fx, fy), d(fx, Tx), d(fy, Ty)},

a contraction condition in Theorem 1.13 is an (f, 0)−almost F−contraction, a special case of generalized
multivalued (f, L)−almost F−contraction (for L = 0 and τ = 2τ1).

Definition 1.18. Let f :X → X and x0 an arbitrary point in X. A multivalued mapping T : X → CL(X) is
called a generalized multivalued (f, L)−almost F−contraction with respect to a generalized dynamic process
D(f, T, x0) if there exist F ∈ z and τ : R+ → R+ is non decreasing and L ≥ 0 such that

∀n∈N d(fxn, fxn+1) > 0⇒ τ (M(xn−1, xn)) + F (d(fxn, fxn+1)) ≤ F (M(xn−1, xn) + LN(xn−1, xn)),

where

M(xn−1, xn) = max{d(fxn−1, fxn), d(fxn−1, Txn−1), d(fxn, Txn),
d(fxn−1, Txn) + d(fxn, Txn−1)

2
,

N(xn−1, xn) = min {d(fxn−1, Txn−1), d(fxn, Txn), d(fxn−1, Txn), d(fxn, Txn−1)}

and lim infs→t+ τ(s) > 0 for all t ≥ 0.
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Remark 1.19. Take F (x) = lnx in the Definition 1.18, we obtain

τ (M(xn−1, xn)) + ln(d(fxn, fxn+1)) ≤ ln(M(xn−1, xn) + LN(xn−1, xn),

that is,

d(fxn, fxn+1) ≤ e−τ(M(xn−1,xn))M(xn−1, xn) + e−τ(M(xn−1,xn))LN(x, y)

= θ2M(xn−1, xn) + L2N(xn−1, xn),

where θ2 = e−τ(M(xn−1,xn)) ∈ (0, 1) and L2 = e−τ(M(xn−1,xn))L ≥ 0. Thus we obtain the generalized multi-
valued (f, L)−almost F−contraction with respect to a dynamic process.

Example 1.20. Consider Example 1.3. Let any two arbitrary points x = 0 and y = 2, we have

M(0, 2) = max{d(f0, f2), d(f0, T0), d(f2, T2),
d(f0, T2) + d(f2, T0)

2
}

= max

{
d(−1

2
,
1

2
), d(−1

2
, 0), d(

1

2
, [

1

4
, 1]),

d(−1
2 , [

1
4 , 1) + d(12 , 0)

2

}
= max{1, 1

2
, 0,

5

8
} = 1

and

N(0, 2) = min{d(f0, T0), d(f2, T2), d(f0, T2), d(f2, T0)}

= min

{
1

2
, 0,

3

4
,
1

2

}
= 0.

Take F (x) = lnx and τ > 0 and L ≥ 0, we get

2τ + F (H(T0, T2)) � F (M(0, 2) + LN(0, 2)),

2τ + ln
1

4
� ln(1).

Hence T is not generalized multivalued (f, L)−almost F−contraction. On the other hand, the contractive
condition is satisfied for every point in the set D(f, T, 1). For example, take 1

2 and 1 in the set D(f, T, 1),
we obtain

M(
1

2
, 1) = max{d(f

1

2
, f1), d(f

1

2
, T

1

2
), d(f1, T1),

d(f 1
2 , T1) + d(f1, T 1

2)

2
}

= max

{
d(−1

4
, 0), d(−1

4
,
1

4
, ), d(0, [

1

4
,
1

2
]),
d(−1

4 , [
1
4 ,

1
2)) + d(0, 14)

2

}
= max{1

4
,
1

2
,
1

4
,
3

8
} =

1

2

and

N(
1

2
, 1) = min{d(f

1

2
, T

1

2
), d(f1, T1), d(f

1

2
, T1), d(f1, T

1

2
)}

= min

{
1

2
,
1

4
,
1

2
,
1

4

}
=

1

4
.

We have

d(f(x2), f(x3)) = d(1,
3

2
) =

1

2
> 0.
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Take F (x) = lnx and τ(t) =

{
− ln(t+ 1

2) for t ∈ (0, 1)
ln 3 for t ∈ [1,∞)

and L = 1,

τ

(
M(

1

2
, 1)

)
+ F (

1

2
) ≤ F (M(

1

2
, 1) + LN(

1

2
, 1)),

τ

(
1

2

)
+ F (

1

2
) ≤ F (

1

2
+ 1.

1

4
),

− ln 1 + ln
1

2
≤ ln

3

4
.

Hence T is a generalized multivalued (f, L)−almost F−contraction with respect to a generalized dynamic
process D(f, T, 1).

Example 1.21. Let X = [0, 1] and d be the usual metric on X. Define f : X → X and T : X → CL(X)

by f(x) =

{
0 if x ∈

[
0, 34
)

1 otherwise
and Tx =

{
[0, x2 ] if x ∈ (0, 1]
[1, 2] if x = 0

. Then, for any two points x = 0 and y = 1,

we have

M(0, 1) = max{d(f0, f1), d(f0, T0), d(f1, T1),
d(f0, T1) + d(f1, T0)

2
}

= max

{
d(0, 1), d(0, [1, 2]), d(1,

[
0,

1

2

]
),
d(0,

[
0, 12
]
) + d(1, [1, 2])

2

}
= max{1, 1, 1

2
, 0} = 1

and

N(0, 1) = min{d(f0, T0), d(f1, T1), d(f0, T1), d(f1, T0)}

= min

{
d(0, [1, 2]), d(1,

[
0,

1

2

]
), d(0,

[
0,

1

2

]
), d(1, [1, 2])

}
= min{1, 1

2
, 0, 0} = 0.

Consequently, contractive condition is not satisfied,

2τ + F (H(T0, T1)) � F (M(0, 1) + LN(0, 1)).

Take F (x) = lnx and τ > 0 and L ≥ 0

2τ + ln
1

2
� ln 1

and hence T is not generalized multivalued (f, L)−almost F−contraction.

2. Main Results

Throughout this section, we assume that the mapping F is right continuous. In the sequel, we will
consider only the dynamic processes (fxn) satisfying the following condition:

(D) For any n in N, d(fxn, fxn+1) > 0⇒ d(fxn−1, fxn) > 0.

If dynamic processes (fxn) does not satisfy property (D), then there exists n0 ∈ N such that
d(fxn0 , fxn0+1) > 0 and d(fxn0−1, fxn0) = 0 which implies that fxn0−1 = fxn0 ∈ Txn0−1, that is, the
set of coincidence point of hybrid pair (f, T ) is nonempty. Under suitable conditions on hybrid pair (f, T ),
one obtains the existence of common fixed point of (f, T ).
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Theorem 2.1. Let x0 be an arbitrary point in X and T : X → CL(X) a generalized multivalued (f, L)-
almost F - contraction with respect to dynamic process D(f, T, x0). Then C(f, T ) 6= φ provided that f(X)
is complete and F is continuous or T is closed multivalued mapping. Moreover F (f, T ) 6= ∅ if one of the
following conditions holds:
(a) for some x ∈ C(f, T ), f is T - weakly commuting at x, f2x = fx.
(b) f(C(f, T )) is a singleton subset of C(f, T ).

Proof. Let x0 be a given point in X. Since T is generalized multivalued (f, L)- almost F - contraction with
respect to dynamic process D(f, T, x0), so we have

τ(M(xn−1, xn)) + F (d(fxn, fxn+1)) ≤ F (M(xn−1, xn) + LN(xn−1, xn)),

which implies that

F (d(fxn, fxn+1))

≤ F (max{d(fxn−1, fxn), d(fxn−1, Txn−1), d(fxn, Txn),
d(fxn−1, Txn) + d(fxn, Txn−1)

2
}

+ Lmin {d(fxn−1, Txn−1), d(fxn, Txn), d(fxn−1, Txn), d(fxn, Txn−1)})

− τ(max{d(fxn−1, fxn), d(fxn−1, Txn−1), d(fxn, Txn),
d(fxn−1, Txn) + d(fxn, Txn−1)

2
)

≤ F (max{d(fxn−1, fxn), d(fxn−1, fxn), d(fxn, fxn+1),
d(fxn−1, fxn+1) + d(fxn, fxn)

2
}

+ Lmin{d(fxn−1, fxn), d(fxn, fxn+1), d(fxn−1, fxn+1), d(fxn, fxn)})

− τ(max{d(fxn−1, fxn), d(fxn−1, fxn), d(fxn, fxn+1),
d(fxn−1, fxn+1) + d(fxn, fxn)

2
)

≤ F (max{d(fxn−1, fxn), d(fxn, fxn+1),
d(fxn−1, fxn+1) + d(fxn, fxn)

2
})

− τ(max{d(fxn−1, fxn), d(fxn, fxn+1),
d(fxn−1, fxn+1) + d(fxn, fxn)

2
})

= F (max{d(fxn−1, fxn), d(fxn, fxn+1)})− τ(max{d(fxn−1, fxn), d(fxn, fxn+1)}).

So we have a sequence {xn} in X such that fxn+1 ∈ Txn ⊆ T (X) and it satisfies:

F (d(fxn, fxn+1)) ≤ F (max{d(fxn−1, fxn), d(fxn, fxn+1)})
− τ(max {d(fxn−1, fxn), d(fxn, fxn+1)})

(2.1)

for all n ∈ N. As F is strictly increasing, so we have

d(fxn, fxn+1) < max{d(fxn−1, fxn), d(fxn, fxn+1)}.

If
max{d(fxn−1, fxn), d(fxn, fxn+1) = d(fxn, fxn+1)

for some n, then
d(fxn, fxn+1) < d(fxn, fxn+1)

gives a contradiction and hence we have

d(fxn, fxn+1) < d(fxn−1, fxn). (2.2)

Consequently,
τ(d(fxn−1, fxn)) + F (d(fxn, fxn+1)) ≤ F (d(fxn−1, fxn)) (2.3)
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for all n ∈ N. By given assumption on τ, there exists b > 0 and n ∈ N such that τ (d(xn, xn+1)) > b for all
n > n0. Thus, we obtain that

F (d(fxn, fxn+1)) ≤ F (d(fxn−1, fxn))− τ(d(fxn−1, fxn))

≤ F (d(fxn−2, fxn−1))− τ(d(fxn−2, fxn−1))− τ(d(fxn−1, fxn))

...

≤ F (d(fx0, fx1))− τ(d(fx0, fx1))− · · · − τ(d(fxn−1, fxn))

= F (d(fx0, fx1))− (τ(d(fx0, fx1)) + · · ·+ τ(d(fxn0−1, fxn0)))

− (τ(d(fxn0 , fxn0+1)) + · · ·+ τ(d(fxn−1, fxn)))

≤ F (d(fx0, fx1))− (n− n0) b.

On taking limit as n → ∞, we have lim
n→∞

F (d (fxn, fxn+1)) = −∞. By (C2), lim
n→∞

d (fxn, fxn+1) = 0. By

(C3), there exists an r ∈ (0, 1) such that

lim
n→∞

{d (fxn, fxn+1)}r F (d (fxn, fxn+1)) = −∞.

Hence it follows that

{d (fxn, fxn+1)}r F (d (fxn, fxn+1))− {d (fxn, fxn+1)}r F (d (fx0, fx1))

≤ d (fxn, fxn+1)
r [F (d (fx0, fx1)− (n− n0) b)]− d (xn, xn+1)

r F (d (fx0, fx1))

= − (n− n0) b [d (fxn, fxn+1)]
r ≤ 0.

On taking limit as n tends to ∞, we obtain that lim
n→∞

n {d (fxn, fxn+1)}r = 0, that is,

lim
n→∞

n1/rd (fxn, fxn+1) = 0.

This implies that
∞∑
n=1

d (fxn, fxn+1) is convergent and hence the sequence {fxn} is a Cauchy sequence in

f(X). There is p ∈ f(X) such that lim
n→∞

fxn = p. Suppose that u∗ is in X such that fu∗ = p. Now we claim

that fu∗ ∈ Tu∗. If not, then d(fu∗, Tu∗) > 0 as Tu∗ is closed. Since F is strictly increasing, we deduce from
Definition 1.15 that

H(Txn, Tu
∗) < M(xn, u

∗) + LN(xn, u
∗)

for all n ∈ N. Therefore

d(fxn+1, Tu
∗) ≤ H(Txn, Tu

∗) < M(xn, u
∗) + LN(xn, u

∗).

Since from condition (C1), we have

τ(M(xn, u
∗)) + F (d(fxn+1, Tu

∗)) ≤ F (M(xn, u
∗) + LN(xn, u

∗))

for all n ∈ N. Next suppose that F is continuous. Since

lim
n→∞

d(fxn, Tu
∗) = d(fu∗, Tu∗),

we deduce that
lim
n→∞

M(xn, u
∗) = d(fu∗, Tu∗).

Moreover
lim
n→∞

N(xn, u
∗) = 0,
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so, by continuity of F,
τ(d(fu∗, Tu∗)) + F (d(fu∗, Tu∗)) ≤ F (d(fu∗, Tu∗))

which provides a contradiction. We conclude that d(fu∗, Tu∗) = 0 and thus fu∗ ∈ Tu∗.
Now let (a) holds, that is for x ∈ C(f, T ), f is T−weakly commuting at x. So we get f2x ∈ Tfx.

By the given hypothesis fx = f2x and hence fx = f2x ∈ Tfx. Consequently fx ∈ F (f, T ). (b) Since
f(C(f, T )) = {x} ( say ) and x ∈ C(f, T ), this implies that x = fx ∈ Tx. Thus F (f, T ) 6= ∅.

Example 2.2. Let X = [1,∞) be the usual metric space. Define f : X → X, τ : R+ −→ R+and

T : X → CL(X) by fx = x2 and Tx = [x + 2,∞) for all x ∈ X and τ(t) =

{
− ln t for t ∈ (0, 1)
ln 3 for t ∈ [1,∞)

and

F (t) = ln(t) for all t > 0. Note that f(X) is complete. It is easy to check that for all x, y ∈ X with Tx 6= Ty
(equivalently with x 6= y), one has

τ(M(x, y)) + F (H(Tx, Ty)) ≤ F (M(x, y) + LN(x, y)).

So we can apply Theorem 2.1.

3. Applications

In this section, we discuss applications of our main result. We obtain the existence and uniqueness
of common solution of system of functional equations in dynamical programing and the existence and
uniqueness of common solution of system of integral equations.

(1) Application to functional equations in dynamic programming:

Decision space and a state space are two basic components of dynamic programming problem. State
space is a set of states including initial states, action states and transitional states. So a state space is
set of parameters representing different states. A decision space is the set of possible actions that can be
taken to solve the problem. These general settings allow us to formulate many problems in mathematical
optimization and computer programming. In particular, the problem of dynamic programming related to
multistage process reduces to the problem of solving functional equations

p(x) = sup
y∈D
{g(x, y) +G1(x, y, p(ξ(x, y)))} for x ∈W, (3.1)

q(x) = sup
y∈D
{g′(x, y) +G2(x, y, q(ξ(x, y)))} for x ∈W, (3.2)

where U and V are Banach spaces, W ⊆ U and D ⊆ V and

ξ : W ×D −→W,

g, g′ : W ×D −→ R,
G1, G2 : W ×D × R −→ R.

For more details on dynamic programming we refer to [9, 10, 16, 25]. Suppose that W and D are the state
and decision spaces respectively. We aim to give the existence and uniqueness of common and bounded
solution of functional equations given in (3.1) and (3.2). Let B(W ) denotes the set of all bounded real
valued functions on W . For an arbitrary h ∈ B(W ), define ‖h‖ = supx∈W |h(x)| . Then (B(W ), ‖·‖) is a
Banach space endowed with the metric d defined as

d(h, k) = sup
x∈W
|hx− kx| . (3.3)

Suppose that the following conditions hold:
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(C1) : G1, G2, g and g′ are bounded.
(C2) : For x ∈W , h ∈ B(W ) and b > 0, define

Kh(x) = supy∈D{g(x, y) +G1(x, y, h(ξ(x, y)))}, (3.4)

Jh(x) = supy∈D{g′(x, y) +G2(x, y, h(ξ(x, y)))}. (3.5)

Moreover assume that τ : R+ → R+ and L ≥ 0 such that for every (x, y) ∈W ×D, h, k ∈ B(W ) and t ∈W
implies

|G1(x, y, h(t))−G1(x, y, k(t))| ≤ e−τ(t)[M(h(t), k(t)) + LN(h(t), k(t))], (3.6)

where

M((h(t), k(t)) = max{d(Jh(t), Jk(t)), d(Jk(t),Kk(t)), d(Jh(t),Kh(t)),

d(Jh(t),Kk(t)) + d(Jk(t),Kh(t))

2
},

N((h(t), k(t)) = min{d(h(t),Kh(t)), d(k(t),Kk(t)), d(h(t),Kk(t)), d(k(t),Kh(t))}.

(C3) : For any h ∈ B(W ), there exists k ∈ B(W ) such that for x ∈W

Kh(x) = Jk(x).

(C4) : There exists h ∈ B(W ) such that

Kh(x) = Jh(x) implies that JKh(x) = KJh(x).

Theorem 3.1. Assume that the conditions (C1)−(C4) are satisfied. If J(B(W )) is a closed convex subspace
of B(W ), then the functional equations (3.1) and (3.2) have a unique, common and bounded solution.

Proof. Note that (B(W ), d) is a complete metric space. By (C1), J,K are self-maps of B(W ). The condition
(C3) implies that K(B(W )) ⊆ J(B(W )). It follows from (C4) that J and K commute at their coincidence
points. Let λ be an arbitrary positive number and h1, h2 ∈ B(W ). Choose x ∈W and y1, y2 ∈ D such that

Khj < g(x, yj) +G1(x, yj , hj(xj) + λ, (3.7)

where xj = ξ(x, yj), j = 1, 2. Further from (3.4) and (3.5), we have

Kh1 ≥ g(x, y2) +G1(x, y2, h1(x2)), (3.8)

Kh2 ≥ g(x, y1) +G1(x, y1, h2(x1)). (3.9)

Then (3.7) and (3.9) together with (3.6) imply

Kh1(x)−Kh2(x) < G1(x, y1, h1(x1))−G1(x, y1, h2(x2)) + λ

≤ |G1(x, y1, h1(x1))−G1(x, y1, h2(x2))|+ λ

≤ e−τ(t)(M((h(t), k(t)) + LN(h(t), k(t))) + λ.

(3.10)

Then (3.7) and (3.8) together with (3.6) imply

Kh2(x)−Kh1(x) ≤ G1(x, y1, h2(x2))−G1(x, y1, h1(x1))

≤ |G1(x, y1, h1(x1))−G1(x, y1, h2(x2))|
≤ e−τ(t)(M((h(t), k(t)) + LN(h(t), k(t))).

(3.11)

From (3.10) and (3.11), we have

|Kh1(x)−Kh2(x)| ≤ e−τ(t)(M((h(t), k(t)) + LN(h(t), k(t))). (3.12)
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The Inequality (3.12) implies

d(Kh1(x)−Kh2(x)) ≤ e−τ(t)[(M((h(t), k(t)) + LN(h(t), k(t)))], (3.13)

τ(t) + ln[d(Kh1(x)−Kh2(x))] ≤ ln[(M((h(t), k(t)) + LN(h(t), k(t)))]. (3.14)

Therefore by Theorem 2.1, the pair (K,J) has a common fixed point h∗, that is, h∗(x) is unique, bounded
and common solution of (3.1) and (3.2).

(2) Application to system of integral equations:

Now we discuss an application of fixed point theorem we proved in the previous section in solving the
system of Volterra type integral equations. Such system is given by the following equations:

u(t) =

t∫
0

K1(t, s, u(s))ds+ g(t), (3.15)

w(t) =

t∫
0

K2(t, s, w(s))ds+ f(t) (3.16)

for t ∈ [0, a], where a > 0. We find the solution of the system (3.15) and (3.16). Let C([0, a],R) be
the space of all continuous functions defined on [0, a]. For u ∈ C([0, a],R), define supremum norm as
‖u‖τ = sup

t∈[0,a]
{u(t)e−τ(t)t}, where τ : R+ → R+ is taken as a function. Let C([0, a],R) be endowed with the

metric
dτ (u, v) = sup

t∈[0,a]
‖ |u(t)− v(t)| e−τ(t)t‖τ (3.17)

for all u, v ∈ C([0, a],R). With these setting C([0, a],R, ‖ · ‖τ ) becomes Banach space.
Now we prove the following theorem to ensure the existence of solution of system of integral equations.

For more details on such applications we refer the reader to [4, 19].

Theorem 3.2. Assume the following conditions are satisfied:

(i) K1,K2 : [0, a]× [0, a]× R→ R and f, g : [0, a]→ R are continuous;

(ii) Define

Tu(t) =

t∫
0

K1(t, s, u(s))ds+ g(t),

Su(t) =

t∫
0

K2(t, s, u(s))ds+ f(t).

Suppose there exist τ : R+ → R+ and L ≥ 0such that

|K1(t, s, u)−K1(t, s, v)| ≤ τ(t)e−τ(t)[M(u, v) + LN(u, v)]

for all t, s ∈ [0, a] and u, v ∈ C([0, a],R), where

M(u, v) = max{|Su(t)− Sv(t)| , |Sv(t)− Tv(t)| , |Su(t)− Tu(t)| , |Su(t)− Tv(t)|+ |Sv(t)− Tu(t)|
2

},

N(u, v) = min{|u(t)− Tu(t)| , |v(t)− Tv(t)| |u(t)− Tv(t)| , |v(t)− Tu(t)|};
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(iii) there exists u ∈ C([0, a],R) such that Tu(t) = Su(t) implies TSu(t) = STu(t).

Then the system of integral equations given in (3.15) and (3.16) has a solution.

Proof. By assumption (iii)

|Tu(t)− Tv(t)| =
t∫

0

|K1(t, s, u(s)−K1(t, s, v(s)))| ds

≤
t∫

0

τ(t)e−τ(t)([M(u, v) + LN(u, v)]e−τ(t)s)eτ(t)sds

≤
t∫

0

τ(t)e−τ(t)‖M(u, v) + LN(u, v)‖τeτ(t)sds

≤ τ(t)e−τ(t)‖M(u, v) + LN(u, v)‖τ

t∫
0

eτ(t)sds

≤ τ(t)e−τ(t)‖M(u, v) + LN(u, v)‖τ
1

τ(t)
eτ(t)t

≤ e−τ(t)‖M(u, v) + LN(u, v)‖τeτ(t)t.

This implies
|Tu(t)− Tv(t)| e−τ(t)t ≤ e−τ(t)‖M(u, v) + LN(u, v)‖τ .

That is
‖Tu(t)− Tv(t)‖τ ≤ e−τ(t)‖M(u, v) + LN(u, v)‖τ ,

which further implies
τ(t) + ln ‖Tu(t)− Tv(t)‖τ ≤ ln ‖M(u, v) + LN(u, v)‖τ .

So all the conditions of Theorem 2.1 are satisfied. Hence the system of integral equations given in (3.15)
and (3.16) has a unique common solution.
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