

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

β_1 -paracompact spaces

Heyam Hussain AlJarrah

Department of Mathematics, Faculty of Science, Yarmouk University, Irbid, Jordan.

Communicated by W. Shatanawi

Abstract

We introduce the class of β_1 -paracompact spaces in topological spaces and give characterizations of such spaces. We study subsets and subspaces of β_1 -paracompact spaces and discuss their properties. Also, we investigate the invariants of β_1 -paracompact spaces by functions. (C)2016 All rights reserved.

Keywords: Paracompact, β_1 -paracompact, β -open set, locally finite collection. 2010 MSC: 54A05, 54D20, 54C10, 54G05.

1. Introduction and preliminaries

Throughout this work a space will always mean a topological space with no separation axioms assumed, unless otherwise stated. If (X, τ) is a given space, then Int(A) and Cl(A) denotes the interior of A and the closure of A, respectively in (X,τ) . Let (X,τ) be a space and A a subset of X. A subset A is said to be preopen [16] (resp., semi-open [13], α -open [18], regular open [21]) if $A \subset Int(Cl(A))$ (resp., $A \subset Cl(Int(A))$, $A \subset Int(Cl(Int(A))), A = Int(Cl(A)))$. The family of α -sets of a space (X, τ) , denoted by τ^{α} , forms a topology on X, finer than τ [18]. For a space (X, τ) , if (X, τ^{α}) is normal, then $\tau = \tau^{\alpha}$ [10].

In 1983, Abd El-Monsef et al. [1] introduced and studied the concept of β -open sets in topological spaces. They define a subset A of a space (X, τ) is said to be β -open if $A \subset Cl(Int(Cl(A)))$. The complement of a β -open set is said to be β -closed [1]. The collection of all β -open (resp., β -closed) subsets of X is denoted by $\beta O(X,\tau)$ (resp., $\beta C(X,\tau)$). The union of all β -open sets of X contained in A is called β -interior of A and is denoted by $\beta Int(A)$ and the intersection of all β -closed sets of X containing A is called the β -closure of A and is denoted by $\beta Cl(A)$. A set A is called β -regular [20] if it is both β -open and β -closed. A space (X, τ) is said to be β -regular [2] if for each β -open set U and each $x \in U$, there exists a β -open set V such that $x \in V \subseteq \beta Cl(V) \subseteq U$. For any space, one has $\beta O(X, \tau^{\alpha}) = \beta O(X, \tau)$ [4]. A collection $\Im = \{F_{\alpha} : \alpha \in \Delta\}$ of

^{*}Corresponding author

Email address: hiamaljarah@yahoo.com (Heyam Hussain AlJarrah)

subsets of a space (X, τ) is said to be locally finite if for each $x \in X$, there exists an open set U containing x and U intersects at most finitely many members of \Im .

A space (X, τ) is said to be paracompact if every open cover of X has a locally finite open refinement. α -paracompact [5] (resp., P_1 -paracompact [15], S_1 -paracompact [3]) spaces are defined by replacing the open cover in original definition by α -open (resp., preopen, semiopen) cover. A subset A of space X is said to be N-closed relative to X (briefly, N-closed) [9] if for every cover $\{U_\alpha : \alpha \in \Delta\}$ of A by open sets of X, there exists a finite subfamily Δ_\circ of Δ such that $A \subset \bigcup \{Int(Cl(U_\alpha)) : \alpha \in \Delta_\circ\}$. In [11], it was shown that every compact T₂-space is regular.

In this paper, we follow a similar line and introduce β_1 -paracompact spaces by utilizing the β -open cover. We provide several characterizations of β_1 -paracompact spaces and study subsets and subspaces of β_1 -paracompact spaces and discuss their properties. Finally, we investigate the invariants of β_1 -paracompact spaces by functions.

Now we recall some known definitions, lemmas, and theorems, which will be used in the work.

Theorem 1.1 ([17]). Let (X, τ) be a space, $A \subset Y \subset X$ and $Y \beta$ -open in (X, τ) . Then A is β -open in (X, τ) if and only if A is β -open in the subspace (Y, τ_Y) .

Definition 1.2. A space (X, τ) is said to be α -paracompact [5] (resp., P_1 -paracompact [15], S_1 -paracompact[3]), if every α -open (resp., preopen, semiopen) cover of X has a locally finite open refinement.

Lemma 1.3 ([6]). The union of a finite family of locally finite collection of sets in a space is a locally finite family of sets.

Theorem 1.4 ([7]). If $\{\mathcal{U}_{\alpha} : \alpha \in \Delta\}$ is a locally finite family of subsets in a space X and if $\mathcal{V}_{\alpha} \subset \mathcal{U}_{\alpha}$ for each $\alpha \in \Delta$, then the family $\{\mathcal{V}_{\alpha} : \alpha \in \Delta\}$ is a locally finite in X.

Lemma 1.5 ([12]). If $f : (X, \tau) \to (Y, \sigma)$ is a continuous surjective function and $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ is locally finite in Y, then $f^{-1}(\mathcal{U}) = \{f^{-1}(U_{\alpha}) : \alpha \in \Delta\}$ is locally finite in X.

Lemma 1.6 ([19]). Let $f : (X, \tau) \to (Y, \sigma)$ be almost closed surjection with N-closed point inverse. If $\{U_{\alpha} : \alpha \in \Delta\}$ is a locally finite open cover of X, then $\{f(U_{\alpha}) : \alpha \in \Delta\}$ is a locally finite cover of Y.

2. β_1 -paracompact spaces

L

In this section we introduce and study a new class of spaces, namely β_1 -paracompact spaces, and we provide several characterizations of them.

Definition 2.1. A space (X, τ) is called β_1 -paracompact if every β -open cover of X has a locally finite open refinement.

The following diagram shows the relations among the mentioned properties.

$$\beta_1$$
-paracompact $\rightarrow P_1$ -paracompact $\rightarrow \alpha$ -paracompact \rightarrow paracompact \nearrow
 S_1 -paracompact

The converses need not be true as shown by the following examples.

Example 2.2. Let $X = \mathbb{R}$ with the topology $\tau = \{\phi, X, \{1\}\}$. Then (X, τ) is paracompact but it is not β_1 -paracompact, since $\{\{1, x\} : x \in X\}$ is a β -open cover of X which admits no locally finite open refinement.

Example 2.3. Let $X = \{1, 2, 3\}$ with the topology $\tau = \{\phi, X, \{1\}, \{2, 3\}\}$. Then (X, τ) is S_1 -paracompact since $SO(X, \tau) = \tau$, but it is not β_1 -paracompact since $\{\{1\}, \{2\}, \{3\}\}$ is a β -open cover of X which admits no locally finite open refinement.

Example 2.4. Let $X = \{1, 2, 3\}$ with the topology $\tau = \{\phi, X, \{1\}, \{2\}, \{1, 2\}\}$. Then (X, τ) is P_1 -paracompact since $PO(X, \tau) = \tau$ but it is not β_1 -paracompact since $\{\{1, 2\}, \{2, 3\}\}$ is a β -open cover of X which admits no locally finite open refinements.

Theorem 2.5. If (X, τ) is a β_1 -paracompact T_1 -space, then $\tau = \beta O(X, \tau) = \tau^{\alpha}$.

Proof. Let U be a β -open set in (X, τ) . For each $x \in U$, we have $\mathcal{U} = \{U\} \cup \{X - \{x\}\}\)$ is a β -open cover for (X, τ) and so it has a locally finite open refinement $\mathcal{V} = \{V_{\alpha} : \alpha \in \Delta\}$. Since \mathcal{V} is a refinement of \mathcal{U} and $x \in U$, there exist an $\alpha_{\circ} \in \Delta$ such that $x \in V_{\alpha_{\circ}} \subseteq U$ where $V_{\alpha_{\circ}}$ is open and so U is open. Now, we know that $\tau \subset \tau^{\alpha} \subset \beta O(X, \tau)$ and we show $\tau = \beta O(X, \tau)$, so $\tau = \tau^{\alpha}$.

The proof of the following corollary follows immediately from Definition 2.1 and Theorem 2.5.

Corollary 2.6. Let (X, τ) be a T_1 -space. Then (X, τ) is β_1 -paracompact if and only if (X, τ) is paracompact and $\tau = \beta O(X, \tau)$.

Recall that, a space (X, τ) is said to be extremally disconnected (briefly e.d.) if the closure of every open set in (X, τ) is open.

Proposition 2.7. Let (X, τ) be a β_1 -paracompact space. Then:

- i. If (X, τ) is T_1 , then it is extremally disconnected.
- ii. If (X, τ) is T_2 , then it is β -regular.

Proof. i) Let U be an open set in (X, τ) ; then Cl(U) is a β -open set and by Theorem 2.5, Cl(U) is an open set in (X, τ) .

ii) Let U be a β -open set in (X, τ) and $x \in U$. By Theorem 2.5, U is an open set. Since (X, τ) is regular, there exists an open set V such that $x \in V \subseteq Cl(V) \subset U$. Thus $x \in V \subseteq \beta Cl(V) \subseteq U$. It follows that (X, τ) is β -regular.

Theorem 2.8. Let (X, τ) be a space. Then:

- i. If (X, τ^{α}) is β_1 -paracompact, then (X, τ) is paracompact.
- ii. If (X, τ) is β_1 -paracompact, then (X, τ^{α}) is β_1 -paracompact; the converse true if the space is T_2 .

Proof. i) Let \mathcal{U} be an open cover of (X, τ) . Then \mathcal{U} is an open cover of the β_1 -paracompact space (X, τ^{α}) and so it has a locally finite open refinement \mathcal{V} in (X, τ^{α}) . Now for every $V \in \mathcal{V}$, choose $U_V \in \mathcal{U}$ such that $V \subseteq U_V$. One can easily show that the collection $\{U_V \cap Int(Cl(Int(V))) : V \in \mathcal{V}\}$ is a locally finite open refinement of \mathcal{U} in (X, τ) .

ii) Let \mathcal{U} be a β -open cover of (X, τ^{α}) . Then \mathcal{U} is a β -open cover of the β_1 -paracompact space (X, τ) and so it has a locally finite open refinement \mathcal{V} in (X, τ) . Since $\tau \subseteq \tau^{\alpha}$, then \mathcal{V} is a locally finite open refinement of \mathcal{U} in (X, τ^{α}) and so (X, τ^{α}) is β_1 -paracompact. To prove the converse, let (X, τ^{α}) be β_1 -paracompact. Then (X, τ^{α}) is a paracompact T_2 -space and so it is normal [11]. Therefore, $\tau = \tau^{\alpha}$.

The following examples show that the converse of (i) in the above theorem need not be true in general and the condition T_2 on the space (X, τ) in (ii) is essential.

Example 2.9. Let (X, τ) be as in Example 2.4. Then (X, τ) is paracompact, but (X, τ^{α}) is not β_1 -paracompact.

Example 2.10. Let $X = \{1, 2, 3\}$ and $\tau = \{\phi, X, \{1\}\}$. Then $\tau^{\alpha} = \{\phi, X, \{1\}, \{1, 2\}, \{1, 3\}\} = \beta O(X, \tau^{\alpha})$. Therefore (X, τ^{α}) is a β_1 -paracompact space. On the other hand, (X, τ) is not β_1 -paracompact since $\{\{1, 2\}, \{1, 3\}\}$ is a β -open cover of (X, τ) which admits no locally finite open refinement.

Theorem 2.11. If each β -open cover of a space (X, τ) has an open σ -locally finite refinement, then each β -open cover of X has a locally finite refinement.

Proof. Let \mathcal{U} be a β -open cover of X. Let $\mathcal{V} = \bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ be an open σ -locally finite refinement of \mathcal{U} where \mathcal{V}_n is locally finite. For each $n \in \mathbb{N}$ and each $V \in \mathcal{V}_n$, let $\mathcal{V}'_n = \mathcal{V} - \bigcup_{k \prec n} \mathcal{V}^*_k$ where $\mathcal{V}^*_k = \bigcup \{V : V \in \mathcal{V}_k\}$ and put $\mathcal{V}'_n = \{V'_n : V \in \mathcal{V}_n\}$. Now, put $\mathcal{W} = \{V'_n : n \in \mathbb{N}, V \in \mathcal{V}_n\} = \bigcup \{\mathcal{V}'_n : n \in \mathbb{N}\}$. We show that \mathcal{W} is a locally finite refinement of \mathcal{U} . Let $x \in X$ and let n be the first positive integer such that $x \in \mathcal{V}^*_n$. Therefore $x \in V'$ for some $V' \in \mathcal{V}'_n$. Thus \mathcal{W} is a cover of X. To show that \mathcal{W} is locally finite, let $x \in X$ and n be the first positive integer such that $x \in \mathcal{V}^*_n$. Then $x \in V$ for some $V \in \mathcal{V}_n$. Now, $V \cap V' = \phi$ for each $V' \in \mathcal{V}_k$ and for each $k \succ n$. Therefore, V can intersect at most the elements of \mathcal{V}'_k for $k \leq n$. Since \mathcal{V}'_k is locally finite for each $k \leq n$, so we choose an open set $O_{x(k)}$ containing x such that $O_{x(k)}$ meets at most finitely many members of \mathcal{V}'_k . Finally, put $O_x = V \cap (\bigcap_{k=1}^n O_{x(k)})$. Then O_x is an open set containing x such that O_x meets at most finitely many members of \mathcal{W} .

Theorem 2.12. Let (X, τ) be a β -regular space. If each β -open cover of the space X has a locally finite refinement, then each β -open cover of X has a locally finite β -closed refinement.

Proof. Let \mathcal{U} be a β -open cover of X. For each $x \in X$, pick a $U_x \in \mathcal{U}$ such that $x \in U_x$. Since (X, τ) is β -regular, there exits a β -open set V_x such that $x \in V_x \subset \beta Cl(V_x) \subset U_x$. The family $\mathcal{V} = \{V_x : x \in X\}$ is a β -open cover of X and so has a locally finite refinement $\mathcal{W} = \{W_\alpha : \alpha \in \Delta\}$. The collection $\beta Cl(\mathcal{W}) = \{\beta Cl(W_\alpha) : \alpha \in \Delta\}$ is locally finite for each $\alpha \in \Delta$; if $W_\alpha \subset V_\alpha$, then $\beta Cl(W_\alpha) \subset U^*$ for some $U^* \in \mathcal{U}$. Thus $\beta Cl(\mathcal{W})$ is a β -closed locally finite refinement of \mathcal{U} .

Theorem 2.13. If (X, τ) is β -regular space, then the following are equivalent:

i. (X, τ) is β_1 -paracompact.

ii. Each β -open cover of X has a σ -locally finite open refinement.

iii. Each β -open cover of X has a locally finite refinement.

iv. Each β -open cover of X has a locally finite β -closed refinement, provided that the space (X, τ) is e.d.

Proof. The proof follows from Theorems 2.11 and 2.12.

3. properties of β_1 -paracompact spaces

In this section we study some basic properties of β_1 -paracompact spaces related to their subsets, subspaces, sums, images, and inverse images under some types of functions.

Definition 3.1. A subset A of a space (X, τ) is called a β_1 -paracompact set in (X, τ) if every cover of A by β -open subset of (X, τ) has a locally finite open refinement in (X, τ) , and A is called β_1 -paracompact if (A, τ_A) is a β_1 -paracompact space.

Theorem 3.2. If A and B are β_1 -paracompact relative to a space (X, τ) , then $A \cup B$ is β_1 -paracompact relative to X.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a β -open cover of $A \cup B$. Then $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ is a β -open cover of A and B. So, there exist open locally finite families $V_A = \{V_{\alpha'} : \alpha' \in \Delta_1\}$ of A and $V_B = \{V_{\alpha''} : \alpha'' \in \Delta_1\}$ of B which refines \mathcal{U} such that $A \subset \bigcup_{\alpha' \in \Delta_1} V_{\alpha'}$ and $B \subset \bigcup_{\alpha'' \in \Delta_1} V_{\alpha''}$. Now $A \cup B \subset \bigcup_{\alpha', \alpha'' \in \Delta} (V_{\alpha'} \cup V_{\alpha''}) = \mathcal{V}$. By Lemma 1.3, \mathcal{V} is a locally finite open refinement of \mathcal{U} . Therefore, $A \cup B$ is β_1 -paracompact relative to X.

Theorem 3.3. Let A and B be subsets of a space (X, τ) . If A is β_1 -paracompact relative to X and B is β -closed in X, then $A \cap B$ is β_1 -paracompact relative to X.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta_{\circ}\}$ be a cover of $A \cap B$ such that U_{α} is β -open in (X, τ) . Since X - B is β -open in $X, \mathcal{U}_1 = \{U_{\alpha} : \alpha \in \Delta_{\circ}\} \cup \{X - B\}$ is a β -open cover of A. So, there exists a locally finite open family $\mathcal{V}_1 = \{V_{\alpha'} : \alpha' \in \Delta_1\} \cup V$ ($V_{\alpha'} \subset U_{\alpha}$ and $V \subset X - B$) which refines \mathcal{U}_1 such that $A \subset \bigcup_{\alpha'} \{V_{\alpha'} \mid \alpha' \in \Delta_1\} \cup V$. Now $A \subset \bigcup_{\alpha'} \{V_{\alpha'} \mid \alpha' \in \Delta_1\} \cup V$ implies that $A \cap B \subset (\bigcup_{\alpha'} \{V_{\alpha'} \mid \alpha' \in \Delta_1\} \cup V) \cap B \subseteq \bigcup_{\alpha'} \{V_{\alpha'} \mid \alpha' \in \Delta_1\} \cup V$. Take $\mathcal{V} = \{V_{\alpha'} \mid \alpha' \in \Delta_1\}$. Then \mathcal{V} is a locally finite open family which refines \mathcal{U} . Hence $A \cap B$ is β_1 -paracompact relative to X.

Definition 3.4 ([8]). A subset A of a space (X, τ) is called βg -closed if $\beta Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is any β -open set in (X, τ) .

Theorem 3.5. Let (X, τ) be a β_1 -paracompact space and $A \subseteq X$. Then:

- i. If A is regular open, then (A, τ_A) is β_1 -paracompact.
- ii. If A is a $g\beta$ -closed set, then A is a β_1 -paracompact set in (X, τ) .

Proof. i) Let $\mathcal{V} = \{V_{\alpha} : \alpha \in \Delta\}$ be a β -open cover of A in (A, τ_A) . Since A is open in (X, τ) , by Theorem 1.1, V_{α} is a β -open set in (X, τ) for each $\alpha \in \Delta$. Therefore, the collection $\mathcal{U} = \{V_{\alpha} : \alpha \in \Delta\} \cup \{X - A\}$ is a β -open cover of the β_1 -paracompact space (X, τ) and so it has a locally finite open refinement in (X, τ) , say $\mathcal{W} = \{W_{\alpha'} : \alpha' \in \Delta_1\}$. Now the collection $\{A \cap \mathcal{W}_{\alpha'} : \alpha' \in \Delta_1\}$ is an open refinement of \mathcal{V} in (A, τ_A) . Therefore, (A, τ_A) is β_1 -paracompact.

ii) Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a cover of A by β -open subsets of (X, τ) . Since $A \subseteq \bigcup \{U_{\alpha} : \alpha \in \Delta\}$ and A is βg -closed, we have $\beta Cl(A) \subseteq \cup \{U_{\alpha} : \alpha \in \Delta\}$. For each $x \notin \omega \beta Cl(A)$, there exists a β -open set W_x of (X, τ) such that $A \cap W_x = \phi$. Put $\mathcal{U}' = \{U_{\alpha} : \alpha \in \Delta\} \cup \{W_x : x \notin \beta Cl(A)\}$. Then \mathcal{U}' is a β -open cover of the β_1 -paracompact space (X, τ) . Let $\mathcal{H} = \{\mathcal{H}_{\alpha'} : \alpha' \in \Delta_1\}$ be a locally finite open refinement of \mathcal{U}' and put $\mathcal{H}_u = \{H_{\alpha'} : H_{\alpha'} \subseteq U_{\alpha(\alpha')}, \alpha' \in \Delta_1 \text{ and } \alpha(\alpha') \in \Delta\}$. Then \mathcal{H}_u is a locally finite open refinement of \mathcal{U} . Therefore A is a β_1 -paracompact set.

Theorem 3.6. Let A and B be subsets of a space (X, τ) such that $A \subset B \subset X$:

i. If A is β₁-paracompact relative to X and B is β-open in (X, τ), then A is β₁-paracompact relative to B.
ii. If A is β₁-paracompact relative to B and B is open in (X, τ), then A is β₁-paracompact relative to X.

Proof. i) Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta_{\circ}\}$ be a cover of A such that U_{α} is β -open in (B, τ_B) . Since B is β -open in (X, τ) , by Theorem 1.1, \mathcal{U} is a β -open cover of A in (X, τ) . So, there exist a locally finite open family $\mathcal{V}_{\alpha'} = \{V_{\alpha'} : \alpha' \in \Delta_1\}$ which refines \mathcal{U} such that $A \subset \bigcup \{V_{\alpha'} : \alpha' \in \Delta_1\}$. Then $A \cap B \subset \{V_{\alpha'} \cap B : \alpha' \in \Delta_1\}$. Let $x \in B$. Since $\mathcal{V} = \{V_{\alpha'} : \alpha' \in \Delta_1\}$ is locally finite in X, there exists an open set W in (X, τ) such that $W \cap V_{\alpha'} = \phi$ for each $\alpha' \neq \alpha'_1, \alpha'_2, \ldots, \alpha'_n$, which implies $(W \cap V_{\alpha'}) \cap B = \phi$ for $\alpha' \neq \alpha'_1, \alpha'_2, \ldots, \alpha'_n$, which implies $(V_{\alpha'} \cap B) \cap (W \cap B) = \phi$ for $\alpha' \neq \alpha'_1, \alpha'_2, \ldots, \alpha'_n$. Therefore, the family $\mathcal{V}_1 = \{V_{\alpha'} \cap B : \alpha' \in \Delta_1\}$ is a locally finite open refinement of \mathcal{U} in (B, τ_B) . Therefore, A is β_1 -paracompact relative to B.

ii) Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a cover of A by β -open subsets of (X, τ) . Then the collection $\mathcal{W} = \{B \cap U_{\alpha} : \alpha \in \Delta\}$ is a β -open cover of A in (B, τ_B) . But A is a β_1 -paracompact set in (B, τ_B) , so \mathcal{W} has a locally finite open refinement \mathcal{V} in (B, τ_B) . Since B is open in (X, τ) , by Theorem 1.1, \mathcal{V} is a locally finite open refinement in (X, τ) and so A is a β_1 -paracompact set in (X, τ) .

Corollary 3.7. Let A and B be subsets of a space (X, τ) . If A is β_1 -paracompact relative to (X, τ) and B is β -regular, then the following hold:

- i. $A \cap B$ is β_1 -paracompact relative to B.
- ii. B is β_1 -paracompact relative to X, provided that $B \subset A$.

Proof. i) Let A be β_1 -paracompact relative to X and B a β -regular set in (X, τ) . By Theorem 3.3, $A \cap B$ is β_1 -paracompact relative to X. Since $A \cap B \subset B$ and B is β -open in (X, τ) , by Theorem 3.6, $A \cap B$ is β_1 -paracompact relative to B.

ii) Since $B \subset A$ and B is a β -regular set, by Theorem 3.3, B is β_1 -paracompact relative to X.

Theorem 3.8. Let A be a clopen subspace of a space (X, τ) . Then A is a β_1 -paracompact set if and only if it is β_1 -paracompact.

Proof. To prove necessity, let A be an open β_1 -paracompact subset of (X, τ) . Let $\mathcal{V} = \{V_\alpha : \alpha \in \Delta\}$ be a cover of A by β -open subsets of the subspace (A, τ_A) . Since A is open, \mathcal{V} is a cover of A by β -open subsets of (X, τ) and so it has a locally finite open refinement, say \mathcal{W} , in (X, τ) . Then $\mathcal{W}_A = \{W \cap A : W \in \mathcal{W}\}$ is

a locally finite open refinement of \mathcal{V} in (A, τ_A) and the result follows.

To prove sufficiency, let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a cover of A by β -open subsets of (X, τ) . Then $\mathcal{U}' = \{A \cap U_{\alpha} : \alpha \in \Delta\}$ is a β -open cover of the β_1 -paracompact subspace (A, τ_A) and so it has a locally finite open refinement \mathcal{W} in (A, τ_A) . But A is an open set in (X, τ) , so \mathcal{W} is an open set for every $\mathcal{W} \in \mathcal{W}$. Now $\tau_A \subseteq \tau$ and X - A is an open set in (X, τ) which intersects no member of \mathcal{W} . Therefore \mathcal{W} is locally finite in (X, τ) . Thus A is a β_1 -paracompact set. \Box

Corollary 3.9. Every clopen subspace of a β_1 -paracompact space is β_1 -paracompact.

Definition 3.10 ([11]). Let $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Delta\}$ be a collection of topological spaces such that $X_{\alpha} \cap X_{\beta} = \phi$ for each $\alpha \neq \beta$. Let $X = \bigcup_{\alpha \in \Delta} X_{\alpha}$ be topologized by $\tau = \{G \subseteq X : G \cap X_{\alpha} \in \tau_{\alpha}, \alpha \in \Delta\}$. Then (X, τ) is called the sum of space $\{(X_{\alpha}, \tau_{\alpha}) : \alpha \in \Delta\}$ and we write $X = \bigoplus_{\alpha \in \Delta} X_{\alpha}$.

Theorem 3.11. The topological sum $X = \bigoplus_{\alpha \in \Delta} X_{\alpha}$ is β_1 -paracompact if and only if the space $(X_{\alpha}, \tau_{\alpha})$ is β_1 -paracompact, for each $\alpha \in \Delta$.

Proof. Necessity follows from Corollary 3.9, since $(X_{\alpha}, \tau_{\alpha})$ is a clopen subspace of the space $\bigoplus_{\alpha \in \Delta} X_{\alpha}$, for each $\alpha \in \Delta$.

To prove sufficiency, let \mathcal{U} be a β -open cover of $\bigoplus_{\alpha \in \Delta} X_{\alpha}$. For each $\alpha \in \Delta$ the family $\mathcal{U}_{\alpha} = \{U \cap X_{\alpha} : U \in \mathcal{U}\}$ is a β -open cover of the β -paracompact space $(X_{\alpha}, \tau_{\alpha})$. Therefore \mathcal{U}_{α} has a locally finite open refinement \mathcal{V}_{α} in $(X_{\alpha}, \tau_{\alpha})$. Put $\mathcal{V} = \bigcup_{\alpha \in \Delta} \mathcal{V}_{\alpha}$. It is clear that \mathcal{V} is a locally finite open refinement of \mathcal{U} . Thus $\bigoplus_{\alpha \in \Delta} X_{\alpha}$ is β_1 -paracompact.

Recall that a function $f: (X, \tau) \to (Y, \sigma)$ is said to be β -continuous [1] (resp., β -irresolute [14]) if $f^{-1}(V)$ is β -open in (X, τ) for each open (resp., β -open) set V in (Y, σ) .

Theorem 3.12. Let $f: (X, \tau) \to (Y, \sigma)$ be an open, β -irresolute and almost closed surjective function with N-closed point inverse. If (X, τ) is β_1 -paracompact, then (Y, σ) is also β_1 -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta_{\circ}\}$ be a β -open cover of (Y, σ) . Since f is β -irresolute, $\mathcal{U}_1 = \{f^{-1}(U_{\alpha}) : \alpha \in \Delta_{\circ}\}$ is a β -open cover of (X, τ) . So, there exist a locally finite open refinement, say \mathcal{W} . Since f is open and by Lemma 1.6, $f(\mathcal{W})$ is a locally finite open refinement of \mathcal{V} in (Y, σ) .

Since compact sets are N-closed and closed maps are almost closed, the following corollary follows from Theorem 3.12.

Corollary 3.13. Let $f : (X, \tau) \to (Y, \sigma)$ be an open, β -continuous, closed surjective function with compact point inverse. If (X, τ) is β_1 -paracompact, then (Y, σ) is also β_1 -paracompact.

A function $f: (X, \tau) \to (Y, \sigma)$ is said to be strongly β -continuous if the inverse image of each β -open set in (Y, σ) is an open set in (X, τ) .

Theorem 3.14. Let $f : (X, \tau) \to (Y, \sigma)$ be an open, strongly β -continuous, almost closed, surjective function with N-closed point inverse. If (X, τ) is paracompact, then (Y, σ) is β_1 -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta_{\circ}\}$ be a β -open cover of Y. Since f is strongly β -continuous, $\mathcal{U}_1 = \{f^{-1}(U_{\alpha}) : \alpha \in \Delta\}$ is an open cover of X. Hence, there exists a locally finite open refinement \mathcal{W} of \mathcal{U}_1 . Since f is open and by Lemma 1.6, $f(\mathcal{W})$ is a locally finite open refinement of \mathcal{U} . Therefore, (Y, σ) is β_1 -paracompact. \Box

Recall that a function $f: (X, \tau) \to (Y, \sigma)$ is said to be β -open [1] (resp., β -closed [1]) if f(V) is a β -open (resp., β -closed) set in (Y, σ) for each β -open (resp., β -closed) set V in (X, τ) .

Proposition 3.15 ([1]). A function $f : (X, \tau) \to (Y, \sigma)$ is β -closed if and only if for each $x \in X$ and each β -open set U in (X, τ) containing x, there exists a β -open set V in (Y, σ) containing f(x) such that $f(x) \in V$ and $f^{-1}(V) \subseteq U$.

Theorem 3.16. Let $f : (X, \tau) \to (Y, \sigma)$ be a continuous β -closed surjective function with compact point inverse. If (Y, σ) is a β_1 -paracompact space, then (X, τ) is β_1 -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$ be a β -open cover of X. For each $y \in Y$ and for each $x \in f^{-1}(y)$, choose an $\alpha(x) \in \Delta$ such that $x \in U_{\alpha(x)}$. Therefore the collection $\{U_{\alpha(x)} : x \in f^{-1}(y)\}$ is a β -open cover of $f^{-1}(y)$ and so there exists a finite subset $\Delta(y)$ of Δ such that $f^{-1}(y) \subseteq \bigcup_{\alpha(x) \in \Delta(y)} U_{\alpha(x)} = U_y$. But f is β -closed, so by Proposition 3.15, there exists a β -open set V_y in (Y, σ) such that $y \in V_y$ and $f^{-1}(V_y) \subseteq U_y$. Thus $\mathcal{V} = \{V_y : y \in Y\}$ is a β -open cover of Y and so it has a locally finite open refinement, say, $\mathcal{W} = \{W_{\alpha'} : \alpha' \in \Delta_o\}$. Since f is continuous, the family $\{f^{-1}(W_{\alpha'}) : \alpha' \in \Delta_o\}$ is an open locally finite cover of X such that for every $\alpha' \in \Delta_o$, we have $f^{-1}(W_{\alpha'}) \subseteq U_y$ for some $y \in Y$. Now, the family $\{f^{-1}(W_{\alpha'}) \cap U_{\alpha(x)} : \alpha' \in \Delta_o, \alpha(x) \in \Delta(y)\}$ is an open locally finite refinement of \mathcal{U} . Therefore (X, τ) is β_1 -paracompact.

Theorem 3.17. Let $f: (X, \tau) \to (Y, \sigma)$ be a β -open, continuous, bijective function. If A is β_1 -paracompact relative to Y, then $f^{-1}(A)$ is β_1 -paracompact relative to X.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta_{\circ}\}$ be a β -open cover of A in (X, τ) . Since f is β -open, $\mathcal{U}_1 = \{f(U_{\alpha}) : \alpha \in \Delta_{\circ}\}$ is a β -open cover of A in (Y, σ) . So, there exists a locally finite open refinement of \mathcal{U}_1 , say \mathcal{V}_1 . Since f is continuous, by Lemma 1.5, $\mathcal{V} = f^{-1}(\mathcal{V}_1)$ is an open locally finite refinement of \mathcal{U} . Therefore, $f^{-1}(A)$ is β_1 -paracompact relative to X.

Acknowledgements

The authors are grateful to the referees for useful suggestions which improved the contents of the paper.

References

- M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, β-open sets and β-continuous mapping, Bull. Fac. Sci. Assint Univ., 12 (1983), 77–90.1, 3, 3, 3.15
- [2] M. E. Abd El-Monsef, A. N. Geaisa, R. A. Mahmoud, β-regular spaces, Proc. Math. Phys. Soc. Egypt, 60 (1985), 47–52.1
- [3] K. Al-Zoubi, A. Rawashdeh, S₁-paracompact spaces, Acta Univ. Apulensis Math. Inform., 26 (2011), 105–112.1, 1.2
- [4] D. Andrijević, Semi-preopen sets, Mat. Vesn., 38 (1986), 24–32.1
- [5] F. G. Arenas, J. Cao, J. Dontchev, M. L. Puertas, Some covering properties of the α -topology, arXiv, preprint math/9810072, (1998).1, 1.2
- [6] A. V. Arkhangelski, V. I. Ponomarev, Fundamentals of General Topology Problems and Exercises, Hindustan, India, (1984). 1.3
- [7] N. Bourbaki, General Topology, Hermann Addison Wesley, Massachusets, (1966).1.4
- [8] M. Caldas, S. Jafari, Weak and strong forms of β -irresolutess, Arab. J. Sci. Eng., **31** (2006), 31–39.3.4
- [9] D. Carnahan, Locally nearly-compact spaces, Boll. Un. Mat. Ital., 6 (1972), 146–153.1
- [10] J. Dontchev, An answer to a question of Mršević and Reilly, Quest. Answers Gen. Topology, 12 (1994), 205–207.
 1
- [11] R. Engelking, General Topology, Helderman, the University of Michigan, (1989).1, 2, 3.10
- [12] T. R. Hamlett, D. Janković, On almost paracompact and para-H-closed spaces, Quest. Answers Gen. Topology, 11 (1993), 139–143.1.5
- [13] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.1
- [14] R. A. Mahmoud, M. E. Abd El-Monsef, β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci., 27 (1990), 285–296.3
- [15] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deed, On pre-topological spaces, Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér., 28 (1984), 39–45.1, 1.2
- [16] A. S. Mashhour, M. E. El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.1
- [17] G. B. Navalagi, Semi-precontinuous functions and properties of generalized semi-preclosed sets in topological spaces, Int. J. Math. Math. Sci., 29 (2002), 85–98.1.1
- [18] O. Njåstad, On some classes of nearly open sets, Pac. J. Math., 15 (1965), 961–970.1
- [19] T. Noiri, Completely continuous image of nearly paracompact space, Mat. Vesn., 29 (1977), 59-64.1.6
- [20] T. Noiri, Weak and strong forms of β -irressolute functions, Acta Math. Hungar., 99 (2003), 315–328.1
- [21] M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 375–481.1