
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 1735–1747

Research Article

A research on the some properties and distribution
of zeros for Stirling polynomials

Jung Yoog Kang∗, Cheon Seoung Ryoo

Department of Mathematics, Hannam University, Daejeon 306-791, Korea.

Communicated by R. Saadati

Abstract

We find some identities of the Stirling polynomials and relations between these polynomials and other
numbers and polynomials such as generalized Bernoulli numbers. We also display some properties and
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1. Introduction

Research on the Bernoulli, Euler, and Genocchi polynomials, has been actively conducted by many
mathematicians. Ira Gessel, R. P. Stanley, A. Erdel and S. Roman introduced the Stirling polynomials, and
these polynomials are continuously researched by many mathematicians (see [5, 6, 7, 9, 10, 11, 13, 14, 15, 16]).
Recently, Qi constructed the differentiable of various polynomials that are related to the Stirling polynomials
and Ryoo discovered the properties of zeros in the Stirling polynomials(see [6, 9, 10]).

Definition 1.1. For nonnegative integers n, the Stirling polynomials are defined by

∞∑
n=0

Sn(x)
tn

n!
=

(
t

1− e−t

)x+1

, |t| < 2π.
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From Definition 1.1, we know the relations between these polynomials and the Stirling numbers of the
first and second kinds.

Theorem 1.2 ([2, 3, 8, 11, 12, 15]). Let m ∈ N0 ∪ {−1}. Then we have

Sn(−m) =
(−1)k(
n+m−1

n

)S(n+m− 1,m− 1),

where S(m,n) is the Stirling numbers of the second kind.

Sn(m) =
(−1)k(
m
n

) s(m+ 1,m+ 1− n),

where s(m,n) is the Stirling numbers of the first kind.

Theorem 1.3. Explicit representations involving Stirling polynomials can be deduced with Lagrange’s in-
terpolation formula:

Sn(x) = n!

n∑
j=0

(−1)n−j
n∑

m=j

(
x+m

m

)(
m

j

)
L
(−n−j)
n+m (−j),

where L
(α)
n are Laguerre polynomials. We also can note that Sn(0) = (−1)nBn, where Bn are the Bernoulli

numbers (see [4, 5, 7]).
The first seven Stirling polynomials are (see [9]):

S0(x) = 1,

S1(x) =
1

2
(1 + x) ,

S2(x) =
1

12

(
2 + 5x+ 3x2

)
,

S3(x) =
1

8

(
x+ 2x2 + x3

)
,

S4(x) =
1

240

(
−8− 18x+ 5x2 + 30x3 + 15x4

)
,

S5(x) =
1

96

(
−6x− 13x2 − 5x3 + 5x4 + 3x5

)
,

S6(x) =
1

4032

(
96 + 236x− 84x2 − 539x3 − 315x4 + 63x5 + 63x6

)
.

The Stirling polynomials are a family of polynomials with important applications in the branch of
mathematics dealing with combinatorics, number theory and numerical analysis. This paper is organized as
follows. In Section 2, we investigate some basic properties of Stirling polynomials and find some relations
between Stirling polynomials and various numbers and polynomials. In Section 3, we study some properties
of zeros for Stirling polynomials from Newton’s method. In section 4, we find distribution of fixed point for
Stirling polynomials by using iterating map.

2. Some properties of the Stirling polynomials

In this section, from the definition of the Stirling polynomials, we find some basic properties of these
polynomials, such as the recurrence formula and addition theorem. We also investigate the relations between
the Stirling polynomials, the generalized Bernoulli numbers and Euler polynomials of the second kind.

Theorem 2.1. Let x ∈ N0 ∪ {−1}. Then we have

x∑
k=0

(
x

k

)
(−1)k (S(x− 1)− k)n =

{
n! if n = x
0 if n 6= x

.



J. Y. Kang, C. S. Ryoo, J. Nonlinear Sci. Appl. 9 (2016), 1735–1747 1737

Proof. When x ∈ N0 ∪ {−1}, we can express the Definition 1.1 as follows.

∞∑
n=0

Sn(x)
tn

n!
(1− e−t)x+1 = tx+1.

From the binomial formula, we can find

∞∑
n=0

x+1∑
k=0

(
x+ 1

k

)
(−1)k (Sn(x)− k)n

tn

n!
= tx+1.

Therefore, we complete the proof of Theorem 2.1.

Theorem 2.2. For integers n ≥ 0, we obtain

Sn(x+ y) =
1

n+ 1

(
n∑
l=0

l∑
m=0

(
l + 1

m

)(
n+ 1

l + 1

)
(−1)l−mSm(x)Sn−l(y)

)
.

Proof. From the generating function, we have

∞∑
n=0

Sn(x+ y)
tn

n!
=

(
1− e−t

t

)(
t

1− e−t

)x+y+2

.

We can transform the above equation as follows.

∞∑
n=0

Sn(x+ y)
tn+1

n!
= (1− e−t)

(
t

1− e−t

)x+1( t

1− e−t

)y+1

.

We can note that

1− e−t =

∞∑
n=0

(−1)n
tn+1

(n+ 1)!
. (2.1)

From equation (2.1), we find

∞∑
n=0

(n+ 1)Sn(x+ y)
tn+1

(n+ 1)!
=

∞∑
n=0

(−1)n
tn+1

(n+ 1)!

∞∑
n=0

Sn(x)
tn

n!

∞∑
n=0

Sn(y)
tn

n!

=
∞∑
n=0

n∑
m=0

(
n+ 1

m

)
(−1)n−mSm(x)

tn+1

(n+ 1)!

∞∑
n=0

Sn(y)
tn

n!

=

∞∑
n=0

(
n∑
l=0

l∑
m=0

(
l + 1

m

)(
n+ 1

l + 1

)
(−1)l−mSm(x)Sn−l(y)

)
tn+1

(n+ 1)!
.

By comparing the coefficients of both sides in the above equation, we can complete Theorem 2.2.

Theorem 2.3. For any nonnegative integer n, one has

(i) Sn(x) = (x+ 1− S(x))n ,

(ii) Sn(x− 1) = 1
n+1

(∑n
m=0

∑m
l=0

(
m+1
l

)(
n+1
m+1

)
(−1)m−nxlSn−m(x)

)
,

(iii) let x ≤ n and x ∈ N0 ∪ {−1}. Then(
n

x

)
(−1)n−xx!Sn(−x+ 1) =

x−1∑
k=0

(
x− 1

k

)
(−1)x−1−kkn.
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Proof. From Definition 1.1, we can obtain the following equation by substituting t with −t.
∞∑
n=0

Sn(x)
(−t)n

n!
=

(
te−t

1− e−t

)x+1

=
∞∑
n=0

(−1)n(x+ 1)n
tn

n!

∞∑
n=0

Sn(x)
tn

n!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
Sk(x)(−1)n−k(x+ 1)n−k

)
tn

n!
.

Since
(−1)nSn(x) = (S(x)− (x+ 1))n ,

we complete Theorem 2.3 (i). From now on, we will find Theorem 2.3 (ii). By substituting t and x with −t
and x− 1 respectively, we can find

∞∑
n=0

Sn(x− 1)
(−t)n

n!
=

(
1− e−t

te−t

)
e−t(x+1)

(
t

1− e−t

)x+1

.

From the above equation, we can investigate the below equation.

∞∑
n=0

(−1)nSn(x− 1)
tn+1

n!
=
(
1− e−t

)
e−tx

(
t

1− e−t

)x+1

=
∞∑
n=0

n∑
l=0

(
n+ 1

l

)
(−1)nxl

tn+1

(n+ 1)!

∞∑
n=0

Sn(x)
tn

n!

=
∞∑
n=0

(
n∑

m=0

m∑
l=0

(
m+ 1

l

)(
n+ 1

m+ 1

)
(−1)mxlSn−m(x)

)
tn+1

(n+ 1)!
.

The left side of the above equation is transformed as follows:

∞∑
n=0

(−1)nSn(x− 1)
tn+1

n!
=
∞∑
n=0

(n+ 1)(−1)nSn(x− 1)
tn+1

(n+ 1)!
.

From coefficient comparison method, we derive the following equation.

(n+ 1)(−1)nSn(x− 1) =
n∑

m=0

m∑
l=0

(
m+ 1

l

)(
n+ 1

m+ 1

)
(−1)mxlSn−m(x).

Hence, we finish the proof of Theorem 2.3 (ii).
We also obtain the below equation by substituting t and x with −t and −x, respectively.

∞∑
n=0

Sn(−x)
(−t)n

n!
=

(
−t

1− et

)−x+1

=

(
et − 1

t

)x−1
.

When x belongs to nonnegative integers containing −1, we find that

∞∑
n=0

(−1)nSn(−x)
tn+x−1

n!
=
(
et − 1

)x−1
=

x−1∑
k=0

(
x− 1

k

)
(−1)x−1−ketk

=

∞∑
n=0

(
x−1∑
k=0

(
x− 1

k

)
(−1)x−1−kkn

)
tn

n!
.
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From the above equation, we can transform such as in the following equation.

∞∑
n=0

(−1)nSn(−x− 1)
tn+x

n!
=

∞∑
n=0

(
x∑
k=0

(
x

k

)
(−1)x−kkn

)
tn

n!
.

By calculating both sides in the above equation, we have

∞∑
n=x

(
n

x

)
(−1)n−xx!Sn(−x− 1)

tn

n!
=

∞∑
n=0

(
x−1∑
k=0

(
x− 1

k

)
(−1)x−1−kkn

)
tn

n!
.

Therefore, the proof of Theorem 2.3 (iii) is complete.

Theorem 2.4. From the generating function we find

(i) n ∈ N0, n =
∑n−1

k=0

(
n
k

)
Sk,

(ii) x ≤ n ∈ N0,
(
n
x

)
= xx−n

x!

∑x
k=0(−1)x−k (S(x− 1) + k)n .

Proof. From Definition 1.1, we can note that Sn(0) = Sn. When x = 0, we have

∞∑
n=0

Sn
tn

n!

(
et − 1

)
= tet. (2.2)

The left-hand side of (2.2) can then be transformed as follows.

∞∑
n=0

Sn
tn

n!
(et − 1) =

∞∑
n=0

Sn
tn

n!

∞∑
n=0

tn+1

(n+ 1)!
=
∞∑
n=0

n∑
k=0

(
n+ 1

k

)
Sk

tn+1

(n+ 1)!
.

Additionally, the right-hand side in (2.2) can be transformed in the following form.

tet =

∞∑
n=0

(n+ 1)
tn+1

(n+ 1)!
.

From the above two equations, we can see that the following equation holds true.

n+ 1 =

n∑
k=0

(
n+ 1

k

)
Sk.

Therefore, we obtain the proof of Theorem 2.4 (i). The proof of Theorem 2.4 (ii) is very similar to that
of Theorem 2.4 (i). We can assume x ≤ n ∈ N0 to show Theorem 2.4 (ii). We then have the Stirling
polynomials such as

∞∑
n=0

Sn(x)
tn

n!
(et − 1)x+1 =

(
tet
)x+1

.

From the above equation, the left-hand side can be changed in the following equation.

∞∑
n=0

Sn(x)
tn

n!
(et − 1)x+1 =

∞∑
n=0

x+1∑
k=0

(−1)x+1−k (S(x) + k)n
tn

n!
.

The right-hand side can be changed as shown below.

(
tet
)x+1

= tx+1
∞∑
n=0

(x+ 1)n
tn

n!
=

∞∑
n=x+1

(
n

x+ 1

)
(x+ 1)! (x+ 1)n−x−1

tn

n!
.
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If x+ 1 = x′, then the above equation is represented as

x′∑
k=0

(−1)x
′−k (S(x′ − 1) + k

)n
=

(
n

x′

)
x′!x′n−x.

Therefore, we know the above proof of Theorem 2.4 (ii) is clear.

Theorem 2.5. For k ∈ N0 ∪ {−1}, we derive

Sn(k) = n!

v1+v2+···+vk+1=n∑
v1,v2,··· ,vk+1=0

Sv1Sv2 · · ·Svk+1

v1!v2! · · · vk+1!
,

where Sn = Sn(0).

Proof. We have the following equation by using the generating function when k is nonnegative integers
containing −1.

∞∑
n=0

Sn(k)
tn

n!
=

(
t

1− e−t

)k+1

=

(
t

1− e−t

)(
t

1− e−t

)
· · ·
(

t

1− e−t

)
=

∞∑
v1=0

Sv1
tv1

v1!

∞∑
v2=0

Sv2
tv2

v2!
· · ·

∞∑
vk+1=0

Svk+1

tvk+1

vk+1!

=
∞∑
n=0

n!

v1+v2+···+vk+1=n∑
v1,v2,··· ,vk+1=0

Sv1Sv2 · · ·Svk+1

v1!v2! · · · vk+1!

tn

n!
.

Hence, we complete the proof of Theorem 2.5.

We reduce Theorem 2.5 as follows:

Corollary 2.6. If k = 1 in Theorem 2.5, then we have

Sn(1) = n!

v1+v2=n∑
v1,v2=0

Sv1Sv2
v1!v2!

.

Theorem 2.7. For a real or complex parameter x, one has

Sn(x− 1) =
n∑
k=0

(
n

k

)
xkB

(x)
n−k,

where B
(x)
n−k is generalized Bernoulli numbers.

Proof. Through the definition of Stirling polynomials and generalized Bernoulli numbers, we can look for
the below relation.

∞∑
n=0

Sn(x)
tn

n!
=

(
t

1− e−t

)x+1

=

(
t

et − 1

)x+1

et(x+1)

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
(x+ 1)kB

(x+1)
n−k

)
tn

n!
.

Therefore, we prove Theorem 2.7.
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Theorem 2.8. For x ∈ C, we have

Sn(x) =
1

2

[(
Ẽ(x) +B(x+1)(2)

)n
+
(
Ẽ(x) +B(x+1)

)n]
=

1

2

n∑
k=0

(
n

k

)(
B

(x+1)
k (2) +B

(x+1)
k

)
Ẽn−k(x),

where B(x) is generalized Bernoulli polynomials and Ẽn(x) is Euler polynomials of the second kind (see [8]).

Proof. Note that

xn =
1

2

[
n∑
k=0

(
n

k

)
2n−kẼk(x− 1) + Ẽn(x− 1)

]
. (2.3)

We obtain the following equation by combining Theorem 2.7 and Equation (2.3):

Sn(x− 1) =
1

2

n∑
k=0

(
n

k

)
B

(x)
k

[
n−k∑
i=0

(
n− k
i

)
2n−k−iẼi(x− 1) + Ẽn−k(x− 1)

]

=
1

2

[
n∑
i=0

(
n

i

)
Ẽi(x− 1)

n−i∑
k=0

(
n− i
k

)
2n−k−iB

(x)
k +

n∑
k=0

(
n

k

)
B

(x)
k Ẽn−k(x− 1)

]
.

(2.4)

From the generalized Bernoulli polynomials, we can note that

B(α)
n (x) =

n∑
k=0

(
n

k

)
B

(α)
k xn−k (see [14]).

Using the above equation we can change the equation (2.4).

Sn(x− 1) =
1

2

[
n∑
i=0

(
n

i

)
Ẽi(x− 1)B

(x)
n−i(2) +

n∑
k=0

(
n

k

)
B

(x)
k Ẽn−k(x− 1)

]

=
1

2

[(
Ẽ(x− 1) +B(x)(2)

)n
+
(
Ẽ(x− 1) +B(x)

)n]
=

1

2

n∑
k=0

(
n

k

)(
B

(x)
k (2) +B

(x)
k

)
Ẽn−k(x− 1).

Therefore, we complete prove of Theorem 2.8.

3. The observation of scattering zeros of the Stirling polynomials

In this section, we can see a certain phenomenon of zeros which is related to the fractal using the Newton
dynamical system. Ryoo found the approximate zeros of the Stirling polynomials and some interesting
properties of these polynomials (see [7]). By using the Mathematica software, we can see a certain structure
of the zeros of the Stirling polynomials in an iterated map.

In Figure 1, the x-axis means the numbers of real zeros and the y-axis means the numbers of complex
zeros in the Stirling polynomials. For example, the numbers of real zero are 1, 2, 3, 4 and 5 and the numbers
of complex zero correspond to 0, 0, 0, 0 and 0 for 1 ≤ n ≤ 5 in the Stirling polynomials, respectively. Our
numerical results, which are the numbers of real and complex zeros of Sn(x) for 1 ≤ n ≤ 60, are displayed
in Figure 1.

Let f : D → D be a complex function, with D as a subset of C. We define the iterated maps of the
complex function as the following:

fr : z0 7→ f(f(· · · (f︸ ︷︷ ︸
r

(z0) · · · )).
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Figure 1: Numbers of real and complex zeros of Sn(x)

The iterates of f are the functions f, f ◦ f, f ◦ f ◦ f, ..., which are denoted by f1, f2, f3, .... If z ∈ C and then
the orbit of z0 under f is the sequence < z0, f(z0), f(f(z0)), · · · > .

We consider the Newton’s dynamical system as follows [1, 15]:{
C∞ : R(x) = x− S(x)

S′(x)

}
.

R is called the Newton iteration function of S. It can be considered that the fixed points of R are the zeros
of S and all the fixed points of R are attracting. R may also have one or more attracting cycles.

For x ∈ C, we consider S4(x) and then this polynomial has four distinct complex numbers, ai(i = 1, 2, 3, 4)
such that S4(ai) = 0. Using a computer, we obtain the approximate zeros as follows:

a1 = −1,

a2 = −1

3
+

1(
1
5

(
16 + i

√
419
)) 1

3

+
1

3

(
1

5

(
16 + i

√
419
)) 1

3

≈ 0.768956,

a3 = −1

3
− 1 + i

√
3

2
(
1
5

(
16 + i

√
419
)) 1

3

− 1

6
(1− i

√
3)

(
1

5

(
16 + i

√
419
)) 1

3

≈ −1.18234,

a4 = −1

3
− 1− i

√
3

2
(
1
5

(
16 + i

√
419
)) 1

3

− 1

6
(1 + i

√
3)

(
1

5

(
16 + i

√
419
)) 1

3

≈ −0.58662.

In Newton’s method, the generalized expectation is that a typical orbit {R(x)} will converge to one of
the roots of S4(x) for x0 ∈ C. If we choose x0, which is sufficiently close to ai, then this proves that

lim
r→∞

R(x0) = ai for i = 1, 2, 3, 4.

When it is given a point x0 in the complex plane, we want to determine whether the orbit of x0 under
the action of R(x) converges to one of the roots of the equation. The orbit of x0 under the action of R also
appears by calculating until 30 iterations or the absolute difference value of the last two iterations is within
10−6.

The output in the Figure 2 is the last calculated orbit value. We construct a function, which assigns
one of four colors for each point according to the outcome of R in the plane. If an orbit of x0 converges to
−1, 0.768956,−1.18234 and −0.58662, then we denote the red, yellow, blue and sky-blue, respectively. For
example, the yellow region represents the part of the basin of attraction of a3 = −1.18234. The range in the
left figure is {(x, y) : −4 ≤ x ≤ 4,−4 ≤ y ≤ 4}, the middle figure is {(x, y) : −0.2 ≤ x ≤ 0.6,−0.5 ≤ y ≤ 0.5}
and the right figure is {(x, y) : −0.2 ≤ x ≤ 0.6,−0.5 ≤ y ≤ 0.5}. From Figure 2, we make the following
conjecture.
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Figure 2: Orbit of x0 under the action of R for S4(x)

Conjecture 3.1. The orbit of x0 under the action of R has self-similarity for n ≥ 4.

4. The distribution of fixed points for the Stirling polynomials

In this section, we find the distribution of fixed points and period points using the definition of fixed
point. From Newton’s method we construct orbits of points under the action of a complex function using
Mathematica to generate graphic images.

Definition 4.1. The orbit of the point z0 ∈ C under the action of the function f is said to be bounded
if there exists M ∈ R such that |fn(z0)| < M for all n ∈ N. If the orbit is not bounded, it is said to be
unbounded.

Definition 4.2. Let f : D → D be a transformation on a metric space. A point z0 ∈ D such that f(z0) = z0
is called a fixed point of the transformation.

Figure 3: Attracting fixed point of S3(x)

This Figure 3 is an attracting fixed point of the third Stirling polynomials that is bounded. We know
that the fixed point is divided as follows. Suppose that the complex function f is analytic in a region D of
C and f has a fixed point at z0 ∈ D. Then z0 is said to be:

(1) an attracting fixed point if |f ′(z0)| < 1;

(2) a repelling fixed point if |f ′(z0)| > 1;

(3) a neutral fixed point if |f ′(z0)| = 1.

For example, S3(x) has three points satisfying S3(x) = x. That is, x0 = 0,−3.82843, 1.82843. Since∣∣∣∣ ddtS3(0)

∣∣∣∣ = 0 < 1.
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Theorem 4.3. The third Stirling polynomial, S3(x), has only one attracting fixed point, x0 = 0.

Using Mathematica, we can separate the numerical results for fixed points of Sn(x). From Table 1, we
know that Sn(x) have no neutral fixed point for 2 ≤ n ≤ 7. We can also reach Conjecture 4.4.

degree n attractor repellor neutral

2 1 1 0

3 1 2 0

4 1 3 0

5 1 4 0

6 1 5 0

7 1 6 0

Table 1: Numbers of attracting, repelling and neutral fixed points of Sn(x)

Conjecture 4.4. The Stirling polynomials Sn(x) for n ≥ 2 have the only one attracting fixed point except
for infinity.

In Table 2, we denote RSr
n(x)

as the numbers of real zeros for r-th iteration. From this table, we can
know that the fixed points of Sr3(x) using iterated function are less than 3r. Here, we can know that the
r-th iterating Stirling polynomial has some fixed points, but each Stirling polynomials using iteration have
one fixed point and some period points in S3(x) position such as in Table 2. From Table 2, we can suggest
Conjecture 4.5.

r RSr
n(x)

numbers of real fixed point

1 3 3

2 5 3

3 7 3

4 9 11

5 11 2

6 13 2

7 15 2

Table 2: The numbers of real roots and real fixed points of Sr
3(x) for 1 ≤ r ≤ 7

Conjecture 4.5. The Stirling polynomials that are iterated, Sr3(x), have two real fixed points, α = 1.82843,
and 0. This polynomials always have two fixed points containing α for r ≥ 5 and RSr

n(x)
has 2r+1 for r ≥ 1.

In the top-left of Figure 4, we can see the forms of 3D structure related to stacks of fixed points of Sr3(x)
for 1 ≤ r ≤ 7. When we look at the top-left of Figure 4 in the below position, we can draw the top-right
figure. The bottom-left of Figure 4 shows that image and n axes exist but not real axis in three dimensions.
In three dimensions, the bottom-right of Figure 4 is the right orthographic viewpoint for the top-left figure,-
that is, there exist real and n axes but there is no image axis. We can also assume the distribution of the
fixed points for each Sr3(x) contains the distribution of some period points if we consider S1

3(x).
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Figure 4: Stacks of fixed point of Sr
3(x) for 1 ≤ r ≤ 7

Especially, we assume S2
3(x) for x∈C. The S2

3(x) is nine distinct complex numbers,a∗i (i=1, 2, 3, 4, 5, 6, 7, 8, 9)
such that S2

3(a∗i ) = a∗i . That is,
a1 = −3.82843,

a2 ≈ −2.79544− 1.74178i,

a3 ≈ −2.79544 + 1.74178i,

a4 ≈ −0.5− 2.78388i,

a5 ≈ −0.5 + 2.78388i,

a6 = 0,

a7 ≈ 1.29544− 2.22684i,

a8 ≈ 1.29544 + 2.22684i,

a9 = 1.82843.

Let S2
3(x)− x = S3(x). Then we assume the Newton’s method for S3(x), that is,{

C∞ : R2(x) = x− S3(x)

S ′3(x)

}
.

From the Newton’s method, we obtain the calculated last orbit value such as the Figure 5. We construct
the range which is {(x, y) : −6 ≤ x ≤ 2,−4 ≤ y ≤ 4} containing a∗i . From Figure 5, we can observe a6 and
a9. The ocher region represents part of the attracting basin of a6 = 0 and the gray region is part of the
basin of attraction for a9 = 1.82843. We can suggest from this figure that these regions are divided into the
attracting basins of fixed points in the S2

3(x) position, but we can also see from this figure that these regions
are divided into the attracting basin of one fixed point and the attracting basins of eight period points by
S3(x).
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Figure 5: Orbit of x0 under the action of R2 for S3(x)

Figure 6: Palette for escaping points

In Figure 6, we express the coloring for R2(x). Using the Newton’s method for S3(x), a point represents
one of nine colors when it approaches a fixed point. That is, we denote the brown, blue, yellow, sky blue,
green, ocher, navy blue, red, or gray to x0 if its orbit converges to −3.82843,−2.79544−1.74178i,−2.79544+
1.74178i,−0.5− 2.78388i,−0.5 + 2.78388i, 0, 1.29544− 2.22684i, 1.29544 + 2.22684i, 1.82843, respectively.

Figure 7: Julia sets of R2(x) for S3(x)

We can illustrate the rapid change by applying the three-dimensional structure to the escape-time func-
tion from Figure 7. The range of the left Figure 7 is {(x, y) : −4 ≤ x ≤ 4,−4 ≤ y ≤ 4} and the range of the
right Figure 7 is {(x, y) : −2 ≤ x ≤ 2,−2 ≤ y ≤ 2}. The orbit of x0 under the action of R is also appeared
by calculating until 30 iterations or the absolute difference value of the last two iterations is within 10−6.

This color Figure 8 represents the coloring of the above Figure 7. For example, points which escape after
1 to 30 iterations are colored red to green.
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Figure 8: Palette for escaping points
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