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Abstract

In this paper we study the boundedness and the asymptotic behavior of positive solutions for the differ-
ence equation

xn+1 = a+ bxne−xn−1 ,

where a, b are positive constants, and the initial values x−1, x0 are nonnegative numbers. c©2016 All rights
reserved.
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1. Introduction

In recent years, the behavior of positive solutions for difference equation of exponential form has attracted
great attention of many authors. In [3] in particular, Metwally studied the boundedness, the asymptotic
behavior, the periodic character and the stability of solutions of the difference equation

xn+1 = α+ βxn−1e−xn ,

where α, β are positive constants and the initial values x−1, x0 are positive numbers. Later in [4], Fotiades
studied the existence, uniqueness and attractivity of prime period two solution of this equation. For similar
research on difference equation, we refer the reader to [1, 2, 5, 6, 7, 8] and the references therein.
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Motivated by the above research, we will change the above equation to a naturally new form as

xn+1 = a+ bxne−xn−1 . (1.1)

In this paper, we will investigate the boundedness nature, the persistence and the asymptotic behavior of
the positive solutions of (1.1), where the parameters a, b are positive numbers and the initial value x−1, x0

are arbitrary nonnegative numbers.
Equation (1.1) could be also viewed as a model in mathematical biology, in which case we consider a as

the immigration rate and b as the population growth rate of one species xn. Observe that it is very crucial
that every solution of (1.1) should be bounded since the population of species xn can not grow infinitely
due to the limited resources. In addition, the equilibrium point of (1.1) is considered to be the natural ideal
population.

2. Boundedness, persistence and asymptotic behavior of positive solutions of (1.1)

Firstly, we establish the existence and uniqueness of equilibrium of (1.1).

Proposition 2.1. Equation (1.1) has a unique positive equilibrium x̄.

Proof. Observe that the equilibrium points of (1.1) are the solutions of the equation

x̄ = a+ bx̄e−x̄. (2.1)

Set
g(x) = a+ bxe−x − x.

Then
g(0) = a, lim

x→∞
g(x) = −∞

and
g′(x) = be−x(1− x)− 1.

It suffices to show that
g′(x) < 0.

Now
g′(x̄) = be−x̄(1− x̄)− 1

and x̄ > a, so
g′(x̄) < 0.

As g′ is continuous, there exists an ε such that for x ∈ (x̄− ε, x̄+ ε)

g′(x) < 0. (2.2)

Therefore from (2.2), g is decreasing in the interval (x̄− ε, x̄+ ε). Suppose that g has roots greater than the
root x̄. Let x1 be the smallest root of g such that x1 > x̄. Similar to the argument above, we can show that
there exists an ε1 such that g is decreasing in the interval (x1−ε1, x1 +ε1). Since g(x̄+ε) < 0, g(x1−ε1) > 0
and g is continuous, we see that g must have a root in the interval (x̄ + ε, x1 − ε1). This is clearly a
contradiction since x1 is the smallest root of g such that x1 > x̄. Similarly we can prove that g has no
solutions in (a, x̄). Therefore equation g(x) = 0 must have a unique solution in (a,+∞). So (1.1) has
exactly one solution x̄, and furthermore x̄ > a.

The following proposition gives a sufficient condition for every positive solution of (1.1) to be bounded.
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Proposition 2.2. Every positive solution of (1.1) is bounded if

b < ea. (2.3)

Proof. Let {xn}∞n=−1 be an arbitrary solution of (1.1). Observe that for all n ≥ 2,

xn+1 = a+ bxne−xn−1 ≤ a+ bxne−a. (2.4)

We will now consider the non-homogeneous difference equations

yn+1 = a+ byne−a, n = 2, 3, · · · . (2.5)

Therefore, from (2.5), an arbitrary solution {yn}∞n=−1 of (2.5) is given by

yn = r(be−a)n +
a

1− be−a
, (2.6)

where r depends on the initial values y−1. Thus we see that relations (2.3) and (2.6) imply that {yn} is
bounded sequences. Now we will consider the solution yn of (2.5) such that

y2 = x2. (2.7)

Thus from (2.4), (2.5) and (2.7) we get

xn+1 − yn+1 ≤ b(xn − yn)e−a,

and by induction, we have
xn ≤ yn for all n ≥ 1.

Therefore it follows that {xn} is a bounded sequence. Hence the proof of the proposition is complete.

In the next proposition we will study the existence of invariant intervals of (1.1).

Proposition 2.3. Consider (1.1) where relation (2.3) hold. Then the following statements are true:
(i) The set

[a,
a

1− be−a
]

is an invariant set for (1.1).
(ii) Let ε be an arbitrary positive number and xn be an arbitrary solution of (1.1). We then consider the set

I = [a,
a+ ε

1− be−a
]. (2.8)

Then there exists an n0 such that for all n ≥ n0

xn ∈ I. (2.9)

Proof. (i) Let xn be a solution of (1.1) with initial values x−1, x0 such that

x−1, x0 ∈ [a,
a

1− be−a
]. (2.10)

Then from (1.1) and (2.10) we get

a ≤ x1 = a+ bx0e−x−1 ≤ a+ b
a

1− be−a
e−a =

a

1− be−a
.
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Then it follows by induction that

a ≤ xn ≤
a

1− be−a
, n = 1, 2, · · · .

This completes the proof of (i).
(ii) Let xn be an arbitrary solution of (1.1). Therefore, from Proposition 2.2 we assume

0 < l = lim inf
n→∞

xn, L = lim sup
n→∞

xn <∞. (2.11)

It follows from (1.1) and (2.11) that

L ≤ a+ bLe−l, l ≥ a+ ble−L,

which imply that

a ≤ L ≤ a

1− be−a
.

Thus from (1.1), we see that there exists an n0 such that (2.9) holds true. This completes the proof of
(ii).

Before stating our main result, we next give the following lemma which is a minor modification of
Theorem 1.11 in [5].

Lemma 2.4. Consider the difference equation

yn+1 = f(yn, yn−1), n = 0, 1, · · · . (2.12)

Let f : [a, b]× [a, b] −→ [a, b] be a continuous function and a, b be positive numbers. Suppose f satisfies the
following properties:

a.) f(u, v) is nondecreasing in u and nonincreasing in v;
b.) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

m = f(m,M) and M = f(M,m),

then m = M .
Then (2.12) has a unique positive equilibrium ȳ and every positive solution of (2.12) converges to ȳ.

Proof. Set
m0 = a and M0 = b

and for i = 1, 2, · · · , set
mi = f(mi−1,Mi−1), Mi = f(Mi−1,mi−1).

Now observe that
m0 ≤ m1 ≤ · · · ≤ mi ≤ · · · ≤ · · · ≤Mi ≤ · · · ≤M1 ≤M0,

and
mi ≤ yn ≤Mi for n ≥ 2i− 1.

Set
m = lim

n→∞
mi, M = lim

n→∞
Mi.

Clearly,
m ≤ lim inf

n→∞
yi ≤ lim sup

n→∞
yi ≤M

and by the continuity of f ,
m = f(m,M), M = f(M,m),

and thus m = M = ȳ. The proof is complete.



W. Wang, H. Feng, J. Nonlinear Sci. Appl. 9 (2016), 1748–1754 1752

In the next proposition we will study the asymptotic behavior of positive solutions of (1.1).

Proposition 2.5. Consider (1.1) where the initial values x−1, x0 are positive constants and a, b are non-
negative constants satisfying

b < ea
−a+

√
a2 + 4

2
. (2.13)

Then (1.1) has a unique positive equilibrium x̄ such that

x̄ ∈ [a,
a

1− be−a
]. (2.14)

Moreover every positive solution of (1.1) tends to the unique positive equilibrium x̄ as n −→∞.

Proof. Equation (1.1) has a unique positive equilibrium such that relation (2.14) holds follows by Proposition
2.1 and Proposition 2.2

It suffices to show that any positive solution {xn} converges to the unique positive equilibrium x̄ of (1.1).
We consider the function

f(x, y) = a+ bxe−y, x, y ∈ I, (2.15)

where I is defined in (2.8). Then from (2.3) and (2.15), we see that for x, y ∈ I

a ≤ f(x, y) ≤ a+ b
a+ ε

1− be−a
e−a =

a+ bεe−a

1− be−a
<

a+ ε

1− be−a

and so f : I × I −→ I. Let xn be an arbitrary solution of (1.1). Therefore, as (2.13) implies (2.3), from
Proposition 2.3, there exists an n0 such that (2.9) holds true. Let m,M be positive real numbers such that

M = a+ bMe−m, m = a+ bme−M . (2.16)

From (2.16), it follows that

M = ln
bm

m− a
, m = ln

bM

M − a
. (2.17)

Thus we see that (2.16) and (2.17) imply

ln(
bm

m− a
)(1− be−m) = a, ln(

bM

M − a
)(1− be−M ) = a.

We then consider the function

F (x) = ln(
bx

x− a
)(1− be−x)− a. (2.18)

Let z be a solution of F (x) = 0. We claim that

F ′(z) < 0. (2.19)

From (2.18) we see that

F ′(z) = (1− be−z) −a
z(z − a)

+ ln(
bz

z − a
)be−z. (2.20)

Since z satisfies equation F (x) = 0, then it follows that

ln(
bz

z − a
) =

a

1− be−z
. (2.21)

Therefore, relations (2.20) and (2.21) imply that

F ′(z) = (1− be−z) −a
z(z − a)

+
abe−z

1− be−z
. (2.22)
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Using (2.22), to prove our claim(2.19), it suffices to prove that

H(z)−G(z) < 0, (2.23)

where
H(z) = bz(z − a), G(z) = ez(1− be−z)2. (2.24)

From (2.24) we get
H ′(z) = b(2z − a), G′(z) = −b2e−z + ez,

H ′′(z) = 2b,G′′(z) = b2e−z + ez,

H ′′′(z) = 0, G′′′(z) = −b2e−z + ez.

(2.25)

Now from (2.13) and (2.25), we see that as z > a we have

H ′′′(z)−G′′′(z) < 0.

Since z > a, we have

H ′′(z)−G′′(z) < H ′′(a)−G′′(a) = 2b− b2e−a − ea = −e−a(b− ea)2 < 0. (2.26)

Therefore from (2.26) and since z > a, it follows

H ′(z)−G′(z) < H ′(a)−G′(a) = ab+ b2e−a − ea = e−a(b2 + abea − e2a). (2.27)

Now observe that from (2.13) we have
b2 + abea − e2a < 0. (2.28)

Therefore relations (2.27) and (2.28) imply that

H ′(z)−G′(z) < 0. (2.29)

Hence from (2.29) and as z > a, we get

H(z)−G(z) < H(a)−G(a) < 0, (2.30)

which implies that (2.19) is true. By continuity of F ′, it is known that there exists an ε such that for
x ∈ (z − ε, z + ε)

F ′(x) < 0. (2.31)

Therefore from (2.31), the function F is decreasing in the interval (z − ε, z + ε). Suppose that F has roots
greater than the root z. Let z1 be the smallest root of F such that z1 > z. Similar to the argument
above, we can show that there exists an ε1 such that F is decreasing in the interval (z1 − ε1, z1 + ε1). Since
F (z+ε) < 0, F (z1−ε1) > 0 and F is continuous, we see that F must have a root in the interval (z+ε, z1−ε1).
This is clearly a contradiction since z1 is the smallest root of F such that z1 > z. Similarly we can prove
that F has no solutions in (a, z). Therefore equation F (x) = 0 must have a unique solution. Hence from
(2.17) and (2.18), we obtain m = M . By Lemma 2.4, the proof of the proposition is complete.

Example 2.6. See figure1(a), shows the stability of equilibrium of (1.1) and 1(b) shows the unstable case
whenever (2.13) is not satisfied.
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(a) a = 2, b = 2.

(b) a = 4, b = 16.

Figure 1
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