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Abstract

Using the fixed point method, we prove the Hyers-Ulam stability of the following additive-quadratic-
cubic-quartic functional equation

f(x+ 2y) + f(x− 2y) = 4f(x+ y) + 4f(x− y)− 6f(x) + f(2y) + f(−2y)− 4f(y)− 4f(−y)

in random normed spaces. c©2016 All rights reserved.
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1. Introduction

Fuzzy set theory is a powerful tool set for modeling uncertainty and vagueness in various problems arising
in the field of science and engineering. It has also very useful applications in various fields, e.g., population
dynamics [4], chaos control [19], computer programming [22], nonlinear operators [39], etc. Recently, the
fuzzy topology has proved to be a very useful tool to deal with such situations where the use of classical
theories breaks down.
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In the sequel, we adopt the usual terminology, notations and conventions of the theory of random normed
spaces, as in [9, 33, 34, 52, 53]. Throughout this paper, ∆+ is the space of distribution functions, that is,
the space of all mappings F : R∪{−∞,∞} → [0, 1] such that F is left-continuous and non-decreasing on R,
F (0) = 0 and F (+∞) = 1. D+ is a subset of ∆+ consisting of all functions F ∈ ∆+ for which l−F (+∞) = 1,
where l−f(x) denotes the left limit of the function f at the point x, that is, l−f(x) = limt→x− f(t). The
space ∆+ is partially ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and only if
F (t) ≤ G(t) for all t in R. The maximal element for ∆+ in this order is the distribution function ε0 given
by

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 1.1 ([52]). A mapping T : [0, 1] × [0, 1] → [0, 1] is a continuous triangular norm (briefly, a
continuous t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are TP (a, b) = ab, TM (a, b) = min(a, b) and TL(a, b) = max(a+
b− 1, 0) (the Lukasiewicz t-norm). Recall (see [23, 24]) that if T is a t-norm and {xn} is a given sequence of
numbers in [0, 1], then Tni=1xi is defined recurrently by T 1

i=1xi = x1 and Tni=1xi = T (Tn−1i=1 xi, xn) for n ≥ 2.
T∞i=nxi is defined as T∞i=1xn+i−1. It is known ([24]) that for the Lukasiewicz t-norm the following implication
holds:

lim
n→∞

(TL)∞i=1xn+i−1 = 1⇐⇒
∞∑
n=1

(1− xn) <∞.

Definition 1.2 ([53]). A random normed space (briefly, RN-space) is a triple (X,µ, T ), where X is a vector
space, T is a continuous t-norm and µ is a mapping from X into D+ such that the following conditions hold:
(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;
(RN2) µαx(t) = µx( t

|α|) for all x ∈ X, α 6= 0;

(RN3) µx+y(t+ s) ≥ T (µx(t), µy(s)) for all x, y ∈ X and all t, s ≥ 0.

Every normed space (X, ‖.‖) defines a random normed space (X,µ, TM ), where

µx(t) =
t

t+ ‖x‖
for all t > 0, and TM is the minimum t-norm. This space is called the induced random normed space.

Definition 1.3. Let (X,µ, T ) be an RN-space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and λ > 0, there exists a
positive integer N such that µxn−x(ε) > 1− λ whenever n ≥ N .

(2) A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0 and λ > 0, there exists a positive
integer N such that µxn−xm(ε) > 1− λ whenever n ≥ m ≥ N .

(3) An RN-space (X,µ, T ) is said to be complete if and only if every Cauchy sequence in X is convergent
to a point in X.

Theorem 1.4 ([52]). If (X,µ, T ) is an RN-space and {xn} is a sequence such that xn → x, then
limn→∞ µxn(t) = µx(t) almost everywhere.

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if d satisfies
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
We recall a fundamental result in fixed point theory.
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Theorem 1.5 ([6, 14]). Let (X, d) be a complete generalized metric space and let J : X → X be a strictly
contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) =∞

for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

The stability problem of functional equations originated from a question of Ulam [55] concerning the
stability of group homomorphisms. Hyers [25] gave a first affirmative partial answer to the question of Ulam
for Banach spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by Rassias [44]
for linear mappings by considering an unbounded Cauchy difference. A generalization of the Th. M. Rassias
theorem was obtained by Găvruta [21] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Th. M. Rassias’ approach.

The functional equation
f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is related to a symmetric bi-additive mapping. It is natural that this equation is called a quadratic functional
equation. In particular, every solution of the quadratic functional equation (1.1) is said to be a quadratic
mapping. It is well known that a mapping f between real vector spaces is quadratic if and only if there exists
a unique symmetric bi-additive mapping B such that f(x) = B(x, x) for all x (see [1, 30]). The bi-additive
mapping B is given by

B(x, y) =
1

4
(f(x+ y)− f(x− y)).

A Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [54] for mappings
f : X → Y , where X is a normed space and Y is a Banach space. Cholewa [10] noticed that the theorem
of Skof is still true if the relevant domain X is replaced by an Abelian group. The stability problems of
several functional equations have been extensively investigated by a number of authors and there are many
interesting results concerning this problem (see [3, 5, 12, 13, 20, 26, 29, 45, 46, 47, 48, 49, 50, 51]).

In [28], Jun and Kim considered the following cubic functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x). (1.2)

It is easy to show that the function f(x) = x3 satisfies the functional equation (1.2), which is called a cubic
functional equation and every solution of the cubic functional equation is said to be a cubic mapping.

In [42], W. Park and Bae considered the following quartic functional equation

f(x+ 2y) + f(x− 2y) = 4[f(x+ y) + f(x− y) + 6f(y)]− 6f(x). (1.3)

In fact, they proved that a mapping f between two real vector spaces X and Y is a solution of (1.3) if and
only if there exists a unique symmetric multi-additive mapping M : X4 → Y such that f(x) = M(x, x, x, x)
for all x. It is easy to show that the function f(x) = x4 satisfies the functional equation (1.3), which is called
a quartic functional equation (see also [11]). In addition, Kim [31] has obtained the Hyers-Ulam stability
for a mixed type of quartic and quadratic functional equation.

In 1996, Isac and Rassias [27] were the first to provide applications of stability theory of functional
equations for the proof of new fixed point theorems with applications. By using fixed point methods, the
stability problems of several functional equations have been extensively investigated by a number of authors
(see [6, 7, 8, 33, 38, 40, 41, 43]).

The Hyers-Ulam stability of different functional equations in random normed and fuzzy normed spaces
has been recently studied in [32, 33, 34, 35, 36, 37, 38].
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The aim of this paper is to investigate the Hyers-Ulam stability of the additive-quadratic-cubic-quartic
functional equation

f(x+ 2y) + f(x− 2y) = 4f(x+ y) + 4f(x− y)− 6f(x) + f(2y) + f(−2y)− 4f(y)− 4f(−y) (1.4)

in random normed spaces by using the fixed point method.
Recently, M. Eshaghi Gordji et al. established the stability of cubic, quadratic and additive-quadratic

functional equations in RN-spaces (see [17, 18]).
This paper is organized as follows: In Section 2, we prove the Hyers-Ulam stability of the additive-

quadratic-cubic-quartic functional equation (1.4) in RN-spaces for an odd case. In Section 3, we prove the
Hyers-Ulam stability of the additive-quadratic-cubic-quartic functional equation (1.4) in RN-spaces for an
even case.

Throughout this paper, assume that X is a real vector space and that (Y, µ, T := min) is a complete
RN-space.

2. Hyers-Ulam stability of the functional equation (1.4): an odd mapping case

One can easily show that an odd mapping f : X → Y satisfies (1.4) if and only if the odd mapping
f : X → Y is an additive-cubic mapping, i.e.,

f(x+ 2y) + f(x− 2y) = 4f(x+ y) + 4f(x− y)− 6f(x).

It was shown in Lemma 2.2 of [16] that g(x) := f(2x) − 2f(x) and h(x) := f(2x) − 8f(x) are cubic and
additive, respectively, and that f(x) = 1

6g(x)− 1
6h(x).

One can easily show that an even mapping f : X → Y satisfies (1.4) if and only if the even mapping
f : X → Y is a quadratic-quartic mapping, i.e.,

f(x+ 2y) + f(x− 2y) = 4f(x+ y) + 4f(x− y)− 6f(x) + 2f(2y)− 8f(y).

It was shown in Lemma 2.1 of [15] that g(x) := f(2x)− 4f(x) and h(x) := f(2x)− 16f(x) are quartic and
quadratic, respectively, and that f(x) = 1

12g(x)− 1
12h(x).

For a given mapping f : X → Y , we define

Df(x, y) :=f(x+ 2y) + f(x− 2y)− 4f(x+ y)− 4f(x− y) + 6f(x)

− f(2y)− f(−2y) + 4f(y) + 4f(−y)

for all x, y ∈ X.
Using the fixed point method, we prove the Hyers-Ulam stability of the functional equation Df(x, y) = 0

in complete RN-spaces: an odd case.

Theorem 2.1. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ L

8
ϕ (2x, 2y)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying

µDf(x,y) (t) ≥ t

t+ ϕ(x, y)
(2.1)

for all x, y ∈ X and all t > 0. Then

C(x) := lim
n→∞

8n
(
f
( x

2n−1

)
− 2f

( x
2n

))
exists for each x ∈ X and defines a cubic mapping C : X → Y such that

µf(2x)−2f(x)−C(x) (t) ≥ (8− 8L)t

(8− 8L)t+ 5L(ϕ(x, x) + ϕ(2x, x))
(2.2)

for all x ∈ X and all t > 0.



C. Park, D. Shin, S. Lee, J. Nonlinear Sci. Appl. 9 (2016), 1787–1806 1791

Proof. Letting x = y in (2.1), we get

µf(3y)−4f(2y)+5f(y) (t) ≥ t

t+ ϕ(y, y)
(2.3)

for all y ∈ X and all t > 0.
Replacing x by 2y in (2.1), we get

µf(4y)−4f(3y)+6f(2y)−4f(y) (t) ≥ t

t+ ϕ(2y, y)
(2.4)

for all y ∈ X and all t > 0.
By (2.3) and (2.4),

µf(4y)−10f(2y)+16f(y) (4t+ t) ≥ min
{
µ4(f(3y)−4f(2y)+5f(y))(4t), µf(4y)−4f(3y)+6f(2y)−4f(y)(t)

}
≥ t

t+ ϕ(y, y) + ϕ(2y, y)

(2.5)

for all y ∈ X and all t > 0. Letting y := x
2 and g(x) := f(2x)− 2f(x) for all x ∈ X in (2.5), we get

µg(x)−8g(x
2 ) (5t) ≥ t

t+ ϕ
(
x
2 ,

x
2

)
+ ϕ

(
x, x2

) (2.6)

for all x ∈ X and all t > 0.
Consider the set

S := {g : X → Y }

and introduce the generalized metric on S:

d(g, h) = inf{ν ∈ R+ : µg(x)−h(x)(νt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)
, ∀x ∈ X,∀t > 0},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete. (See the proof of Lemma 2.1 of
[34].)

Now we consider the linear mapping J : S → S such that

Jg(x) := 8g
(x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) =µ8g(x
2 )−8h(x

2 ) (Lεt) = µg(x
2 )−h(x

2 )

(
L

8
εt

)
≥

Lt
8

Lt
8 + ϕ

(
x
2 ,

x
2

)
+ ϕ

(
x, x2

) ≥ Lt
8

Lt
8 + L

8 (ϕ(x, x) + ϕ(2x, x))

=
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)
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for all g, h ∈ S.
It follows from (2.6) that

µg(x)−8g(x
2 )

(
5L

8
t

)
≥ t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(g, Jg) ≤ 5L
8 .

By Theorem 1.5, there exists a mapping C : X → Y satisfying the following:
(1) C is a fixed point of J , i.e.,

C
(x

2

)
=

1

8
C(x) (2.7)

for all x ∈ X. Since g : X → Y is odd, C : X → Y is an odd mapping. The mapping C is a unique fixed
point of J in the set

M = {g ∈ S : d(f, g) <∞}.
This implies that C is a unique mapping satisfying (2.7) such that there exists a ν ∈ (0,∞) satisfying

µg(x)−C(x)(νt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jng, C)→ 0 as n→∞. This implies the equality

lim
n→∞

8ng
( x

2n

)
= C(x)

for all x ∈ X;
(3) d(g, C) ≤ 1

1−Ld(g, Jg), which implies the inequality

d(g, C) ≤ 5L

8− 8L
.

This implies that the inequality (2.2) holds.
By (2.1),

µ8nDg( x
2n
, y
2n ) (8nt) ≥ t

t+ ϕ
(
x
2n ,

y
2n

)
for all x, y ∈ X, all t > 0 and all n ∈ N. So

µ8nDg( x
2n
, y
2n ) (t) ≥

t
8n

t
8n + Ln

8n ϕ (x, y)

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞
t
8n

t
8n

+Ln

8n
ϕ(x,y)

= 1 for all x, y ∈ X and all t > 0,

µDC(x,y) (t) = 1

for all x, y ∈ X and all t > 0. Thus the mapping C : X → Y is cubic, as desired.

Corollary 2.2. Let θ ≥ 0 and let p be a real number with p > 3. Let X be a normed vector space with norm
‖ · ‖. Let f : X → Y be an odd mapping satisfying

µDf(x,y) (t) ≥ t

t+ θ(‖x‖p + ‖y‖p)
(2.8)

for all x, y ∈ X and all t > 0. Then C(x) := limn→∞ 8n
(
f
(

x
2n−1

)
− 2f

(
x
2n

))
exists for each x ∈ X and

defines a cubic mapping C : X → Y such that

µf(2x)−2f(x)−C(x) (t) ≥ (2p − 8)t

(2p − 8)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.
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Proof. The proof follows from Theorem 2.1 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 23−p and we get the desired result.

Theorem 2.3. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ 8Lϕ
(x

2
,
y

2

)
for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.1). Then

C(x) := lim
n→∞

1

8n
(
f
(
2n+1x

)
− 2f(2nx)

)
exists for each x ∈ X and defines a cubic mapping C : X → Y such that

µf(2x)−2f(x)−C(x) (t) ≥ (8− 8L)t

(8− 8L)t+ 5ϕ(x, x) + 5ϕ(2x, x)
(2.9)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S → S such that

Jg(x) :=
1

8
g (2x)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) =µ 1
8
g(2x)− 1

8
h(2x) (Lεt) = µg(2x)−h(2x) (8Lεt)

≥ 8Lt

8Lt+ ϕ (2x, 2x) + ϕ(4x, 2x)

≥ 8Lt

8Lt+ 8L(ϕ(x, x) + ϕ(2x, x))

=
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.6) that

µg(x)− 1
8
g(2x)

(
5

8
t

)
≥ t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(g, Jg) ≤ 5
8 .

By Theorem 1.5, there exists a mapping C : X → Y satisfying the following:
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(1) C is a fixed point of J , i.e.,
C (2x) = 8C(x) (2.10)

for all x ∈ X. Since g : X → Y is odd, C : X → Y is an odd mapping. The mapping C is a unique fixed
point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that C is a unique mapping satisfying (2.10) such that there exists a ν ∈ (0,∞) satisfying

µg(x)−C(x)(νt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jng, C)→ 0 as n→∞. This implies the equality

lim
n→∞

1

8n
g(2nx) = C(x)

for all x ∈ X;
(3) d(g, C) ≤ 1

1−Ld(g, Jg), which implies the inequality

d(g, C) ≤ 5

8− 8L
.

This implies that the inequality (2.9) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let θ ≥ 0 and let p be a real number with 0 < p < 3. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (2.8). Then

C(x) := lim
n→∞

1

8n
(
f
(
2n+1x

)
− 2f(2nx)

)
exists for each x ∈ X and defines a cubic mapping C : X → Y such that

µf(2x)−2f(x)−C(x) (t) ≥ (8− 2p)t

(8− 2p)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.3 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−3 and we get the desired result.

Theorem 2.5. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ L

2
ϕ (2x, 2y)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.1). Then

A(x) := N - lim
n→∞

2n
(
f
( x

2n−1

)
− 8f

( x
2n

))
exists for each x ∈ X and defines an additive mapping A : X → Y such that

µf(2x)−8f(x)−A(x) (t) ≥ (2− 2L)t

(2− 2L)t+ 5L(ϕ(x, x) + ϕ(2x, x))
(2.11)

for all x ∈ X and all t > 0.
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Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Letting y := x

2 and h(x) := f(2x)− 8f(x) for all x ∈ X in (2.5), we get

µh(x)−2h(x
2 ) (5t) ≥ t

t+ ϕ
(
x
2 ,

x
2

)
+ ϕ

(
x, x2

) (2.12)

for all x ∈ X and all t > 0.
Now we consider the linear mapping J : S → S such that

Jh(x) := 2h
(x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) =µ2g(x
2 )−2h(x

2 ) (Lεt) = µg(x
2 )−h(x

2 )

(
L

2
εt

)
≥

Lt
2

Lt
2 + ϕ

(
x
2 ,

x
2

)
+ ϕ

(
x, x2

) ≥ Lt
2

Lt
2 + L

2 (ϕ(x, x) + ϕ(2x, x))

=
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.12) that

µh(x)−2h(x
2 )

(
5L

2
t

)
≥ t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(h, Jh) ≤ 5L
2 .

By Theorem 1.5, there exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , i.e.,

A
(x

2

)
=

1

2
A(x) (2.13)

for all x ∈ X. Since h : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a unique fixed
point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that A is a unique mapping satisfying (2.13) such that there exists a ν ∈ (0,∞) satisfying

µh(x)−A(x)(νt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jnh,A)→ 0 as n→∞. This implies the equality

lim
n→∞

2nh
( x

2n

)
= A(x)
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for all x ∈ X;
(3) d(h,A) ≤ 1

1−Ld(h, Jh), which implies the inequality

d(h,A) ≤ 5L

2− 2L
.

This implies that the inequality (2.11) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.6. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector space with norm
‖ · ‖. Let f : X → Y be an odd mapping satisfying (2.8). Then A(x) := limn→∞ 2n

(
f
(

x
2n−1

)
− 8f

(
x
2n

))
exists for each x ∈ X and defines an additive mapping A : X → Y such that

µf(2x)−8f(x)−A(x) (t) ≥ (2p − 2)t

(2p − 2)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.5 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 21−p and we get the desired result.

Theorem 2.7. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ 2Lϕ
(x

2
,
y

2

)
for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.1). Then

A(x) := lim
n→∞

1

2n
(
f
(
2n+1x

)
− 8f(2nx)

)
exists for each x ∈ X and defines an additive mapping A : X → Y such that

µf(2x)−8f(x)−A(x) (t) ≥ (2− 2L)t

(2− 2L)t+ 5ϕ(x, x) + 5ϕ(2x, x)
(2.14)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S → S such that

Jh(x) :=
1

2
h (2x)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) =µ 1
2
g(2x)− 1

2
h(2x) (Lεt) = µg(2x)−h(2x) (2Lεt)

≥ 2Lt

2Lt+ ϕ (2x, 2x) + ϕ(4x, 2x)

≥ 2Lt

2Lt+ 2L(ϕ(x, x) + ϕ(2x, x))

=
t

t+ ϕ(x, x) + ϕ(2x, x)
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for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (2.12) that

µh(x)− 1
2
h(2x)

(
5

2
t

)
≥ t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(h, Jh) ≤ 5
2 .

By Theorem 1.5, there exists a mapping A : X → Y satisfying the following:
(1) A is a fixed point of J , i.e.,

A (2x) = 2A(x) (2.15)

for all x ∈ X. Since h : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a unique fixed
point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that A is a unique mapping satisfying (2.15) such that there exists a ν ∈ (0,∞) satisfying

µh(x)−A(x)(νt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jnh,A)→ 0 as n→∞. This implies the equality

lim
n→∞

1

2n
h(2nx) = A(x)

for all x ∈ X;
(3) d(h,A) ≤ 1

1−Ld(h, Jh), which implies the inequality

d(h,A) ≤ 5

2− 2L
.

This implies that the inequality (2.14) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.8. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (2.8). Then

A(x) := lim
n→∞

1

2n
(
f
(
2n+1x

)
− 8f(2nx)

)
exists for each x ∈ X and defines an additive mapping A : X → Y such that

µf(2x)−8f(x)−A(x) (t) ≥ (2− 2p)t

(2− 2p)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.7 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−1 and we get the desired result.
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3. Hyers-Ulam stability of the functional equation (1.4): an even mapping case

Using the fixed point method, we prove the Hyers-Ulam stability of the functional equation Df(x, y) = 0
in complete random normed spaces: an even case.

Theorem 3.1. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ L

16
ϕ (2x, 2y)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.1). Then

Q(x) := lim
n→∞

16n
(
f
( x

2n−1

)
− 4f

( x
2n

))
exists for each x ∈ X and defines a quartic mapping Q : X → Y such that

µf(2x)−4f(x)−Q(x) (t) ≥ (16− 16L)t

(16− 16L)t+ 5L(ϕ(x, x) + ϕ(2x, x))
(3.1)

for all x ∈ X and all t > 0.

Proof. Letting x = y in (2.1), we get

µf(3y)−6f(2y)+15f(y) (t) ≥ t

t+ ϕ(y, y)
(3.2)

for all y ∈ X and all t > 0.
Replacing x by 2y in (2.1), we get

µf(4y)−4f(3y)+4f(2y)+4f(y) (t) ≥ t

t+ ϕ(2y, y)
(3.3)

for all y ∈ X and all t > 0.
By (3.2) and (3.3),

µf(4x)−20f(2x)+64f(x) (4t+ t) ≥ min
{
µ4(f(3x)−6f(2x)+15f(x)) (4t) , µf(4x)−4f(3x)+4f(2x)+4f(x)) (t)

}
≥ t

t+ ϕ(x, x) + ϕ(2x, x)

(3.4)

for all x ∈ X and all t > 0. Letting g(x) := f(2x)− 4f(x) for all x ∈ X, we get

µg(x)−16g(x
2 ) (5t) ≥ t

t+ ϕ
(
x
2 ,

x
2

)
+ ϕ

(
x, x2

) (3.5)

for all x ∈ X and all t > 0.
Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Now we consider the linear mapping J : S → S such that

Jg(x) := 16g
(x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)
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for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) =µ16g(x
2 )−16h(x

2 ) (Lεt) = µg(x
2 )−h(x

2 )

(
L

16
εt

)
≥

Lt
16

Lt
16 + ϕ

(
x
2 ,

x
2

)
+ ϕ

(
x, x2

) ≥ Lt
16

Lt
16 + L

16(ϕ(x, x) + ϕ(2x, x))

=
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (3.5) that

µg(x)−16g(x
2 )

(
5L

16
t

)
≥ t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(g, Jg) ≤ 5L
16 .

By Theorem 1.5, there exists a mapping C : X → Y satisfying the following:
(1) Q is a fixed point of J , i.e.,

Q
(x

2

)
=

1

16
Q(x) (3.6)

for all x ∈ X. Since g : X → Y is even, Q : X → Y is an even mapping. The mapping Q is a unique fixed
point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (3.6) such that there exists a ν ∈ (0,∞) satisfying

µg(x)−Q(x)(νt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jng,Q)→ 0 as n→∞. This implies the equality

lim
n→∞

16ng
( x

2n

)
= Q(x)

for all x ∈ X;
(3) d(g,Q) ≤ 1

1−Ld(g, Jg), which implies the inequality

d(g,Q) ≤ 5L

16− 16L
.

This implies that the inequality (3.1) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 4. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.8). Then Q(x) :=
limn→∞ 16n

(
f
(

x
2n−1

)
− 4f

(
x
2n

))
exists for each x ∈ X and defines a quartic mapping Q : X → Y such that

µf(2x)−4f(x)−Q(x) (t) ≥ (2p − 16)t

(2p − 16)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.
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Proof. The proof follows from Theorem 3.1 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 24−p and we get the desired result.

Theorem 3.3. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ 16Lϕ
(x

2
,
y

2

)
for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.1). Then

Q(x) := N - lim
n→∞

1

16n
(
f
(
2n+1x

)
− 4f(2nx)

)
exists for each x ∈ X and defines a quartic mapping Q : X → Y such that

µf(2x)−4f(x)−Q(x) (t) ≥ (16− 16L)t

(16− 16L)t+ 5ϕ(x, x) + 5ϕ(2x, x)
(3.7)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S → S such that

Jg(x) :=
1

16
g (2x)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) =µ 1
16
g(2x)− 1

16
h(2x) (Lεt) = µg(2x)−h(2x) (16Lεt)

≥ 16Lt

16Lt+ ϕ (2x, 2x) + ϕ(4x, 2x)

≥ 16Lt

16Lt+ 16L(ϕ(x, x) + ϕ(2x, x))

=
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (3.5) that

µg(x)− 1
16
g(2x)

(
5

16
t

)
≥ t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(g, Jg) ≤ 5
16 .

By Theorem 1.5, there exists a mapping Q : X → Y satisfying the following:
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(1) Q is a fixed point of J , i.e.,
Q (2x) = 16Q(x) (3.8)

for all x ∈ X. Since g : X → Y is even, Q : X → Y is an even mapping. The mapping Q is a unique fixed
point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (3.8) such that there exists a ν ∈ (0,∞) satisfying

µg(x)−Q(x)(νt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jng,Q)→ 0 as n→∞. This implies the equality

lim
n→∞

1

16n
g(2nx) = Q(x)

for all x ∈ X;
(3) d(g,Q) ≤ 1

1−Ld(g, Jg), which implies the inequality

d(g,Q) ≤ 5

16− 16L
.

This implies that the inequality (3.7) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 4. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.8). Then Q(x) :=
limn→∞

1
16n

(
f
(
2n+1x

)
− 4f(2nx)

)
exists for each x ∈ X and defines a quartic mapping Q : X → Y such

that

µf(2x)−4f(x)−Q(x) (t) ≥ (16− 2p)t

(16− 2p)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.3 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−4 and we get the desired result.

Theorem 3.5. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ L

4
ϕ (2x, 2y)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.1). Then

T (x) := lim
n→∞

4n
(
f
( x

2n−1

)
− 16f

( x
2n

))
exists for each x ∈ X and defines a quadratic mapping T : X → Y such that

µf(2x)−16f(x)−T (x) (t) ≥ (4− 4L)t

(4− 4L)t+ 5L(ϕ(x, x) + ϕ(2x, x))
(3.9)

for all x ∈ X and all t > 0.
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Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Letting h(x) := f(2x)− 16f(x) for all x ∈ X in (3.4), we get

µh(x)−4h(x
2 ) (5t) ≥ t

t+ ϕ
(
x
2 ,

x
2

)
+ ϕ

(
x, x2

) (3.10)

for all x ∈ X and all t > 0.
Now we consider the linear mapping J : S → S such that

Jh(x) := 4h
(x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) =µ4g(x
2 )−4h(x

2 ) (Lεt) = µg(x
2 )−h(x

2 )

(
L

4
εt

)
≥

Lt
4

Lt
4 + ϕ

(
x
2 ,

x
2

)
+ ϕ

(
x
2 , x
) ≥ Lt

4
Lt
4 + L

4 (ϕ(x, x) + ϕ(2x, x))

=
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (3.10) that

µh(x)−4h(x
2 )

(
5L

4
t

)
≥ t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(h, Jh) ≤ 5L
4 .

By Theorem 1.5, there exists a mapping T : X → Y satisfying the following:
(1) T is a fixed point of J , i.e.,

T
(x

2

)
=

1

4
T (x) (3.11)

for all x ∈ X. Since h : X → Y is even, T : X → Y is an even mapping. The mapping T is a unique fixed
point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that T is a unique mapping satisfying (3.11) such that there exists a ν ∈ (0,∞) satisfying

µh(x)−T (x)(νt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;
(2) d(Jnh, T )→ 0 as n→∞. This implies the equality

lim
n→∞

4nh
( x

2n

)
= T (x)
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for all x ∈ X;
(3) d(h, T ) ≤ 1

1−Ld(h, Jh), which implies the inequality

d(h, T ) ≤ 5L

4− 4L
.

This implies that the inequality (3.9) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.6. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.8). Then T (x) :=
limn→∞ 4n

(
f
(

x
2n−1

)
− 16f

(
x
2n

))
exists for each x ∈ X and defines a quadratic mapping T : X → Y such

that

µf(2x)−16f(x)−T (x) (t) ≥ (2p − 4)t

(2p − 4)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.5 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 22−p and we get the desired result.

Theorem 3.7. Let ϕ : X2 → [0,∞) be a function such that there exists a constant L < 1 with

ϕ(x, y) ≤ 4Lϕ
(x

2
,
y

2

)
for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.1). Then

T (x) := lim
n→∞

1

4n
(
f
(
2n+1x

)
− 16f(2nx)

)
exists for each x ∈ X and defines a quadratic mapping T : X → Y such that

µf(2x)−16f(x)−T (x) (t) ≥ (4− 4L)t

(4− 4L)t+ 5ϕ(x, x) + 5ϕ(2x, x)
(3.12)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S → S such that

Jh(x) :=
1

4
h (2x)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(Lεt) =µ 1
4
g(2x)− 1

4
h(2x) (Lεt) = µg(2x)−h(2x) (4Lεt)

≥ 4Lt

4Lt+ ϕ (2x, 2x) + ϕ(4x, 2x)

≥ 4Lt

4Lt+ 4L(ϕ(x, x) + ϕ(2x, x))

=
t

t+ ϕ(x, x) + ϕ(2x, x)
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for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (3.10) that

µh(x)− 1
4
h(2x)

(
5

4
t

)
≥ t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0. So d(h, Jh) ≤ 5
4 .

By Theorem 1.5, there exists a mapping T : X → Y satisfying the following:

(1) T is a fixed point of J , i.e.,
T (2x) = 4T (x) (3.13)

for all x ∈ X. Since h : X → Y is even, T : X → Y is an even mapping. The mapping T is a unique fixed
point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that T is a unique mapping satisfying (3.13) such that there exists a µ ∈ (0,∞) satisfying

µh(x)−T (x)(µt) ≥
t

t+ ϕ(x, x) + ϕ(2x, x)

for all x ∈ X and all t > 0;

(2) d(Jnh, T )→ 0 as n→∞. This implies the equality

lim
n→∞

1

4n
h(2nx) = T (x)

for all x ∈ X;

(3) d(h, T ) ≤ 1
1−Ld(h, Jh), which implies the inequality

d(h, T ) ≤ 5

4− 4L
.

This implies that the inequality (3.12) holds.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.8. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.8). Then T (x) :=
limn→∞

1
4n

(
f
(
2n+1x

)
− 16f(2nx)

)
exists for each x ∈ X and defines a quadratic mapping T : X → Y such

that

µf(2x)−16f(x)−T (x) (t) ≥ (4− 2p)t

(4− 2p)t+ 5(3 + 2p)θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.7 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then we can choose L = 2p−2 and we get the desired result.
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