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Abstract

In this paper, the circuit layout system in a Euclidean space is defined. By means of the algebraic,
analytic, geometry and inequality theories, a sharp upper bound involving circuit layout system is obtained
as follows:
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1. Introduction

We first introduce a passage layout problem as follows.
Let I' be a polygon road. Assume that we need to build N factories A7, A3, ..., A} on the road I' which
are interdependent, and there is a constant § > 0 such that

A%, —Af[>6>0,Vji:1<j<N, N=>3.

Then, in order to facilitate the work, for any 7,5 : 1 <14 # j < N, we need to build an underground passage

(such as the subway) [A’;Aﬂ which connect the factories A7 and A7. As well as we need to estimate the

*Corresponding author
Email addresses: hantian123_1230163.com (Tianyong Han), shanhewu@163.com (Shanhe Wu), wenjiajin623@163.com
(Jiajin Wen)

Received 2015-10-02



T. Han, S. Wu, J. Wen, J. Nonlinear Sci. Appl. 9 (2016), 1922-1935 1923

building cost of the underground passages. That is to say, we need to find among all possible locations of
A7, A3, ..., A}y such that the total length

1 * *
5 2 -4 (L1)
1<j—i<N—1,1<<N
of the underground passages is the maximal one, where
Al =A<« i=j (mod N), i,j =0,£1,£2,... . (1.2)

In order to study the above problem, we need to recall some basic concepts [2], 6] [7].

Let E be a Euclidean space, and let «, 8 € E. The inner product of a and /3 is denoted by («, 8) and
the norm of « is denoted by ||a|| £ Va2, where a? £ (a, a) . The angle between two nonzero vectors a and
[ is defined to be

{a,B)

e[ B

The dimension dimE of E satisfies dimE > n if and only if there exist n linearly independent vectors
€1,€2,...,&6, in E [6].

Let B,C € E where E is a Euclidean space. Then the closed, open and closed-open segments joining
them will respectively be denoted by

[BC] £ {xpc®)| t0,1]}, (BC)={xpct) t€(0,1)},

[BC) = {xpct)] t €[0,1)} and (BC] = {xp,c(t) t € (0,1]},

Z (o, B) £ arccos

€ [0, ].

where
xp,c(t) = (1-t)B +tC.

Let A = (Ay,---,Ay), where
A # Ay, i=1,2,....,n, n >3,
be a sequence of points in E with the dimension dimE > 2, where
Ai=Aj<i=j (modn), i,j =0,£1,£2,... . (1.3)

We say that the set

n

I, (A) 2 U [A; A1)

i=1
is an n-polygon, or a polygon if no confusion is caused. The angle of I';, (A) at A; , where i =1,2,...,n,
are defined as

LA & L(A— Aiq, A — A).
We also denote the total length (or perimeter) of an n-polygon I',(A) by

T (A)] 2> (|4 — Al
=1

and we say that
1
ITn (A = 5 > 14 — Al
1<j—is<n—1,1<i<n

is the norm of the n-polygon I',,(A).
The circuit layout system CLS {I',(A),I'ny(A*), 5} is defined as follows [6].
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Definition 1.1. Let I',,(A) and I'y(A*), where N > n > 3, be two polygons in E with the dimension
dimE > 2. We say the set

CLS {Fn(A)a FN(A*)v 5}E = {Fn(A)a FN(A*)v 5}

is a circuit layout system (or CLS for short) if the set is non-empty and the following conditions are
satisfied:

(H1.1) £ZA; € (0,m), i =1,2,...,n.

(H1.2) A7 €'y (A) for j € {1,2,...,N} and A] € [41A,).

(H13) If A;(, A;-ﬁ-l S [AiAi—i—l)a then A;+1 € (A;AH-l) fori=1,2,...,nand 5 =1,2,...,N.

(H14) If A;k S [AzAz—l—l) and Az S [Ai+1Ai+2) for j, k € {1,2, e ,N} and i € {1,2, s ,TL}, then 5 < k.
(H1.5) For any i € {1,2,...,n}, there exists j € {1,2,---, N} such that A} € [A;4;+1).

(H1.6) For any j € {1,2,..., N}, there is § > 0 such that

1450 = A5l <6
Obviously, for the circuit layout system CLS{I',(A),I'n(A*), 5}y, we have
ITn (AT < [T (A)]. (1.4)
But in [6], the authors obtained several sharp lower bounds of |T'y (A*)| as follows.

Assertion 1.2. Let CLS{I',(A),I'ny(A*),d}y be a CLS, where n is an odd number. Then we have the
following inequality:

Dy (A%)] > T (A)]sin% + <1 — sin 42‘4> (N —n)d. (1.5)

Assertion 1.3. Let CLS{T',(A),I'n(A*),0}p be a CLS, where n is an even number, and let

n

> (=1)*a; > 0.

j=1

Then we have the following two assertions:

(1) 1If

then we have

Iy (A7) > {sin S0, (A)] = 6 (v - )
A 12 (1.6)
+ 45260527min2 {{w},1- {w}}} +d(N —n),

where -
Y (=1 a; + 6 (N —n)

W= 55 , {w}=w—-w]€[0,1),

and [w] is the Gaussian function.

(11) If

n

S(N=n)< ) (-1)"ay,

=1
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then we have

Iy (A7) > {sin S0, (A)] = 6 (v - )

+ cos2ﬁ z”: (=1)Y"a; — 6 (N —n) +d(N —n)
2 ! '

Figure 1: The graph of the CLS {I's (A),T's (A™),2}po.

Example 1.4. (see Example 4.3 in [6]) Consider the CLS{I'y (A),T'5 (A*),2}. , see Figure[1], where I'y (A)
is a rectangle, and
[A2 = Auf| = [[As = A3] = 6, [|A3 — Azl = [[A1 — Aaf| = 5,

and
AT S [AlAQ), A; S [AQAg), A;’,AZ S [A3A4>, A; € [A4A1)

Then we have
inf {|T5 (A")|} = 10v/2 + 2. (1.8)

In this paper, we will study the sharp upper bounds of
* 1 * *
Itv@ani=s > 45 -4
1<j—i<N—1,1<i<N

Our purpose is to estimate the building cost of the underground passages in the above passage layout
problem.
Our main result is the following Theorem [1.5

Theorem 1.5. Let CLS{I',,(A),I'n(A*),d}y be a CLS, and let n > 4. Then we have

1 T | T
3 > HAJ-—AiH<4\/N<1+1r2ia<};|coslz4i|>cs022N ;HAZ-H—AiHQ. (1.9)

1<j—i<N—1,1<i<N

Equality in (1.9) holds if E=R?, n=N =4 and I',, (A) = Ty (A*) is a regular 4-polygon.
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The connotation of Euclidean space is very rich.
Let E be an abstract n-dimensional linear space in the real number field R, and let €1, ¢e9,...,, be the
base of E, as well as let P € R™*™ be a positive definite matrix. Then, for any

o =1x161 + X289+ -+ xTpen €EE, B=y161 +1yoc2+ -+ + yYnen € E,

we can define the inner product («, ) as follows,

<a7ﬁ> é (.1?1,1?2, s 7xn)P(y17y27 tee 7yn)T7 (110)

which satisfies the following conditions of inner product:
(ii)) (A, B) = Ao, B), VaeE, VeR;
(iil) {+8,7) = (e, 7) +(B:7), Vo, B,y € E;
(iv) (a,a) 20, Va € E and (a,a) =0« a = 0.
Hence for the above inner product (a, ), the E is a Euclidean space where dimE = n.
Let S (R™ ™) be a set of real symmetric matrices which are defined on R"*". Then, for any A, B €
S (R™™) | we can define the inner product (A, B) as follows,

(A, B) = tr(AB), (1.11)

and we can easily prove that which satisfies the conditions of inner product, where tr(A) is the trace of the
matrix A. So, for the above inner product (A, B), the S (R"*") is a Euclidean space where dim S (R"*") = n?.

Let Cla,b] be a set of continuous functions which are defined on the interval [a,b]. Then, for any
f,g € Cla,b], we can define the inner product (f, g) as follows,

b
(f.9) & / f(Hg()dt. (1.12)

Therefore, for the above inner product (f, g), the C[a, b] is a Euclidean space where dim C|a, b] = occ.
Based on the above analysis, we know that Theorem [L.5]is of great theoretical significance and extensive
application value.

2. Preliminaries

In order to prove Theorem we need seven lemmas as follows.
According to the assumptions (H1.2)—(H1.5), we may easily get the following Lemmas and

Lemma 2.1 (see Lemma 2.4 in [0]). Let B,C € E. If B # C and D € [BC], then
IC = B[ =|C—DI+D-BJ. (2.1)

Lemma 2.2 (see Lemma 2.51in [0]). Let CLS{I',(A),I'n(A*),d}y be a CLS. Then for anyi € {1,2,...,n},
there exist
o(i)e{1,2,...,N} and7(i)e€{0,1,--- ,N—n}
such that
A:(i)+k; € [AlAZJrl) ) k= 07 ]-a ceey T (7’) )

and
n

Y r(@))=N-n (2.2)

i=1
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Lemma 2.3. If N > 4, then

Proof. According to the Euler’s formula:
exp (0j) = cos + jsin 6,
where j> = —1, we see that

N-1 N-1

k=1 k=0

2

—| =1 , : -
l—expRy ] exp 5 (exp;—;\r;’—exp%)

2expirj T
o (—2j sin% |~ 2N

That is to say, (2.3)) holds. The proof is completed.
Lemma 2.4. For any 4-polygon T'y (A, B,C, D) in E, we have

IC — Al +||D = B|* < [|IC = B|I> + |A = D|* +2||B — A| x | D - C]|.
Equality in (2.4)) holds if and only if Z/(B — A, D — C) = .

Proof. Set
(B-AC—-B,D-C,A-D,C—-A,D— B)=(a,b,c,de, f).

Then ([2.4) can be rewritten as
e’ + f2 <+ d* + 2|la]l - .

Since
at+b=e ct+d=—-eb+c=f d+a=—f,

we have

2(a,b) = &% —a® — V?,

2(c,d) = e* — & — d?,

2(b,c) = f2 —b* — 2,

2(d,a) = f* —d* — a?,

at+b+c+d=0

Hence

0=(a+b+c+d)?
—a2+62+02+d2+2(<a b) + (c,d) + (b,c) + (d,a)) + 2({a,c) + (b, d))
—(@? 4+ 02+ +d*) + 22 + f2) +2((a, ¢) + (b, d))
—2(a® + 02+ A+ d?) + 22+ A+ (a+e)* + (b+d)?
=2+ + A+ d*) + 2+ ) +2(a+c)?
—2(0% + d?) + 2(¢* + f2) + 4{a, )

(2.4)

(2.5)
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> —2(b* + d*) +2(e* + %) — 4f|a]| - |||
=4+ A< +d>+2|al - |l

That is to say, (2.5 holds. Equality in (2.5 holds if and only if,
—2<(Z,C> = 2||a” ’ HC” < Z(B - AvD - C) £ 4(a7 C) =Tm.
The proof is completed. O

Lemma 2.5. Let I'y(A)(N > 4) be a polygon in E, and let

N

km 1

Sé'—Léig A — A% k=1,2,....N —1.

k Sin N, k N(QSk)Q £ ” i+k ’L|| ) ) 4y )

Then we have )

S Si_1S,

L < (24) Lo+ 2220 (Lgy + L), £=2,3,..,N 2, (2.6)
Sk 2Sk

and equalities in (2.6]) hold if, and only if,

Ajqan— A Ajr— Ay
itk — Ltk L i=1,2,....N, (2.7)
Sk—1 Sk+1

and a sufficient condition that the equalities in (2.6) hold is that E = R? and I'y(A) is a regular N -polygon
in R2.

Proof. Consider the quadrilateral I'y (A;—1, A;, Ai—14k, Ai+k) - From

2
(llAin — Al [Aisr — Az‘—lH) 50, (2.8)
Sk*l Sk+1
we obtain that
Skt1 2, Ok-1 2
2| Aim1k — Aill - [ Aier — Aia|l < [Aic1r — Aill” + [ Airr — A1l (2.9)
Sk—l Sk-i-l
It follows from Lemma and (2.9) that
[Aipk = Aill® + [ A1k — Aia]?
<A = Al + Ak = Aimrnll? + 20 Aiin — All - [ Aier — Aia |
S
<A = AP+ i = AiralP + G5 A — A (2.10)
Sk—
+ #HAHIC — A,
k+1
which implies that
N
> (v = Aill® + [ Aicir — Aia ) < M, (2.11)
=1
where
N 2 9, Sk+1 9, Sk-1 2
MEY (14— Aica|® + [ ik — Aignl® + [Aim1r — Aill” + [Airk — Aiall” ) -
Skfl Sk+1

i=1
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Since
N N
> MAik = Aill? =D [Aim1ak — Al = 4N S Ly,
=1 i=1
N N
D A= AP =D 1 Aigk — Aimagil = 4N ST Ly,
=1 =1
N
D N Aimigk — Ail> =4ANSE Ly,
=1
and
N
> Air — Aia|]> = ANSP Ly,
=1

the inequality (2.11)) is equivalent to
8NSpLy < 8NSTLy + 4N Sky1Sk—1Lk—1 + 4N Sp_1Sk41Li41,

that is )
Sh Sk—1Sk+1
Lp<|—=—| L —————=(L Li_1).
k <Sk> 1+ 252 (Lgs1 + Li—1)

According to Lemma equalities in (2.6 hold if and only if (2.7]) holds. Furthermore, as can be checked
easily, a sufficient condition that the equalities in (2.6)) hold is that E = R? and I'y(A) is a regular N-polygon
in R2. The proof is completed. O

Remark 2.6. We remark here that the sufficient condition of equalities in ([2.6]) is not necessary. For example,
when E = R?, N = 4, the equality in ([2.6) holds if and only if T'y(A) is a parallelogram in R2.
Indeed, if E=R?, N =4 and k = 2, then
Aiipr = Ai _ Aigp — Aia
Sk-1 Sk+1
A1 —Ai Ao — A
S = S5 Ang (2.12)
Aij1 — A=A — A1, 1= 1,2, &
Ay — Ay =A3 — Ay, A3 — Ay = Ay — Ay

Remark 2.7. If Ty (A) is a regular N-polygon, then
Ly=R} k=1,2,...,N—1, (2.13)
where Ry denotes the radius of the circumcircle of I'n(A).

Lemma 2.8. Let I'y(A) be a polygon in E with dimE > 2, where N > 4, and let Ly be defined in Lemma
2.5 Then for any positive integers
k,j:k>22 k+j<N-1,

there exist positive constants Cyyjj, Cr—1, C1,, which depend only on k,j, N, such that
Ly, < CryjjLgyj + Cr—1,jLg—1 + C1 5L, (2.14)

and
Ck+j7j + Ck_l,j +Cj=1. (2.15)

A sufficient condition that equalities in (2.14) hold is that E = R? and T'x(A) is a reqular N-polygon in R?.
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Proof. The proof is based on the mathematical induction method for j.
(I) When j =1, let

Sk—15k+1 S\’
C =Cy11=——>0andCi11=(5] >0
k+1,1 k—1,1 28,% an 1,1 Sp
From Lemma we have
k< Crt1,1Lg41 +Cr_1,1Lg—1 +Cr1 L. (2.16)
Let T'y(A) be a regular N-polygon in R2. In view of Remark [2.7 m we know that
Lk:Lk—H Ly 1=11= R0>0
It follows from Lemma that equality in (2.16]) holds. Thus,
Crt11 +Cro11 +C11 = 1.

(IT) Suppose that and hold for j = m > 1. Then there exist positive constants Cjip n,
Ci—1,n, C1,n such that
Crktnn + Cr-1n+Cr1pn =1, (2.17)
and
Ly < CrqnnLliyn + Cr—1nLiy—1 + Crnly, (2.18)
and a sufficient condition that the equalities in hold is that I'y(A) is a regular N-polygon.
Since k+1 >3 >2and (k+1)+n < N — 1, by the inductive assumption, there exist positive constants

Cii14nms Chne €1, such that
Cl;k+1+n,n + C;,n + Cin = 17 (219)
and
Lii1 < Ck+1+n nLk+1+n + Ck: nLk + Cl nLl (220)
Substituting (2.20)) into (2.16)), we see that
L < Cit11 (CZ+1+n,nLk+1+n + C};nLk + CinLl) +Cr_11Lyp—1+Ci1L1. (2.21)
Note that

0< Ck+1,1 <1,0< C;;n <1 and1-— Ck—l—l,lcl::(,n > 0.
Solving the inequality 1' with respect to L, we obtain that

< Cilinsinsrilbvntr + Ol i1 L1 + G L, (2.22)
where
O Ck+1,101>§+n+1,n -0
k+n+1 ’I'L+1 1 _ Ck+17lc;s’n )
Cr-1,1
Ci: : >0
“Lnt T GG ’

Clnsr = 1 = Cry11C%
Let I'y(A) be a regular N-polygon in R2. In view of Remark we know that
Lj = Ljyny1 = Lp_1 = L1 = R2 > 0.
It follows from Lemma and our induction hypothesis that the equality in holds. Thus,

Crinsinrt + Cilingr + Oy = 1.
This ends the proof. O



T. Han, S. Wu, J. Wen, J. Nonlinear Sci. Appl. 9 (2016), 1922-1935 1931

Lemma 2.9. Let I'y(A) be a polygon in E with dimE > 2, where N > 4, and let Ly, be defined in Lemma
2.5 Then Ly < Ly, i.e.,

sm
Z||A,+k—Au? ( N) > Wi = A, k=258,....N =2 (2.23)

=1

A sufficient condition that the equalities in (2.23) hold is that E = R? and I'y(A) is a regular N -polygon in
R2.

Proof. Set k+j =N —1in (2.14). Then

k< OnoiN—1—kLn—1 + CriN—1—kLi—1 + Cin—1-x L1 (2.24)
Since
A; =Aj & i=j(modN),
we have
1 =
L_Ai A Al = Ai_1 — Ai|]> = L. 2.25
S e O TSI ;H i+N—1 — A N25)? ;H i—1 — Al 1 (2.25)
It follows from ([2.24) and (2.25)) that, for any k € {2,3,..., N — 2}, there exist positive constants Cj_; and
C1 such that
Cr1+C1=1, Ly <Cp1Lg1+ CiLy, (2.26)

as well as
Ci—1=Cr_1n-1- >0, C1 = Cn_1,N—1-k + C1 N—1—k > 0.

Repeated use (2.26]), we get

L < Cp—1Lp—1 4+ C1L1 < C—1 (Cj_gLi—2 + CTL1) +Ci1Ly
ZiQLk_Q + CT*Ll C*** 3Lp_3+ C***Ll - < CLy.

Hence,
L, <CL;. (2.27)

Set I'y(A) is a regular polygon in R?, by Remark we know that
Lp,=1L=R:>0.

By Lemma equality in (2.27)) holds, which implies that C' = 1. Hence (2.23) holds. This completes the
proof. O

3. Proof of Theorem [1.5]

Proof. Set that

oi) Aill s yi = HA;(i—l)-‘rT(i—l) — Al
Zig £ HAZ@)% - A;(i)+k—1H ; p = max |cos ZA;].
By Lemmas [2.1) and [2.2] we have
7 (i)
Tt Y1+ Y zik = A — Al i=1,2,...,n. (3.1)

k=1
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By Lemma we obtain that

According to the Jensen’s inequality [7, Lemma 2.6]:

Zxk (Zxk) Ve Doo)", Ve loo),
(3.1, (-2) and

la—p]l = \/IIO&II2 + 1817 = 2l - 18] cos £ («, B),

we see that
Z 420 = 417 = 3= { 420 = Acorc | + Zz@k
n [ (i)
- i=1 H <Az(i) a Ai) B (A‘t(i—l)”(i—l) B Aj) H2 " ;;Zi%k

n (i)
= x7 +y? — 2z cos LA; + Zi2,k

i=1 k=1
n (1)
<D |yl 2pmiyi+ )2
i=1 k=1

n 7(3)

<Z a? +y?+p (2 + 97 +Zz3k
=1

=1
n n 7(4)
=(4p)Y (2T +ud) + DD 2
i=1 i=1 k=1
n n T(Z)
=1+ (@ +y2a) + DD 2
j=1 i=1 k=1
n (%)
<(1+P)Z $z+yz+1 +ZZZ7
i=1 k=1
n 7(4) 2 n 7(i)
=1+ (1A = Al =D zn | +D0D 2
=1 k=1 =1 k=1
n (i) S0
S@+p) D IAigr —Aill =Dz |+ 2
i1 =1 =1 k=1
n [ 7(1) 2 7(4)
=@+ ([ 1A = Al =D 2w | +D> 20
=1 L k=1 k=1
n 7(0) 7(0) 2
< (1+p) [Airs = Al =D zip+ > zin
i—1 p} k=1
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= (1+p) Y A — Al
i=1
ie.,
Z 147 = 45| < (14 p) Z 14is1 — Ail|*. (3.3)

=1

According to the power mean inequality (see [7, Lemma 2.3] and [I} 2, Bl [4, 5]), we have that

Zﬂkﬂfk (Z Mkﬂj‘k) v T,p € [O’Oo)na v v e (17 OO) )

where pu satisfies the condition
n
> m =1,
k=1

According to Lemmas and (3.1)), we obtain that

1 * *
;X - -

1<j—i<N—1,1<i<N

F

[\MH
P_ﬂz
E

z+k A:H

_.
Il
—

ol
‘ZH
LN

AT — A7l

I
| =
™
=
M) =

N
I
—

r

/AN
|2
™

AT Z HAH-k - ATHQ

N-1

N 1 smN |2

I3\ 5 ) >z - 4
N-1

1 T km w112
=3 NCSCN (k_l SIIIN> z:HAZJrl _AiH

1 r (X kr -
< §VNCSCN <k1 sin N) (]. +p); HAi-i-l - AZH2

2 2N

1 n
= \/N(1+p)cscﬁcot— z;”A”l_AiHQ
1=

1 T =
= ZVN(l‘FP)CSCQﬁ Z;HAiJrl — A
1=

<isn

1
= 4\/]\7( + max |cos LA, |>csc — ZHAzH A%

This shows that inequality (|1.9) holds.

Based on the above proof, we may see that if E =R? n= N =4, I',(A) = 'y (A*), and T, (A) is
a regular 4-gon, then the equality in (1.9 holds, see Example This completes the proof of Theorem

[1.5]

O
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A large number of algebraic, analytic, geometry and inequality theories are used in the proof of our

results. In order to prove Theorem [I.5] we need Lemmas 2.1} 2.2 23] 2-4], 2.5] 2-§ and 2:9] Indeed, the

proof of Theorem [1.5is both interesting and difficult. Some techniques related to the proof of Theorem
can also be found in the references [1]—[3] cited in this paper.

4. An example for Theorem

We give here an example to illustrate the applications of Theorem

Example 4.1. Consider the CLS {T'y (A), T4 (A*),l}g2, here E=R? n=N =4,0<1<1/2, and I'; (A)
is a regular 4-polygon where
HAi-f—l - AZH = 17 i = 17273747

see Figure [2|

A, B A,
1-z 2
W
5 1-
A 4
A
1-w z
¥
X 1-x
A, A A

Figure 2: The graph of the CLS {I'4 (A),T4 (A™),1}g2 where 0 <1 < 1/2.

T, (A) =Tn(A") & (A1, A2, A3, Ay) = (A7, A5, A5, A}) , then, by (1.2), we have

1

145 -Ail=5 > 14— A

1<j—i<KN—1,1<i<N 1<j—i<3,1<i<4
= [[A2 — A1 + || A3 — A2 + [|As — As]|
+ || A1 — Ag| + | A1 — As|| + || A2 — Ad4|
=4+2V2,

N
1
2

and

1 T -
4\/N (1 + max |cos ZAi\>csc22]V ; [ Air1 — Al

1<i<n
1 us o
=—4/4 1+max‘cos—‘ CSC—X\/E
4 1<i<4 2 8
1 2 2
= csc? T_

8 sin2§:1—cos§:1—ﬁ/2
=44 2v2.
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Therefore, equality in ([1.9) holds for this case. According to Theorem we have
sup {||[T4(A9)||} = 4 + 2V/2. (4.1)
On the other hand, by means of the Mathematica software, we know that
IPa(A)|| = [[A3 — ATl + [[A3 — A3l + [[As= — A3l + [|A] — AG|l + [|A] — A3l + [|A5 — A
=V =2+ 2+ V(1 =y + 2+ V(1 - 22+ w? + /(1 - w)? + 22
+vV0—z—22+1+/(1—-y—w)?+1
> 2422,
where (z,y, z,w) € [0,1]*, and the equality holds if and only if
e s—wet
r=y=z=w=g,
which is the solution of the equation group
DITa(A")| _ olTa(A)] _ alTa(A)] _ alTa(AY] _
Ox oy 0z ow '
Therefore,
inf {|[T4(A%)[|} = 2 + 2v2. (4.2)

We remark here that, for the infimum of F(z,vy,z,w) = |T4(A*)||, by Mathematica software, a direct
calculation gives

inf {F(2,y, z,w)} = F(0.49999 - -- ,0.49998 - - - ,0.50001 - - - ,0.50003 - - - ) = 4.82842712474619--- . (4.3)
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