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Abstract

In this paper, we develop a new stochastic mutualism population model

dxi(t) = xi(t)

ri +

n∑
j=1

aijxj(t)

 dt+ σixi(t)dBi(t)

 , i = 1, 2, · · · , n.

By constructing suitable Lyapunov functions, we show the system has a stationary distribution. We also
discuss the pathwise behaviour of the solution. The conclusions of this paper is very powerful since they
are independent both of the system parameters and of the initial value. It is also independent of the noise
intensity as long as the noise intensity σ2i > 0. Computer simulations are used to illustrated our results.
c©2016 All rights reserved.
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1. Introduction

Consider a n-species Lotka-Volterra mutualism model
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dxi(t) = xi(t)

ri +
n∑
j=1

aijxj(t)

 dt, i = 1, 2, · · · , n, (1.1)

where xi(t) is the ith species population density at time t, ri is the intrinsic growth rate of species xi, aii
represents the population decay rate in the competition among the ith species and aij represents the ith
species population increase rate in the mutualism among the other species xj(i, j = 1, 2, · · · , n, i 6= j).

In particular, Chen and Song [2] have studied the sufficient conditions for the global stability of positive
equilibrium of model (1.1), the sufficient conditions are as follows:

(i) There is a matrix G = (Gij)n×n, such that −aii ≤ Gii, aij ≤ Gij(i 6= j) hold for all i, j = 1, 2, · · · , n.

(ii) All of the principal minors of −G are positive.

There are many other researchers who have studied the dynamics of mutualism model (see [4, 10, 16]
and references therein).

In fact, mutualism population dynamics is inevitably affected by environmental white noise, which is
always present [6, 7, 9, 11, 12, 14, 15]. In practice, we usually estimate parameters by an average value
plus errors. We may assume that the errors follow normal distributions, but the standard deviations of the
errors, known as the noise intensities, may depend on the population sizes [1, 12]. Therefore, we replace
parameter ri in model (1.1) by

ri → ri + σixi(t)Ḃ(t), (i = 1, 2, · · · , n).

Then we get the following new stochastic system

dxi(t) = xi(t)

ri +
n∑
j=1

aijxj(t)

 dt+ σixi(t)dBi(t)

 , i = 1, 2, · · · , n, (1.2)

where Bi(t) is standard one-dimensional independent Wiener processes, σ2i are the intensity of the white
noise and σ2i > 0.

The organization of this paper is as follows. In next section, we will investigate the pathwise behaviour
of the solution of system (1.2). In Section 3, we show that the system has a stationary distribution with no
parametric restriction if σ2i > 0 . We illustrate our results through an example in Section 4. Finally, the
conclusion is presented in Section 5.

Throughout this paper, let (Ω,F , P ) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions (i.e. it is increasing and right continuous while F0 contains all P-null sets). We denote
by Rn+ the positive cone in Rn, that is Rn+ = {x ∈ Rn : xi ≥ 0 for all 1 ≤ i ≤ n}.

In general, we consider a d-dimensional stochastic differential equation [13]

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) on t ≥ t0 (1.3)

with initial value x(t0) = x0 ∈ Rd, where B(t) denotes d-dimensional standard Brownian motion. Define
the differential operator L associated with Equation (1.3) by

L =
∂

∂t
+

d∑
k=1

fk(x, t)
∂

∂xk
+

1

2

d∑
k,j=1

[gT (x, t)g(x, t)]kj
∂2

∂xk∂xj
.

If L acts on a function V ∈ C2,1(Sh ×R+;R+), then

LV (x, t) = Vt(x, t) + Vx(x, t)f(x, t) +
1

2
trace[gT (x, t)Vxxg(x, t)],

where C2,1(Sh × R+;R+) is the family of all nonnegative functions V (x, t) defined on Sh × R+ such that
they are continuously twice differentiable in x and once in t, and

Vt =
∂V

∂t
, Vx = (

∂V

∂x1
,
∂V

∂x2
, · · · , ∂V

∂xd
), Vxx = (

∂2V

∂xk∂xj
)d×d.
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2. Asymptotic pathwise estimation

In this section, we will investigate pathwise behaviour of the solution of system (1.2), which is one of
desired population dynamical properties of population system.

Theorem 2.1. For any given initial value x0 ∈ Rn+, the solution of system (1.2) has the following property:

lim sup
t→∞

log |x(t)|
log t

≤ 1 a.s.

Proof. Define a Lyapunov function for any p ∈ (0, 1)

V (x) =

n∑
i=1

xi
p.

Then

dV (x) = p

n∑
i=1

xi
p

ri +

n∑
j=1

aijxj −
1− p

2
σi

2xi
2

 dt+ p
n∑
i=1

σixi
(p+1)dBi(t).

Let

z(x) =

p
n∑
i=1

σixi
(p+1)

V (x)
, K(x) = p

n∑
i=1

xi
p

ri +
n∑
j=1

aijxj −
1− p

2
σi

2xi
2

 .

By Itô’s formula, we get

d log V (x) =

(
K(x)

V (x)
− z2(x)

2

)
dt+ z(x)dB(t)

and

det log V (x) =

(
log V (x) +

K(x)

V (x)
− z2(x)

2

)
dt+ z(x)dB(t).

Integrating both sides from 0 to t yields

et log V (x(t)) = log V (x(0)) +

∫ t

0
es
(

log V (x(s)) +
K(x(s))

V (x(s))
− z2(x(s))

2

)
ds+

∫ t

0
esz(x(s))dB(s).

Using the Exponential Martingale Inequality, for any α, β, T > 0, we have

P

{
ω : sup

0≤t≤T

[∫ t

0
esz(x(s))dB(s)− α

2

∫ t

0
e2sz2(x(s))ds

]
≥ β

}
≤ e−αβ.

Choose T = Kδ, α = εe−Kδ, β = (1+δ)eKδ log(Kδ)
ε , where 0 < δ < 1, 0 < ε < 1. Note that

∞∑
K=1

1

(K)1+δ
<∞,

an application of the Borel-Cantelli lemma yields that for almost all ω ∈ Ω, there is a random integer
n0 = n0(ω) > 0 such that∫ t

0
esz(x(s))dB(s) ≤ (1 + δ)eKδ log(Kδ)

ε
+
εe−Kδ

2

∫ t

0
e2sz2(x(s))ds

≤ (1 + δ)eKδ log(Kδ)

ε
+
ε

2

∫ t

0
esz2(x(s))ds, 0 ≤ t ≤ Kδ, n ≥ n0.

(2.1)
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Hence

log V (x(t)) ≤ e−t log V (x(0)) +
(1 + δ)eKδ−t log(Kδ)

ε

+

∫ t

0
es−t

(
log V (x(s)) +

K(x(s))

V (x(s))
− (1− ε)z2(x(s))

2

)
ds.

Applying inequalities log x ≤ x− 1 and n(1−
p
2
)∧0|x|p ≤

n∑
i=1

xi
p ≤ n(1−

p
2
)∨0|x|p, one see that

log V (x(t)) +
K(x(t))

V (x(t))
− (1− ε)z2(x(t))

2
≤ V (x(t))− 1 +

K(x(t))

V (x(t))

≤
n∑
i=1

xi
p − 1 + př + pǎij

n∑
i=1

xi −
1

n
|x|2

≤ C,

where ř = max {r1, r2, · · · , rn}, ǎij = max {aij}, i, j = 1, 2, · · ·n and C is a constant.
Therefore

log V (x(t)) ≤ e−t log V (x(0)) +
(1 + δ)eKδ−t log(Kδ)

ε
+ C(1− e−t).

It then follows that for almost all ω ∈ Ω, if n ≥ n0, (K − 1)δ ≤ t ≤ Kδ,

log |x(t)|p

log t
≤ log V (x(t))

log t
≤ 1

log(K − 1)δ
[e−t log V (x(0)) + C] +

(1 + δ)eδ log(Kδ)

ε log(K − 1)δ
.

This implies

lim sup
t→∞

log |x(t)|p

log t
≤ (1 + δ)eδ

ε
a.s.

Letting δ → 0, ε→ 1 gives

lim sup
t→∞

log |x(t)|
log t

≤ 1

p
a.s.

Letting p→ 1 we obtain

lim sup
t→∞

log |x(t)|
log t

≤ 1 a.s.

This completes the proof.

3. Existence of stationary distribution

In this section, we prove the existence of stationary distribution of system (1.2). The following theorem
gives a criterion for the existence of stationary distribution in terms of Lyapunov function (see [3], Chapter
3, p.103, [8], [17], p.1163).

Let X(t) be a homogeneous Markov Process in El (El denotes l dimensional Euclidean space) and is
described by the following stochastic equation,

dX(t) = b(X)dt+

k∑
r=1

gr(X)dBr(t). (3.1)

The diffusion matrix is defined as follows,

Λ(x) = (λij(x)) , λij(x) =

k∑
r=1

gir(x)gjr(x).
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Theorem 3.1. The Markov process X(t) has a unique ergodic stationary distribution µ(·) if there exists a
bounded domain U ∈ El with regular boundary Γ and

A1 : there is a positive number M such that
l∑

i,j=1
λij(x)ξiξj ≥M |ξ|2, x ∈ U, ξ ∈ Rl,

A2 : there exist a nonnegative C2−function V such that LV is negative for any El \ U .

Then

Px

{
lim
T→∞

1

T

∫ T

0
f(X(t))dt =

∫
El

f(x)µ(dx)

}
= 1

for all x ∈ El, where f(·) is a function integrable with respect to the measure µ.

Theorem 3.2. Assume that ri >
σi

2

2 , i = 1, 2, · · · , n, then for any initial value x0 ∈ Rn+, there is a
stationary distribution µ(.) for system (1.2) and it has ergodic property.

Proof. For any p ∈ (0, 1), θ ∈ (0, 1), define a nonnegative C2− function V by

V (x1, x2, · · · , xn) =
n∑
i=1

(
xi
p +

1

xiθ

)
.

Denote

V1 =
n∑
i=1

xi
p, V2 =

n∑
i=1

1

xiθ
.

Applying Itô’s formula, we get

LV1 = p
n∑
i=1

xi
p

ri +
n∑
j=1

aijxj −
1− p

2
(σixi)

2


≤ p

n∑
i=1

xi
p

ri +
n∑
j=1

aijxj

− p(1− p)
2

n∑
i=1

σ2i xi
2+p

≤ p
n∑
i=1

rixip +

n∑
j=1

aij
2

(xi
2p + xj

2)

− p(1− p)
2

n∑
i=1

σ2i xi
2+p

≤ p
n∑
i=1

rixip +

n∑
j=1

aij
2
xi

2p +

n∑
j=1

aji
2
xi

2

− p(1− p)
2

n∑
i=1

σ2i xi
2+p

≤M − p(1− p)
4

n∑
i=1

σ2i xi
2+p,

(3.2)

where M = sup
x∈Rn+

{p
n∑
i=1

(
rixi

p +
n∑
j=1

aij
2 xi

2p +
n∑
j=1

aji
2 xi

2

)
− p(1−p)

4

n∑
i=1

σ2i xi
2+p} <∞.

LV2 = −θ
n∑
i=1

xi
−θ

ri +
n∑
j=1

aijxj −
θ + 1

2
σ2i xi

2


≤ −θ

n∑
i=1

xi
−θ
(
ri + aiixi −

θ + 1

2
σ2i xi

2

)
.

(3.3)
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Thus

LV = LV1 + LV2

≤M − p(1− p)
4

n∑
i=1

σ2i xi
2+p − θ

n∑
i=1

xi
−θ
(
ri + aiixi −

θ + 1

2
σ2i xi

2

)
.

(3.4)

Define

U = {(x1, x2, , · · · , xn) ∈ Rn+, ε ≤ xi ≤
1

ε
},

where ε is sufficiently small number.
Now, for any fixed m(1 ≤ m ≤ n), if 0 < xm < ε, we have

LV ≤M − p(1− p)
4

n∑
i=1

σ2i xi
2+p − θrmxm−θ − θ

n∑
i=1

xi
−θ
(
aiixi −

θ + 1

2
σ2i xi

2

)
.

Noting that M − p(1−p)
4

n∑
i=1

σ2i xi
2+p − θ

n∑
i=1

xi
−θ (aiixi − θ+1

2 σ2i xi
2
)

is bounded, we obtain

LV ≤M1 − θrmε−θ. (3.5)

If xm > 1
ε , we get from (3.4) that

LV ≤M − p(1− p)
8

n∑
i=1

σ2i xi
2+p − θ

n∑
i=1

xi
−θ
(
ri + aiixi −

θ + 1

2
σ2i xi

2

)
− p(1− p)

8
σ2mxm

2+p

≤M2 −
p(1− p)

8
σ2m

1

ε2+p
,

(3.6)

where M2 = sup
x∈Rn+

{M − p(1−p)
8

n∑
i=1

σ2i xi
2+p − θ

n∑
i=1

xi
−θ (ri + aiixi − θ+1

2 σ2i xi
2
)
} <∞.

Now, we can choose ε sufficiently small such that

M1 − θrmε−θ < −1

and

M2 −
p(1− p)

8
σ2m

1

ε2+p
< −1,

which together with (3.5) and (3.6) yields that

LV < −1

for any x ∈ Rn+\U . Hence condition A2 in Theorem 3.1 is satisfied. Besides, the diffusion matrix of Equation
(1.2) is

Λ = diag{σ21x14, σ22x24, · · · , σ2nxn4}.

Choosing M = min {σ21x14, σ22x24, · · · , σ2nxn4, (x1, x2, · · · , xn) ∈ U}, we get

n∑
i,j=1

λij(x)ξiξj =
n∑
i=1

σ2i xi
4ξi

2 ≥M |ξ|2.

Hence condition A1 is satisfied. According to Theorem 3.1, the desired results can be obtained.
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4. Simulations

In this section, we will consider 2-species mutualism system with stochastic perturbation which can be
represented by {

dx1(t) = x1(t)[(r1 − a11x1(t) + a12x2(t))dt+ σ1x1(t)dB1(t)],

dx2(t) = x2(t)[(r2 + a21x1(t)− a22x2(t))dt+ σ2x2(t)dB2(t)].
(4.1)

Using the Milstein method mentioned in [5], we get the corresponding discretization equation:{
x1,k+1 = x1,k + x1,k[(r1 − a11x1,k + a12x2,k)∆t+ σ1x1,kε1,k

√
∆t+ σ21x

2
1,k(ε

2
1,k∆t−∆t)],

x2,k+1 = x2,k + x2,k[(r2 + a21x1,k − a22x2,k)∆t+ σ2x2,kε2,k
√

∆t+ σ22x
2
2,k(ε

2
2,k∆t−∆t)].

Let r1 = 0.7, r2 = 0.7, a11 = 0.6, a12 = 0.2, a21(t) = 0.3, a22(t) = 0.8, x1(0) = 1.0, x2(0) = 1.5.
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Figure 1: Solution (x1(t), x2(t)) for system (4.1) compared to the deterministic system with σ1 = 0.1, σ2 = 0.1 and its
corresponding histogram.
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Figure 2: Solution (x1(t), x2(t)) for system (4.1) compared to the deterministic system with σ1 = 0.85, σ2 = 0.9 and its
corresponding histogram.
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In Figure 1, we choose σ1 = 0.1, σ2 = 0.1, According to Theorem 3.2, we can conclude that there is
a stationary distribution for system (4.1). Figure 1 shows the histogram of the approximate stationary
distribution of system (4.1).

In Figure 2, we choose the same parameters as in Figure 1, but increase the intensities of the white
noise( σ1 = 0.85, σ2 = 0.9), Theorem 3.2 is still satisfied. We can see that with the increasing of the white
noise, the zone which the solution is fluctuating in is getting large compared to the earlier case. However,
there is still a stationary distribution for system (4.1) (see the histogram on the right in Figure 2).

5. Conclusion

In this paper, we have considered a stochastic mutualism system. By constructing suitable Lyapunov
functions, we have shown that the system has a stationary distribution with no parametric restriction. The
result is very interesting, since the existence of a stationary distribution is independent both of the system
parameters and of the initial value. It is also independent of the noise intensity as long as the noise intensity
σ2i > 0. Usually, for the stochastic system, the strong white noise may make the system to be extinct,
however, the new stochastic system does not. On the other hand, the stability of positive equilibrium of
the corresponding deterministic system (1.1) need some restrictions on the parameters (see [2]), but the
stochastic system (1.2) has a stationary distribution with no parametric restriction if σ2i > 0. The existence
of a stationary distribution means stochastic stability to some extent, namely that noise is helpful for the
stability of the population system.
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