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Abstract

With the help of the Sumudu transform and the variational iteration method, we solve differential
equations and fractional differential equations related to entropy, wavelets etc. The methods which produce
solutions in terms of convergent series is explained. Some examples are provided to show the accuracy and
easy implementation and to show the methodology. c©2016 All rights reserved.
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1. Introduction

Differential calculus has great importance in the fields of science and technology. In recent years, frac-
tional calculus has been used in various fields like in modeling physical and engineering processes. It is
worth noting that the standard mathematical models of integer-order derivatives, including nonlinear mod-
els, do not work adequately in many cases [5]. In the recent years, fractional calculus has played a very
important role in various fields such as chemistry, biology, mechanics, electricity, signal and image process-
ing and notably control theory, wavelets, entropy, etc [4, 5, 6, 21, 22, 27, 28, 31]. In this paper we use
Lagrange’s multiplier technique (see [16]) which was widely used to solve a number of problems which arise
in mathematical physics and other related areas. This technique was developed into a powerful analytical
method, (Variational iteration method – VIM) [12] for solving differential equations. The method was ap-
plied to initial boundary value problems [1, 13, 26, 36, 37] and fuzzy equations [17, 18, 30], etc. Generally,
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in solving initial value problems of differential equations by VIM, the crucial point is identifying the La-
grange multipliers. To solve fractional differential equations (FDEs) by this method, we may directly use
the Lagrange multipliers in ordinary differential equations (ODEs), which often results in poor convergence.
To improve this method, a few ideas are suggested. The Riemann–Liouville integral emerges in the con-
structed correctional functional, but the integration by parts is difficult to apply. To avoid this problem,
the Riemann–Liouville integral is replaced by an integral which allows the integration by parts. This is a
very strong simplification but it affects the whole process after that step. Therefore, the Lagrange multiplier
is determined by a simplification, not reasonably explained in the literature, so far. The technique can be
universally extended to solve both ordinary differential equations and fractional differential equations with
initial value conditions.

2. Basics of the Variational Iteration Method

To illustrate the basic idea of this method, we consider the following general nonlinear system

dmu(t)

dtm
+ L[u(t)] +N [u(t)] = g(t), (2.1)

where L is a linear operator, N is a nonlinear operator, g(t) is a known continuous function and m is the
order of the highest-order derivative of the function. The basic characteristic of the method is construction
of the following correctional functional for (2.1):

un+1 = un +

∫ t

0
λ (t, τ)

[
dmu

dτm
+ L[u] +N [u]− g(τ)

]
dτ,

where λ (t, τ) is called the general Lagrange multiplier [16] and un is an approximate solution of nth order.
Concerning the VIM [12], we know that the integration by parts plays an important role in the deter-

mination of Lagrange multipliers. But in fractional calculus, generally, the following integration by parts
cannot be done

0I
α
t v

C
o D

α
t u = [uv] |t0 − 0I

α
t u

C
o D

α
t v,

where C
0 D

α
t is the well known Caputo derivative, 0I

α
t is the Riemann–Liouville fractional integral and

v = v(t). This is a particular case of VIM, for which this method is not so successful as other analytical
methods like the Adomian decomposition method (ADM) [10, 29, 32] and the homotopy perturbation method
(HPM) [19, 24, 33] in fractional calculus. To remove this obstacle, we consider the following reconstruction
of the method, using the Sumudu transform.

3. Sumudu Transform and the Mittag-Leffler Function

In early 90’s, Watugala [2] introduced a new integral transform named the Sumudu transform and applied
it to solve ordinary differential equations in engineering control problems. The Sumudu transform is defined
over the set of functions:

A = {f(t) | ∃M, τ1, τ2 > 0, |f(t)| < Me| t |τj , if t ∈ (−1)j × [0,∞)}

by

G̃(u) = S[f(t)] =

∫ ∞
0

f(ut)e−tdt, u ∈ (−τ1, τ2)

see [3, 7, 20, 23].
By using Sumudu transform of multiple differentiation, we obtain

S
[
C
0 D

α
t f(t)

]
= um−α

[
G̃(u)

um
−
m−1∑
k=0

fk(0)

um−k

]
,

=

[
G̃(u)

uα
−
m−1∑
k=0

fk(0+)

uα−k

]
, (m− 1 < α ≤ m) ,

(3.1)
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where G̃(u) = S [f(t)].
The Mittag-Leffler function, which is a generalization of the exponential function, is defined by [11]:

Eα(z) =

∞∑
n=0

zn

Γ (αn+ 1)
(α ∈ C, Re(α) > 0) .

4. Identification of the Lagrange Multipliers and Basic idea of VIM by Sumudu Transform

We will see the whole process of the Lagrange multipliers in the case of an algebraic equation. The
solution of the algebraic equation f(x) = 0 can be obtained by an iteration formula

xn+1 = xn + λf (xn) . (4.1)

The optimality condition for the extreme δxn+1

δxn
= 0, leads to

λ = − 1

f ′ (xn)
, (4.2)

where δ is the classical variational operator. By using given initial value x0, we can find the approximate
solution xn+1 by the following iterative scheme, using (4.1) and (4.2)

xn+1 = xn −
f (xn)

f ′ (xn)
, f ′ (x0) 6= 0, n = 0, 1, 2, . . . . (4.3)

The above defined formula (4.3) is well known as the Newton–Raphson formula and has quadratic conver-
gence.

In this paper we extend this idea to find the unknown Lagrange multiplier. In this process, first we
apply the Sumudu transform to (2.1), and get

u−mv (s)− u−mv(0)− · · · − u−1vm−1(0) + S (R [v] +N [v]) = S (g(t)) . (4.4)

Using (4.1), the iteration formula (4.4) can be written as

v̄n+1(u) = v̄n(u) + λ(u)
[
u−mv (u)− u−mv(0)− · · · − u−1vm−1(0) + S (R [v] +N [v])− S (g(t))

]
, (4.5)

where λ (u) = −um.
By applying the inverse Sumudu transform, S−1 to (4.5), after putting the value of λ (u), we get

vn+1(t) = vn(t)− S−1
[
um
{
u−mv (u)− u−mv(0)− · · · − u−1vm−1(0) + S (R [v] +N [v])− S (g(t))

}]
= S−1

[(
v(0) + · · ·+ um−1 vm−1(0)

)
+ um (S (R [v] +N [v])− S (g(t)))

]
.

where the initial iteration v0 (t) is

v0(t) = S−1
(
v(0) + · · ·+ um−1vm−1(0)

)
,

= v(0) + v′(0) t+ · · ·+ tm−1vm−1(0)

(m− 1)!
.

(4.6)

The formula (4.6) shows why the initial iteration in the classical VIM is determined by Taylor series.

5. Application to ODEs

In this section, we apply the above defined method to solve both ordinary differential equations and
fractional differential equations.
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Example 5.1. Consider the following radioactive-decay differential equation:

dN

dt
= −αN, N(0) = N0

where N(t) is the number of radioactive nuclei at time t and N0 the number at t = 0, and if their rate of
decay (−dN/dt) is proportional to the number of undecayed nuclei, with the constant of proportionality α,
then we can obtain successive approximate solutions by

N0(t) = N(0) = N0,

N1(t) = S−1 (1− uα)N0 = N0 (1− tα) ,

N2(t) = S−1
(
1− αu+ α2u2

)
N0 = N0

(
1− αt+

α2t2

2!

)
,

Nn(t) = S−1
(
1− αt+ · · ·+ (−1)n+1αnun

)
N0 = N0

(
1− αt+ · · ·+ (−1)n+1α

ntn

n!

)
.

As n→∞, Nn(t) tends to the exact solution N0e
−αt.

Example 5.2. Consider the following differential equation:

d2v

dt2
+ v = 0, v(0) = 2, v′(0) = 3,

We can obtain successive approximate solutions

v0(t) = v(0) = 2,

v1(t) = S−1
(
2 + 3u− 2u2

)
=

(
2 + 3t− 2t2

2!

)
,

v2(t) = S−1
(
2 + 3u− 2u2 − 3u3 + 2u4

)
=

(
2 + 3t− 2t2

2!
− 3t3

3!
+

2t4

4!

)
,

As n→∞, vn(t) tends to the exact solution 2 cos t+ 3 sin t.

There exist a lot of choices of v0 (t) and λ (u) which affect the speed of the convergence.
We note that the integration by parts is not used and the calculation of the Lagrange multiplier here is

much simpler. The VIM can be easily extended to FDEs and this is important and the main purpose of our
work.

6. Application to FDEs

To illustrate the basic idea of this method for fractional differential equations, we consider a general
nonlinear nonhomogeneous fractional differential equation with initial conditions of the following form

C
0 D

α
t v + L(v) +N(v) = g (t) , (6.1)

subject to the initial conditions

v(k)
(
0+
)

= dk, 0 < t, 0 < α, m = [α] + 1, k = 0, 1, . . . ,m− 1,

where C
0 D

α
t v is the Caputo derivative [6].
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The first step of this method is an application of the Sumudu transform to both sides of (6.1) (the
Sumudu transform of C0 D

α
t v is defined by (3.1)) we get

vn+1(u) = vn(u) + λ(u)

[{
u−αv (u)−

m−1∑
k=0

vk(0+)

uα−k
+ S (R [v] +N [v])− S (g(t))

}]
. (6.2)

Puting λ = −uα, the Lagrange multiplier in (6.2) and applying the inverse Sumudu transform, we get

vn+1(t) = vn(u)− S−1
[
uα

{
u−αv (u)−

m−1∑
k=0

vk(0+)

uα−k
+ S (R [v] +N [v]− g(t))

}]

= S−1

[{
m−1∑
k=0

vk(0+)

u−k
− uαS (R [v] +N [v]− g(t))

}]
,

where

v0(t) = S−1

(
m−1∑
k=0

vk(0+)

u−k

)
,

or

v0(t) = v(0) + v′(0) t+ · · ·+ tm−1v−m+1(0)

(m− 1)!
.

Example 6.1. Consider the following fractional-order logistic differential equation see [8, 25]:

C
0 D

α
t v(t) = rv(t)(1− v(t)), t > 0, r > 0, 0 < α ≤ 1, (6.3)

with the initial condition
v(0) = v0.

We get the first two successive approximate solutions by

v0(t) = v(0) = v0,

v1(t) = S−1

(
v0 +

uα
(
v0 − v20

)
2

)
=
v0
2

(
2 +

tα (1− v0)
Γ(α+ 1)

)
.

Particular Case. If we take r = 1/2, and the initial condition v(0) = 1/2, we can obtain successive
approximate solutions

v0(t) = v(0) = 1/2,

v1(t) = S−1
(

1

2
+
uα

8

)
=

(
1

2
+

0.125 tα

Γ(α+ 1)

)
,

v2(t) = S−1
(

1

2
+
uα

8
− u3α

128

)
=

(
1

2
+

0.125 tα

Γ(α+ 1)
− 0.0078125 t3α

Γ(3α+ 1)

)
.

As n→∞, vn(t) tends to the exact solution of (6.3). For α = 1, we have v(t) = et/2

1+et/2
.

Example 6.2. Consider the relaxation oscillator equation

C
0 D

α
t v + ωαv = 0, v(0) = 1, v′(0) = 0, 0 < t, 0 < α < 2, ω > 0. (6.4)

Applying the Sumudu transform to (6.4), we get the following iteration formula

vn+1(u) = vn(u) + λ(u)

[
v (u)

uα
− v(0)

uα
− v′(0+)

uα−1
+ ωαS (vn)

]
,
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as a result, after identifying a Lagrange multiplier λ = −uα, approximate solutions of (6.4) can be found by

vn+1(t) = vn(u)− S−1
[
uα
{
v (u)

uα
− v(0)

uα
− v′(0+)

uα−1
+ ωαS (vn)

}]
,

or

vn+1(t) = S−1
[
uα
{
v(0)

uα
− v′(0+)

uα−1
+ ωαS (vn)

}]
,

wherefrom

v0(t) = v(0) = 1,

v1(t) = S−1 (1− ωαuα) =

(
1− ωαtα

Γ (1 + α)

)
,

v2(t) = S−1
(
1− ωαuα + ω2αu2α

)
=

(
1− ωαtα

Γ (1 + α)
+

ω2αt2α

Γ (1 + 2α)

)
.

As n → ∞, vn(t) tends to the exact solution Eα((−ωt)α) [25], where Eα((−ωt)α) denotes the Mittag-
Leffler function, see [7].

Example 6.3. Consider the time-fractional diffusion equation

C
0 D

α
t v =

∂2v(x, t)

∂x2
+
∂ (x v(x, t))

∂x
, 0 < α < 1, (6.5)

with
v(x, 0) = x2.

Das [14] found the VIM solution of the fractional semi-derivative equation. Other methods applied to this
equation are available in [9] and in the monographs [4, 34] on fractional calculus.

As a result, after identifying a Lagrange multiplier λ = −uα, approximate solutions of (6.5) can be found
by

vn+1(t) = S−1
[
x2 + uαS

(
∂2vn(x, t)

∂x2
+
∂ (x vn(x, t))

∂x

)]
,

wherefrom

v0(t) = v(0) = x2,

v1(t) = S−1
[
x2 +

(
2 + 3x2

)
uα
]

=

(
x2 −

(
2 + 3x2

)
tα

Γ (1 + α)

)
,

v2(t) = S−1
(
x2 +

(
2 + 3x2

)
uα +

(
8 + 9x2

)
u2α
)

=

(
x2 +

(
2 + 3x2

)
tα

Γ (1 + α)
+

(
8 + 9x2

)
t2α

Γ (1 + 2α)

)
.

As n → ∞, vn(t) tends to the exact solution Eα(kitα) [25], where Eα(kitα) denotes the Mittag-Leffler
function and ki = x2 + (1 + x2)(3i − 1).

The efficiency of the method for a nonlinear differential equation with variable coefficients is illustrated in
[15]. For other applications of a new modified VIM to ODEs and FDEs, readers are referred to [4, 15, 34, 35].
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