Sharp bounds for Neuman means with applications

Fang-Li Xia ${ }^{\text {a }}$, Wei-Mao Qian ${ }^{\text {b }}$, Shu-Bo Chen ${ }^{\text {a }}$, Yu-Ming Chu ${ }^{\text {a,* }}$
${ }^{\text {a S School of Mathematics and Computation Sciences, Hunan City University, Yiyang 413000, China. }}$
${ }^{b}$ School of Distance Education, Huzhou Broadcast and TV University, Huzhou 313000, China.

Communicated by F. Qi

Abstract

In the article, we present the sharp bounds for the Neuman mean $N_{A G}(a, b), N_{G A}(a, b), N_{Q A}(a, b)$ and $N_{A Q}(a, b)$ in terms of the convex combinations of the arithmetic and one-parameter harmonic and contraharmonic means. As applications, we find several sharp inequalities for the first Seiffert, second Seiffert, Neuman-Sándor and logarithmic means. © 2016 All rights reserved.

Keywords: Neuman mean, Schwab-Borchardt mean, harmonic mean, geometric mean, arithmetic mean, quadratic mean, contra-harmonic mean.
2010 MSC: 26E60.

1. Introduction

For $a, b>0$ with $a \neq b$, the Schwab-Borchardt mean $S B(a, b)$ [6, 7] of a and b is defined by

$$
S B(a, b)= \begin{cases}\frac{\sqrt{b^{2}-a^{2}}}{\operatorname{arcos}^{2}(a / b)}, & a<b, \\ \frac{\sqrt{2}-b^{2}}{\cosh ^{-1}(a / b)}, & a>b,\end{cases}
$$

where $\cosh ^{-1}(x)=\log \left(x+\sqrt{x^{2}-1}\right)$ is the inverse hyperbolic cosine function.
It is well known that the Schwab-Borchardt mean $S B(a, b)$ is strictly increasing in both a and b, nonsymmetric and homogeneous of degree 1 with respect to a and b. Many symmetric bivariate means are special cases of the Schwab-Borchardt mean. For example, $S B[G(a, b), A(a, b)]=(a-b) /[2 \arcsin ((a-b) /(a+b))]=$ $P(a, b)$ is the first Seiffert mean, $S B[A(a, b), Q(a, b)]=(a-b) /[2 \arctan ((a-b) /(a+b))]=T(a, b)$ is the second Seiffert mean, $S B[Q(a, b), A(a, b)]=(a-b) /\left[2 \sinh ^{-1}((a-b) /(a+b))\right]=M(a, b)$ is the Neuman-Sándor

[^0]mean, $S B[A(a, b), G(a, b)]=(a-b) /\left[2 \tanh ^{-1}((a-b) /(a+b))\right]=L(a, b)$ is the logarithmic mean, where $G(a, b)=\sqrt{a b}$ is the geometric mean, $A(a, b)=(a+b) / 2$ is the arithmetic mean, $Q(a, b)=\sqrt{\left(a^{2}+b^{2}\right) / 2}$ is quadratic mean, $\sinh ^{-1}(x)=\log \left(x+\sqrt{x^{2}+1}\right)$ is the inverse hyperbolic sine function and $\tanh ^{-1}(x)=$ $\log [(1+x) /(1-x)] / 2$ is the inverse hyperbolic tangent function.

Let $X(a, b)$ and $Y(a, b)$ be the symmetric bivariate means of a and b. Then the Neuman mean $N_{X Y}(a, b)$ [5] is given by

$$
\begin{equation*}
N_{X Y}(a, b)=\frac{1}{2}\left(X(a, b)+\frac{Y^{2}(a, b)}{S B(X(a, b), Y(a, b))}\right) \tag{1.1}
\end{equation*}
$$

Let $a>b>0, v=(a-b) /(a+b) \in(0,1)$. Then the following explicit formulas and inequalities can be found in the literature (5].

$$
\begin{gather*}
N_{A G}(a, b)=\frac{A(a, b)}{2}\left[1+\left(1-v^{2}\right) \frac{\tanh ^{-1}(v)}{v}\right] \tag{1.2}\\
N_{G A}(a, b)=\frac{A(a, b)}{2}\left[\sqrt{1-v^{2}}+\frac{\arcsin (v)}{v}\right] \tag{1.3}\\
N_{A Q}(a, b)=\frac{A(a, b)}{2}\left[1+\left(1+v^{2}\right) \frac{\arctan (v)}{v}\right] \tag{1.4}\\
H(a, b)<G(a, b)<L(a, b)<N_{A G}(a, b)<P(a, b)<N_{G A}(a, b)<A(a, b) \tag{1.5}\\
N_{Q A}(a, b)=\frac{A(a, b)}{2}\left[\sqrt{1+v^{2}}+\frac{\sinh ^{-1}}{v}\right] \\
<M(a, b)<N_{Q A}(a, b)<T(a, b)<N_{A Q}(a, b)<Q(a, b)<C(a, b)
\end{gather*}
$$

where $H(a, b)=2 a b /(a+b)$ is the harmonic mean and $C(a, b)=\left(a^{2}+b^{2}\right) /(a+b)$ is the contra-harmonic mean.

Recently, the bounds for Neuman means $N_{A G}(a, b), N_{G A}(a, b), N_{A Q}(a, b)$ and $N_{Q A}(a, b)$ have attracted the attention of several researchers.

Neuman [5] proved that the double inequalities

$$
\begin{aligned}
& \alpha_{1} A(a, b)+\left(1-\alpha_{1}\right) G(a, b)<N_{G A}(a, b)<\beta_{1} A(a, b)+\left(1-\beta_{1}\right) G(a, b), \\
& \alpha_{2} Q(a, b)+\left(1-\alpha_{2}\right) A(a, b)<N_{A Q}(a, b)<\beta_{2} Q(a, b)+\left(1-\beta_{2}\right) A(a, b), \\
& \alpha_{3} A(a, b)+\left(1-\alpha_{3}\right) G(a, b)<N_{A G}(a, b)<\beta_{3} A(a, b)+\left(1-\beta_{3}\right) G(a, b), \\
& \alpha_{4} Q(a, b)+\left(1-\alpha_{4}\right) A(a, b)<N_{Q A}(a, b)<\beta_{4} Q(a, b)+\left(1-\beta_{4}\right) A(a, b)
\end{aligned}
$$

hold for all $a, b>0$ with $a \neq b$ if and only if $\alpha_{1} \leq 2 / 3, \beta_{1} \geq \pi / 4, \alpha_{2} \leq 2 / 3, \beta_{2} \geq(\pi-2) /[4(\sqrt{2}-1)]=$ $0.689 \ldots, \alpha_{3} \leq 1 / 3, \beta_{3} \geq 1 / 2, \alpha_{4} \leq 1 / 3$ and $\beta_{4} \geq[\log (1+\sqrt{2})+\sqrt{2}-2] /[2(\sqrt{2}-1)]=0.356 \ldots$.

In [10], Zhang et al. presented the best possible parameters $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in[0,1 / 2]$ and $\alpha_{3}, \alpha_{4}, \beta_{3}, \beta_{4} \in$ $[1 / 2,1]$ such that the double inequalities

$$
\begin{aligned}
& G\left(\alpha_{1} a+\left(1-\alpha_{1}\right) b, \alpha_{1} b+\left(1-\alpha_{1}\right) a\right)<N_{A G}(a, b)<G\left(\beta_{1} a+\left(1-\beta_{1}\right) b, \beta_{1} b+\left(1-\beta_{1}\right) a\right) \\
& G\left(\alpha_{2} a+\left(1-\alpha_{2}\right) b, \alpha_{2} b+\left(1-\alpha_{2}\right) a\right)<N_{G A}(a, b)<G\left(\beta_{2} a+\left(1-\beta_{2}\right) b, \beta_{2} b+\left(1-\beta_{2}\right) a\right) \\
& Q\left(\alpha_{3} a+\left(1-\alpha_{3}\right) b, \alpha_{3} b+\left(1-\alpha_{3}\right) a\right)<N_{Q A}(a, b)<Q\left(\beta_{3} a+\left(1-\beta_{3}\right) b, \beta_{3} b+\left(1-\beta_{3}\right) a\right) \\
& Q\left(\alpha_{4} a+\left(1-\alpha_{4}\right) b, \alpha_{4} b+\left(1-\alpha_{4}\right) a\right)<N_{A Q}(a, b)<Q\left(\beta_{4} a+\left(1-\beta_{4}\right) b, \beta_{4} b+\left(1-\beta_{4}\right) a\right)
\end{aligned}
$$

hold for all $a, b>0$ with $a \neq b$.
Qian et al. 9] proved that the double inequalities

$$
\alpha_{1} A(a, b)+\left(1-\alpha_{1}\right) L(a, b)<N_{A G}(a, b)<\beta_{1} A(a, b)+\left(1-\beta_{1}\right) L(a, b)
$$

$$
\begin{gathered}
\alpha_{2} A(a, b)+\left(1-\alpha_{2}\right) P(a, b)<N_{G A}(a, b)<\beta_{2} A(a, b)+\left(1-\beta_{2}\right) P(a, b) \\
\alpha_{3} Q(a, b)+\left(1-\alpha_{3}\right) M(a, b)<N_{Q A}(a, b)<\beta_{3} Q(a, b)+\left(1-\beta_{3}\right) M(a, b) \\
\alpha_{4} Q(a, b)+\left(1-\alpha_{4}\right) T(a, b)<N_{A Q}(a, b)<\beta_{4} Q(a, b)+\left(1-\beta_{4}\right) T(a, b)
\end{gathered}
$$

hold for all $a, b>0$ with $a \neq b$ if and only if $\alpha_{1} \leq 0, \beta_{1} \geq 1 / 2, \alpha_{2} \leq 0, \beta_{2} \geq\left(\pi^{2}-8\right) /(4 \pi-8), \alpha_{3} \leq 0$, $\beta_{3} \geq\left[\sqrt{2} \log ^{2}(1+\sqrt{2})+2 \log (1+\sqrt{2})-2 \sqrt{2}\right] /[4 \log (1+\sqrt{2})-2 \sqrt{2}], \alpha_{4} \leq 0$ and $\beta_{4} \geq\left(\pi^{2}+2 \pi-16\right) /(4 \sqrt{2} \pi-16)$.

Let $a, b>0, p \in[0,1]$ and \mathcal{N} be a symmetric bivariate mean, then the one-parameter mean $\mathcal{N}_{p}(a, b)$ was defined by Neuman [3] as follows

$$
\begin{equation*}
\mathcal{N}_{p}(a, b)=\mathcal{N}\left[\frac{1+p}{2} a+\frac{1-p}{2} b, \frac{1-p}{2} a+\frac{1+p}{2} b\right] \tag{1.6}
\end{equation*}
$$

Neuman 4] proved that the double inequalities

$$
\begin{gather*}
H_{p_{1}(a, b)}<N_{A G}(a, b)<H_{q_{1}}(a, b), \quad H_{p_{2}(a, b)}<N_{G A}(a, b)<H_{q_{2}}(a, b) \tag{1.7}\\
C_{p_{3}(a, b)}<N_{Q A}(a, b)<C_{q_{3}}(a, b), \quad C_{p_{4}(a, b)}<N_{A Q}(a, b)<C_{q_{4}}(a, b) \tag{1.8}
\end{gather*}
$$

hold for all $a, b>0$ with $a \neq b$ if $p_{1} \geq \sqrt{2} / 2, q_{1} \leq \sqrt{3} / 3, p_{2} \geq \sqrt{1-\pi / 4}, q_{2} \leq \sqrt{6} / 6, p_{3}=0, q_{3} \geq \sqrt{6} / 6$, $p_{4} \leq \sqrt{\pi-2} / 2$ and $q_{4} \geq \sqrt{3} / 3$.

It is not difficult to verify that $H_{p}(a, b)$ is strictly decreasing and $C_{p}(a, b)$ is strictly increasing with respect to $p \in[0,1]$ for fixed $a, b>0$ with $a \neq b$.

The first aim of this paper is to prove that $p_{1}=\sqrt{2} / 2, q_{1}=\sqrt{3} / 3, p_{2}=\sqrt{1-\pi / 4}, q_{2}=\sqrt{6} / 6, p_{3}=$ $\sqrt{[\log (1+\sqrt{2})+\sqrt{2}-2)] / 2}, q_{3}=\sqrt{6} / 6, p_{4}=\sqrt{\pi-2} / 2$ and $q_{4}=\sqrt{3} / 3$ are the best possible parameters in $[0,1]$ such that the double inequalities 1.7 and 1.8 hold for all $a, b>0$ with $a \neq b$.

The second purpose of the article is to present the best possible parameters $\alpha_{1}=\alpha_{1}(p), \beta_{1}=\beta_{1}(p)$, $\alpha_{2}=\alpha_{2}(q), \beta_{2}=\beta_{2}(q), \alpha_{3}=\alpha_{3}(r), \beta_{3}=\beta_{3}(r), \alpha_{4}=\alpha_{4}(s)$ and $\beta_{4}=\beta_{4}(s)$ such that the double inequalities

$$
\begin{gathered}
\alpha_{1} A(a, b)+\left(1-\alpha_{1}\right) H_{p}(a, b)<N_{A G}(a, b)<\beta_{1} A(a, b)+\left(1-\beta_{1}\right) H_{p}(a, b), \\
\alpha_{2} A(a, b)+\left(1-\alpha_{2}\right) H_{q}(a, b)<N_{G A}(a, b)<\beta_{2} A(a, b)+\left(1-\beta_{2}\right) H_{q}(a, b), \\
\alpha_{3} C_{r}(a, b)+\left(1-\alpha_{3}\right) A(a, b)<N_{Q A}(a, b)<\beta_{3} C_{r}(a, b)+\left(1-\beta_{3}\right) A(a, b), \\
\alpha_{4} C_{s}(a, b)+\left(1-\alpha_{4}\right) A(a, b)<N_{A Q}(a, b)<\beta_{4} C_{s}(a, b)+\left(1-\beta_{4}\right) A(a, b)
\end{gathered}
$$

hold for all $p \in[\sqrt{2} / 2,1], q \in[\sqrt{1-\pi / 4}, 1], r \in[\sqrt{6} / 6,1], s \in[\sqrt{3} / 3,1]$ and $a, b>0$ with $a \neq b$.

2. Lemmas

In order to prove our main results we need several lemmas, which we will present in this section.
Lemma 2.1 ([8]). Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be two real sequences with $b_{n}>0$ and $\lim _{n \rightarrow \infty} a_{n} / b_{n}=s$. Then the power series $\sum_{n=0}^{\infty} a_{n} t^{n}$ is convergent for all $t \in \mathbb{R}$ and

$$
\lim _{t \rightarrow \infty} \frac{\sum_{n=0}^{\infty} a_{n} t^{n}}{\sum_{n=0}^{\infty} b_{n} t^{n}}=s
$$

if the power series $\sum_{n=0}^{\infty} b_{n} t^{n}$ is convergent for all $t \in \mathbb{R}$.
Lemma 2.2 ([1]). Let $-\infty<a<b<+\infty$ and $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b) and $g^{\prime}(x) \neq 0$ on (a, b). If $f^{\prime}(x) / g^{\prime}(x)$ is increasing (decreasing) on (a, b), then so are the functions $[f(x)-f(a)] /[g(x)-g(a)]$ and $[f(x)-f(b)] /[g(x)-g(b)]$. If $f^{\prime}(x) / g^{\prime}(x)$ is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma $2.3([2])$. Let $A(t)=\sum_{k=0}^{\infty} a_{k} t^{k}$ and $B(t)=\sum_{k=0}^{\infty} b_{k} t^{k}$ be two real power series converging on $(-r, r)(r>0)$ with $b_{k}>0$ for all k. If the non-constant sequence $\left\{a_{k} / b_{k}\right\}$ is increasing (decreasing) for all k, then the function $A(t) / B(t)$ is strictly increasing (decreasing) on ($0, r$).

Lemma 2.4. The function

$$
f(x)=\frac{\sinh (2 x) \cosh (x)-2 x \cosh (x)}{\sinh (3 x)-3 \sinh (x)}
$$

is strictly increasing form $(0, \infty)$ onto $(1 / 3,1 / 2)$.
Proof. Let

$$
a_{n}=\frac{\frac{1}{2}\left(3^{2 n+3}+1\right)-2(2 n+3)}{(2 n+3)!}, \quad b_{n}=\frac{3^{2 n+3}-3}{(2 n+3)!}
$$

Then simple computations lead to

$$
\begin{align*}
f(x)= & \frac{\frac{1}{2}[\sinh (3 x)+\sinh (x)]-2 x \cosh (x)}{\sinh (3 x)-3 \sinh (x)} \\
= & \frac{\frac{1}{2}\left[\sum_{n=0}^{\infty} \frac{3^{2 n+1}}{(2 n+1)!} x^{2 n+1}+\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1}\right]-2 x \sum_{n=0}^{\infty} \frac{1}{(2 n)!} x^{2 n}}{\sum_{n=0}^{\infty} \frac{3^{2 n+1}}{(2 n+1)!} x^{2 n+1}-3 \sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1}} \tag{2.1}\\
= & \frac{\sum_{n=0}^{\infty} a_{n} x^{2 n}}{\sum_{n=0}^{\infty} b_{n} x^{2 n}}, \\
& \frac{a_{0}}{b_{0}}=\frac{1}{3}, \quad \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{1}{2}, \tag{2.2}\\
& \frac{a_{n+1}}{b_{n+1}}-\frac{a_{n}}{b_{n}}=\frac{4\left[(7+8 n) 3^{2 n+2}+1\right]}{3\left(3^{2 n+2}-1\right)\left(3^{2 n+4}-1\right)}>0, \quad b_{n}>0
\end{align*}
$$

for all $n \geq 0$.
It follows from (2.1-2.3) together with Lemmas 2.1 and 2.3 that the function $f(x)$ is strictly increasing on $(0, \infty)$ and

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} f(x)=\frac{a_{0}}{b_{0}}=\frac{1}{3}, \quad \lim _{x \rightarrow \infty} f(x)=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{1}{2} \tag{2.4}
\end{equation*}
$$

Therefore, Lemma 2.4 follows from (2.4) and the monotonicity of f on the interval $(0, \infty)$.
Lemma 2.5. The function

$$
g(x)=\frac{4 \sin (x)-\sin (2 x)-2 x}{3 \sin (x)-\sin (3 x)}
$$

is strictly increasing form $(0, \pi / 2)$ onto $(1 / 6,1-\pi / 4)$.
Proof. Let $g_{1}(x)=4 \sin (x)-\sin (2 x)-2 x$ and $g_{2}(x)=3 \sin (x)-\sin (3 x)$. Then

$$
\begin{gather*}
g(x)=\frac{g_{1}(x)}{g_{2}(x)}, \quad g_{1}\left(0^{+}\right)=g_{2}\left(0^{+}\right)=0 \tag{2.5}\\
\frac{g_{1}^{\prime}(x)}{g_{2}^{\prime}(x)}=\frac{1}{3[1+\cos (x)]} \tag{2.6}
\end{gather*}
$$

From (2.6) we clearly see that the function $g_{1}^{\prime}(x) / g_{2}^{\prime}(x)$ is strictly increasing on $(0, \pi / 2)$. Then Lemma 2.2 and 2.5 lead to the conclusion that $g(x)$ is strictly increasing on $(0, \pi / 2)$. Note that

$$
\begin{equation*}
g\left(0^{+}\right)=\lim _{x \rightarrow 0^{+}} \frac{g_{1}^{\prime}(x)}{g_{2}^{\prime}(x)}=\frac{1}{6}, \quad g\left(\frac{\pi}{2}\right)=1-\frac{\pi}{4} \tag{2.7}
\end{equation*}
$$

Therefore, Lemma 2.5 follows from 2.7 and the monotonicity of $g(x)$ on the interval $(0, \pi / 2)$.

Lemma 2.6. The function

$$
h(x)=\frac{\sinh (2 x)-4 \sinh (x)+2 x}{\sinh (3 x)-3 \sinh (x)}
$$

is strictly decreasing form $(0, \log (1+\sqrt{2}))$ onto $((\log (1+\sqrt{2})+\sqrt{2}-2) / 2,1 / 6)$.
Proof. Let

$$
c_{n}=\frac{2^{2 n+3}-4}{(2 n+3)!}, \quad d_{n}=\frac{3^{2 n+3}-3}{(2 n+3)!}
$$

Then simple computation lead to

$$
\begin{gather*}
h(x)=\frac{\sum_{n=0}^{\infty} \frac{2^{2 n+1}}{(2 n+1)!} x^{2 n+1}-4 \sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1}+2 x}{\sum_{n=0}^{\infty} \frac{3^{2 n+1}}{(2 n+1)!} x^{2 n+1}-3 \sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1}}=\frac{\sum_{n=0}^{\infty} c_{n} x^{2 n}}{\sum_{n=0}^{\infty} d_{n} x^{2 n}} \tag{2.8}\\
\frac{c_{n+1}}{d_{n+1}}-\frac{c_{n}}{d_{n}}=-\frac{8\left(5 \times 2^{2 n}-4\right) 3^{2 n+3}+9 \times 2^{2 n+3}}{9\left(3^{2 n+2}-1\right)\left(3^{2 n+4}-1\right)}<0, \quad d_{n}>0 \tag{2.9}
\end{gather*}
$$

for all $n \geq 0$.
It follows from Lemma 2.3 and 2.8 together with 2.9 that $h(x)$ is strictly decreasing on $(0, \infty)$. Note that

$$
\begin{equation*}
h\left(0^{+}\right)=\frac{c_{0}}{d_{0}}=\frac{1}{6}, \quad h(\log (1+\sqrt{2}))=\frac{\log (1+\sqrt{2})+\sqrt{2}-2}{2} \tag{2.10}
\end{equation*}
$$

Therefore, Lemma 2.6 follows from 2.10 and the monotonicity of $h(x)$ on the interval $(0, \infty)$.
Lemma 2.7. The function

$$
k(x)=\frac{2 x \cos (x)-\sin (2 x) \cos (x)}{3 \sin (x)-\sin (3 x)}
$$

is strictly decreasing form $(0, \pi / 4)$ onto $((\pi-2) / 4,1 / 3)$.
Proof. Let $k_{1}(x)=2 x \cos (x)-\sin (2 x) \cos (x)$ and $k_{2}(x)=3 \sin (x)-\sin (3 x)$. Then

$$
\begin{gather*}
k(x)=\frac{k_{1}(x)}{k_{2}(x)}, \quad k_{1}(0)=k_{2}(0)=0, \tag{2.11}\\
\frac{k_{1}^{\prime}(x)}{k_{2}^{\prime}(x)}=\frac{1}{2}-\frac{x}{3 \sin (2 x)} \tag{2.12}\\
k\left(0^{+}\right)=\lim _{x \rightarrow 0^{+}} \frac{k_{1}^{\prime}(x)}{k_{2}^{\prime}(x)}=\frac{1}{3}, \quad k\left(\frac{\pi}{4}\right)=\frac{\pi-2}{4} . \tag{2.13}
\end{gather*}
$$

It is well known that the function $x / \sin (2 x)$ is strictly increasing on $(0, \pi / 4)$, then 2.12 leads to the conclusion that the function $k_{1}^{\prime}(x) / k_{2}^{\prime}(x)$ is strictly decreasing on $(0, \pi / 4)$.

Therefore, Lemma 2.7 follows easily from Lemma 2.2 , 2.11), (2.13) and the monotonicity of $k_{1}^{\prime}(x) / k_{2}^{\prime}(x)$ on the interval $(0, \pi / 4)$.

3. Main Results

Theorem 3.1. Let $p_{1}, p_{2}, p_{3}, p_{4}, q_{1}, q_{2}, q_{3}, q_{4} \in[0,1]$. Then the double inequalities

$$
\begin{array}{cl}
H_{p_{1}(a, b)}<N_{A G}(a, b)<H_{q_{1}}(a, b), & H_{p_{2}(a, b)}<N_{G A}(a, b)<H_{q_{2}}(a, b), \\
C_{p_{3}(a, b)}<N_{Q A}(a, b)<C_{q_{3}}(a, b), & C_{p_{4}(a, b)}<N_{A Q}(a, b)<C_{q_{4}}(a, b)
\end{array}
$$

hold for all $a, b>0$ with $a \neq b$ if and only if $p_{1} \geq \sqrt{2} / 2, q_{1} \leq \sqrt{3} / 3, p_{2} \geq \sqrt{1-\pi / 4}, q_{2} \leq \sqrt{6} / 6$, $p_{3} \leq \sqrt{[\log (1+\sqrt{2})+\sqrt{2}-2] / 2}, q_{3} \geq \sqrt{6} / 6, p_{4} \leq \sqrt{\pi-2} / 2$ and $q_{4} \geq \sqrt{3} / 3$.

Proof. Since the Neuman means $N_{A G}(a, b), N_{G A}(a, b), N_{Q A}(a, b)$ and $N_{A Q}(a, b)$, and the one-parameter means $H_{\lambda}(a, b)$ and $C_{\mu}(a, b)$ are symmetric and homogeneous of degree 1 with respect to a and b, without loss of generality, we assume that $a>b>0$.

Let $\lambda, \mu \in[0,1], v=(a-b) /(a+b) \in(0,1), x=\tanh ^{-1}(v) \in(0, \infty), y=\arcsin (v) \in(0, \pi / 2)$, $z=\sinh ^{-1}(v) \in(0, \log (1+\sqrt{2}))$ and $w=\arctan (v) \in(0, \pi / 4)$. Then it follows from 1.2 -1.6$)$ that

$$
\begin{align*}
& H_{\lambda}(a, b)=A(a, b)\left(1-\lambda^{2} v^{2}\right), \quad C_{\mu}(a, b)=A(a, b)\left(1+\mu^{2} v^{2}\right), \tag{3.1}\\
& H_{\lambda}(a, b)-N_{A G}(a, b)=A(a, b) v^{2}\left[\frac{v-\left(1-v^{2}\right) \tanh ^{-1}(v)}{2 v^{3}}-\lambda^{2}\right] \tag{3.2}\\
& =A(a, b) v^{2}\left[\frac{\sinh (2 x) \cosh (x)-2 x \cosh (x)}{\sinh (3 x)-3 \sinh (x)}-\lambda^{2}\right]=A(a, b) v^{2}\left[f(x)-\lambda^{2}\right], \\
& H_{\lambda}(a, b)-N_{G A}(a, b)=A(a, b) v^{2}\left[\frac{2 v-v \sqrt{1-v^{2}}-\arcsin (v)}{2 v^{3}}-\lambda^{2}\right] \tag{3.3}\\
& =A(a, b) v^{2}\left[\frac{4 \sin (y)-\sin (2 y)-2 y}{3 \sin (y)-\sin (3 y)}-\lambda^{2}\right]=A(a, b) v^{2}\left[g(y)-\lambda^{2}\right] \text {, } \\
& N_{Q A}(a, b)-C_{\mu}(a, b)=A(a, b) v^{2}\left[\frac{v \sqrt{1+v^{2}}+\sinh ^{-1}(v)-2 v}{2 v^{3}}-\mu^{2}\right] \tag{3.4}\\
& =A(a, b) v^{2}\left[\frac{\sinh (2 z)-4 \sinh (z)+2 z}{\sinh (3 z)-3 \sinh (z)}-\mu^{2}\right]=A(a, b) v^{2}\left[h(z)-\mu^{2}\right], \\
& N_{A Q}(a, b)-C_{\mu}(a, b)=A(a, b) v^{2}\left[\frac{\left(1+v^{2}\right) \arctan (v)-v}{2 v^{3}}-\mu^{2}\right] \tag{3.5}\\
& =A(a, b) v^{2}\left[\frac{2 w \cos (w)-\sin (2 w) \cos (w)}{3 \sin (w)-\sin (3 w)}-\mu^{2}\right]=A(a, b) v^{2}\left[k(w)-\mu^{2}\right],
\end{align*}
$$

where the functions $f(\cdot), g(\cdot), h(\cdot)$ and $k(\cdot)$ are respectively defined as in Lemmas 2.4, 2.5, 2.6 and 2.7.
Therefore, Theorem 3.1 follows easily from Lemmas $2.4,2.7$ and (3.2)-(3.5).
Theorem 3.2. Let $p \in[\sqrt{2} / 2,1], q \in[\sqrt{1-\pi / 4}, 1], r \in[\sqrt{6} / 6,1]$ and $s \in[\sqrt{3} / 3,1]$. Then the double inequalities

$$
\begin{align*}
& \alpha_{1} A(a, b)+\left(1-\alpha_{1}\right) H_{p}(a, b)<N_{A G}(a, b)<\beta_{1} A(a, b)+\left(1-\beta_{1}\right) H_{p}(a, b), \tag{3.6}\\
& \alpha_{2} A(a, b)+\left(1-\alpha_{2}\right) H_{q}(a, b)<N_{G A}(a, b)<\beta_{2} A(a, b)+\left(1-\beta_{2}\right) H_{q}(a, b), \tag{3.7}\\
& \alpha_{3} C_{r}(a, b)+\left(1-\alpha_{3}\right) A(a, b)<N_{Q A}(a, b)<\beta_{3} C_{r}(a, b)+\left(1-\beta_{3}\right) A(a, b), \tag{3.8}\\
& \alpha_{4} C_{s}(a, b)+\left(1-\alpha_{4}\right) A(a, b)<N_{A Q}(a, b)<\beta_{4} C_{s}(a, b)+\left(1-\beta_{4}\right) A(a, b) \tag{3.9}
\end{align*}
$$

hold for all $a, b>0$ with $a \neq b$ if and only if $\alpha_{1} \leq 1-1 /\left(2 p^{2}\right), \beta_{1} \geq 1-1 /\left(3 p^{2}\right), \alpha_{2} \leq 1-(4-\pi) /\left(4 q^{2}\right)$, $\beta_{2} \geq 1-1 /\left(6 q^{2}\right), \alpha_{3} \leq[\log (1+\sqrt{2})+\sqrt{2}-2] /\left(2 r^{2}\right), \beta_{3} \geq 1 /\left(6 r^{2}\right), \alpha_{4} \leq(\pi-2) /\left(4 s^{2}\right)$ and $\beta_{4} \geq 1 /\left(3 s^{2}\right)$.

Proof. Without loss of generality, we assume that $a>b>0$. Let $v=(a-b) /(a+b) \in(0,1)$. Then from (1.2) -(1.5) and (3.1) we clearly see that inequalities (3.6)-(3.9) are respectively equivalent to the inequalities

$$
\begin{equation*}
\left(1-\beta_{1}\right) p^{2}<\frac{v-\left(1-v^{2}\right) \tanh ^{-1}(v)}{2 v^{3}}<\left(1-\alpha_{1}\right) p^{2} \tag{3.10}
\end{equation*}
$$

$$
\begin{gather*}
\left(1-\beta_{2}\right) q^{2}<\frac{2 v-v \sqrt{1-v^{2}}-\arcsin (v)}{2 v^{3}}<\left(1-\alpha_{2}\right) q^{2} \tag{3.11}\\
\alpha_{3} r^{2}<\frac{v \sqrt{1+v^{2}}+\sinh ^{-1}(v)-2 v}{2 v^{3}}<\beta_{3} r^{2} \tag{3.12}\\
\alpha_{4} s^{2}<\frac{\left(1+v^{2}\right) \arctan (v)-v}{2 v^{3}}<\beta_{4} s^{2} \tag{3.13}
\end{gather*}
$$

Let $x=\tanh ^{-1}(v) \in(0, \infty), y=\arcsin (v) \in(0, \pi / 2), z=\sinh ^{-1}(v) \in(0, \log (1+\sqrt{2}))$ and $w=$ $\arctan (v) \in(0, \pi / 4)$. Then simple computations lead to

$$
\begin{align*}
& \frac{v-\left(1-v^{2}\right) \tanh ^{-1}(v)}{2 v^{3}}=\frac{\sinh (2 x) \cosh (x)-2 x \cosh (x)}{\sinh (3 x)-3 \sinh (x)} \tag{3.14}\\
& \frac{2 v-v \sqrt{1-v^{2}}-\arcsin (v)}{2 v^{3}}=\frac{4 \sin (y)-\sin (2 y)-2 y}{3 \sin (y)-\sin (3 y)} \tag{3.15}\\
& \frac{v \sqrt{1+v^{2}}+\sinh ^{-1}(v)-2 v}{2 v^{3}}=\frac{\sinh (2 z)-4 \sinh (z)+2 z}{\sinh (3 z)-3 \sinh (z)} \tag{3.16}\\
& \frac{\left(1+v^{2}\right) \arctan (v)-v}{2 v^{3}}=\frac{2 w \cos (w)-\sin (2 w) \cos (w)}{3 \sin (w)-\sin (3 w)} \tag{3.17}
\end{align*}
$$

Therefore, inequality (3.6) holds for all $a, b>0$ with $a \neq b$ if and only if $\alpha_{1} \leq 1-1 /\left(2 p^{2}\right)$ and $\beta_{1} \geq 1-1 /\left(3 p^{2}\right)$ follows from (3.10) and (3.14) together with Lemma 2.4 inequality (3.7) holds for all $a, b>0$ with $a \neq b$ if and only if $\alpha_{2} \leq 1-(4-\pi) /\left(4 q^{2}\right)$ and $\beta_{2} \geq 1-1 /\left(6 q^{2}\right)$ follows from (3.11) and 3.15 together with Lemma 2.5, inequality (3.8) holds for all $a, b>0$ with $a \neq b$ if and only if $\alpha_{3} \leq[\log (1+\sqrt{2})+\sqrt{2}-2] /\left(2 r^{2}\right)$ and $\beta_{3} \geq 1 /\left(6 r^{2}\right)$ follows from (3.12) and (3.16) together with Lemma 2.6 and inequality 3.9 holds for all $a, b>0$ with $a \neq b$ if and only if $\alpha_{4} \leq(\pi-2) /\left(4 s^{2}\right)$ and $\beta_{4} \geq 1 /\left(3 s^{2}\right)$ follows from (3.13) and (3.17) together with Lemma 2.7 .

From $\sqrt{1.2}$ we clearly see that

$$
\begin{array}{ll}
N_{A G}(a, b)=\frac{1}{2}\left[A(a, b)+\frac{G^{2}(a, b)}{L(a, b)}\right], & N_{G A}(a, b)=\frac{1}{2}\left[G(a, b)+\frac{A^{2}(a, b)}{P(a, b)}\right] \\
N_{A Q}(a, b)=\frac{1}{2}\left[A(a, b)+\frac{Q^{2}(a, b)}{T(a, b)}\right], & N_{Q A}(a, b)=\frac{1}{2}\left[Q(a, b)+\frac{A^{2}(a, b)}{M(a, b)}\right] . \tag{3.19}
\end{array}
$$

Theorem 3.2, (3.18) and (3.19) lead to Theorem 3.3 immediately.

Theorem 3.3. Let $p \in[\sqrt{2} / 2,1], q \in[\sqrt{1-\pi / 4}, 1], r \in[\sqrt{6} / 6,1]$ and $s \in[\sqrt{3} / 3,1]$. Then the double inequalities

$$
\begin{aligned}
\frac{G^{2}(a, b)}{\left(2 \beta_{1}-1\right) A(a, b)+2\left(1-\beta_{1}\right) H_{p}(a, b)}<L(a, b) & <\frac{G^{2}(a, b)}{\left(2 \alpha_{1}-1\right) A(a, b)+2\left(1-\alpha_{1}\right) H_{p}(a, b)}, \\
\frac{A^{2}(a, b)}{2 \beta_{2} A(a, b)+2\left(1-\beta_{2}\right) H_{q}(a, b)-G(a, b)}<P(a, b) & <\frac{A^{2}(a, b)}{2 \alpha_{2} A(a, b)+2\left(1-\alpha_{2}\right) H_{q}(a, b)-G(a, b)}, \\
\frac{A^{2}(a, b)}{2 \beta_{3} C_{r}(a, b)+2\left(1-\beta_{3}\right) A(a, b)-Q(a, b)}<M(a, b) & <\frac{A^{2}(a, b)}{2 \alpha_{3} C_{r}(a, b)+2\left(1-\alpha_{3}\right) A(a, b)-Q(a, b)}, \\
\frac{Q^{2}(a, b)}{2 \beta_{4} C_{s}(a, b)+\left(1-2 \beta_{4}\right) A(a, b)}<T(a, b) & <\frac{Q^{2}(a, b)}{2 \alpha_{4} C_{s}(a, b)+\left(1-2 \alpha_{4}\right) A(a, b)}
\end{aligned}
$$

hold for all $a, b>0$ with $a \neq b$ if and only if $\alpha_{1} \leq 1-1 /\left(2 p^{2}\right), \beta_{1} \geq 1-1 /\left(3 p^{2}\right), \alpha_{2} \leq 1-(4-\pi) /\left(4 q^{2}\right)$, $\beta_{2} \geq 1-1 /\left(6 q^{2}\right), \alpha_{3} \leq[\log (1+\sqrt{2})+\sqrt{2}-2] /\left(2 r^{2}\right), \beta_{3} \geq 1 /\left(6 r^{2}\right), \alpha_{4} \leq(\pi-2) /\left(4 s^{2}\right)$ and $\beta_{4} \geq 1 /\left(3 s^{2}\right)$.

Acknowledgements

The research was supported by the Natural Science Foundation of China under Grant 11401192, the Key Project of Hunan Provincial Education Department under Grant 14 A 026 and the Natural Science Foundation of the Zhejiang Broadcast and TV University under Grant XKT-15G17.

References

[1] G. D. Anderson, S. L. Qiu, M. K. Vamanamurthy, M. Vuorinen, Generalized elliptic integrals and modular equations, Pacific J. Math., 192 (2000), 1-37. 2.2
[2] M. Biernacki, J. Krzyż, On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Skłodowska. Sect. A, 9 (1955), 135-147. 2.3
[3] E. Neuman, A one-parameter family of bivariate means, J. Math. Inequal., 7 (2013), 399-412. 1
[4] E. Neuman, Optimal bounds for certain bivariate means, Probl. Anal. Issues Anal., 3 (2014), 35-43. 1 ,
[5] E. Neuman, On a new bivariate mean, Aequationes Math., 88 (2014), 277-289. 1, 1, 1,
[6] E. Neuman, J. Sándor, On the Schwab-Borchardt mean, Math. Pannon., 14 (2003), 253-266. 1
[7] E. Neuman, J. Sándor, On the Schwab-Borchardt mean II, Math. Pannon., 17 (2006), 49-59. 1]
[8] G. Pólya, G. Szegő, Problems and Theorems in Analysis I, Springer-Verlag, Berlin, (1998). 2.1
[9] W. M. Qian, Z. H. Shao, Y. M. Chu, Sharp inequalities involving Neuman means of the second kind, J. Math. Inequal., 9 (2015), 531-540. 1
[10] Y. Zhang, Y. M. Chu, Y. L. Jiang, Sharp geometric mean bounds for Neuman means, Abstr. Appl. Anal., 2014 (2014), 6 pages. 1

[^0]: *Corresponding author
 Email addresses: xiafangli2005@126.com (Fang-Li Xia), qwm661977@126.com (Wei-Mao Qian), shubo.chen@163.com (Shu-Bo Chen), chuyuming2005@126.com (Yu-Ming Chu)

