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Abstract

This paper considers a robust multiple fault detection method for actuator failures in nonlinear systems.
The actuator failures model is initially put forward. By employing the unique advantage that the sliding
mode variable structure is invariance to uncertainties, a sliding mode state observer is designed to isolate the
unknown input disturbance effect on residual generation. The parameters of the observers being designed are
determined by the use of linear matrix inequalities techniques. Accordingly, the generated residual is only
sensitive to the specific fault signals, and the fault detection accuracy is improved. This paper verifies the
proposed method by its application in demagnetization fault detection for a permanent magnet synchronous
motor (PMSM). Simulation and experiment results illustrate the high detection accuracy and robustness.
c©2016 All rights reserved.
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1. Introduction

Technology of state-estimation-based residual generation and identification is one of the key approaches
for system fault detection and diagnosis. Residual signal is generated by comparing the measured value
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of actual system with the estimated value from an observer, and it is low or approaches zero if fault free.
However, the residual signal shows a significant change whenever fault occurs. A threshold is set in this
situation to describe the changes and identify the fault. The unknown inputs, such as modeling error,
parameter perturbation, external noise, disturbance, et al, may greatly affect the residual signal in an actual
system, thereby increasing the difficulty in selecting the threshold, leading to an increase of fault false alarm
rate and fault missing alarm rate [1, 4, 10]. The present state estimation methods focus on reaching a best
coordination between robustness and sensitivity in the fault detection system, that is, increase the robustness
of the system to unknown inputs and simultaneously maintain its high sensitivity to incipient faults and
glitches. Relevant studies that used generalized likelihood ratio, adaptive nonlinear observer, Kalman filter,
or other methods have provided solutions from various perspectives [6, 7, 10]. The uncertainties, including
modeling error, parameter variation and disturbance, do not influence the systems in the sliding mode
if a certain condition, the so-called ‘matching condition’ holds, thus the invariance of these systems to
uncertainties is much more robust than robustness [2, 3, 12].

Permanent magnet synchronous motors have been increasingly used in recent years. Nonetheless, when
compared with induction motors and other electro-magnetic motors, PMSM faces a big challenge because
of the demagnetization risk on permanent magnetic material. Magnetic field ripple or demagnetization of
permanent magnetic may decrease torque performance, abnormally overheat the motor, and may even ruin
the motor in serious situations [13]. This issue greatly restricts the use of permanent magnet motors. Xiao
et al. proposed a Kalman filter-based on-line monitoring method for permanent magnetic flux linkage [14].
Gritli et al. proposed a wavelet algorithm-based on-line monitoring method [5]. Lu et al. presented a
demagnetization fault detection method based on artificial neural networks [11]. However, how to remove
the stator resistance and other parameter uncertainties effect on demagnetization fault detection accuracy,
and how to provide a fast and efficient algorithm for demagnetization fault detection still require further
studies.

In this paper, a multiple actuator fault detection and isolation method based on sliding mode variable
structure for a class of nonlinear systems is presented. The essential feature of the sliding mode variable
structure technology, that is, being completely invariance to unknown input disturbances, is used to isolate
the various unknown inputs effect on residual generation. Accordingly making the residual approaches zero
if fault free, enhancing the system sensitivity to fault signals and simultaneously ensuring strong detection
robustness.

The remainder of this paper is arranged as follows. In Section 2, the nonlinear system is introduced. A
multiple actuator fault detection and isolation method based on sliding mode variable structure is presented
in Section 3. In Section 4, the method is employed for demagnetization fault detection of permanent magnet
motors and a brief conclusion is drawn in Section 5.

2. System Description

The nonlinear systems considered are of the following form{
ẋ(t) = Ax(t) + f(x, u, t) + Efa +Dd(x, u, t) +Bu(t),

y(t) = Cx(t),
(2.1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp denote, the state variables, inputs and outputs, respectively.
A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are known matrices. The non-linear continuous term f(x, u, t) ∈ Rn
is assumed to be known. The unknown non-linear term d(x, u, t) ∈ Rr models the lumped uncertainties
and disturbances experienced by the system, collectively referred to system unknown input disturbance.
fa(x, u, t) ∈ Rq denotes actuator fault. The known term D ∈ Rn×r and E ∈ Rn×q denote disturbance
distribution matrix and fault distribution matrix respectively.

For the objective of achieving actuator fault detection, the following assumptions are made throughout:

Assumption 2.1. E is a full column rank matrix.
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Suppose that Assumption 2.1 is not satisfied, i.e. rank(E) = q1 < q, it thus follows E can be factorized
into E = E

′
E
′′
, where E

′
is a full column rank matrix, f̃a = E

′′
fa represents the new actuator failure,

f̃a ∈ Rq1 .

Assumption 2.2. (A,C) is observable.

Assumption 2.3. System failures and unknown inputs are bounded functions and there exist positive con-
stants γ1i, γ2 such that ‖fai‖ ≤ γ1i, ‖d‖ ≤ γ2, where fai (i = 1, 2, · · · , q) is the ith row of fa, represents the
ith type of actuator failure.

Assumption 2.4. f(x, u, t) is a nonlinear function and satisfies the Lipschitz condition, with a positive
Lipschitz constant γ3, one has ‖f(x, u, t)− f(y, u, t)‖ ≤ γ3 ‖x− y‖ = γ3 ‖ε‖, where ε = x− y.

Lemma 2.5 ([8]). If f(x, u, t) satisfies the Lipschitz condition, then for any positive values of σ, the following
inequation holds

2εTP (f(x, u, t)− f(y, u, t)) ≤ σεTPPε+
1

σ
γ2

3ε
T ε, (2.2)

where P is a symmetric positive matrix.

Assumption 2.6. Matrices P, F1, F2 satisfy the equation PE = CTF T1 , PD = CTF T2 .

The target of this paper is to detect and isolate the actuator failures for nonlinear systems, with unknown
input disturbances by employing the measurable input u(t) and output y(t).

3. State Observer Design

Definition 3.1. E =
[
E1 · · · Ei · · · Eq

]
, where Ei is the ith column of E.

Definition 3.2. fa =
[
fa1 · · · fai · · · faq

]
, where fai is the ith type of actuator failure, if the ith

type of actuator failure takes place, fai 6=0, otherwise fai=0.

From Definition 3.1 and Definition 3.2, one has

Efa =

q∑
j=1

Ejfaj = Eifai + Ēif̄ai, (3.1)

where Ēi is the column of E except Ei, f̄ai refers to all faults except fai.
Therefore, Equation (2.1) can be rewritten as the following form{

ẋ(t) = Ax(t) + f(x, u, t) +Dd(x, u, t) +Bu(t) + Eifai + Ēif̄ai,

y(t) = Cx(t).
(3.2)

Under the design principle of the Walcott-Zak observer [2], we can propose the following observer for
the ith type of fault fai, which are particularly designed for actuator fault isolation purposes.{

˙̂x(t) = Ax̂(t) + L(y − ŷ) + f(x̂, u, t) +Bu(t) + Eiw1 +Dw2,

ŷ(t) = Cx̂(t),
(3.3)

where the superscript “ ˆ ” denotes the observed value of relevant variables, e = x̂−x is state error, ey = ŷ−y
is output error, w1 and w2 are the output signals of sliding mode variable structure, where

w1 =

{
−ρ1i

F i
1ey

‖F i
1ey‖

if ey 6= 0,

0 if ey = 0,
(3.4)
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and

w2 =

{
−ρ2

F2ey
‖F2ey‖ if ey 6= 0,

0 if ey = 0,
(3.5)

where F1, F2 and L are being designed matrices, ρ1i, ρ2 are being designed positive constants, F i1 is the ith
row of F1.

Subtracting (3.2) from (3.3) gives the error system

ė = A0e+ f(x̂, u, t)− f(x, u, t) + Ei(w1 − fai)− Ēif̄ai +D(w2 − d), (3.6)

where A0 = A− LC.

Theorem 3.3. Let Assumptions 2.1-2.6 hold, for error system (3.6), if the sliding mode variable structure
parameters satisfy ρ1i > γ1i, ρ2 > γ2, and if the following inequation holds,[

AT0 P + PA0 + 1
σγ

2
3I P

P − 1
σ I

]
< 0,

then for any kth (k = i, 1 ≤ k ≤ q) type of fault, the observer given by equation (3.3)-(3.5) can make e
converge to zero exponentially and will not if k 6= i.

Proof. Consider the Lyapunov function
V = eTPe. (3.7)

In the first case, when only the ith type of fault fai takes place, i.e. fai 6= 0, f̄ai = 0 from (3.6), we have

ė = (A− LC)e+ f(x̂, u, t)− f(x, u, t) + Ei(w1 − fai) +D(w2 − d). (3.8)

Differentiate(3.7) with respect to time along with Equation (3.8), we obtain

V̇ = eT (AT0 P + PA0)e+ 2eTP (f(x̂, u, t)− f(x, u, t)) + 2eTPEi(w1 − fai) + 2eTPD(w2 − d)

≤ eT (AT0 P + PA0)e+ 2eTP (f(x̂, u, t)− f(x, u, t))− 2
∥∥F i1ey∥∥ (ρ1i − γ1i)− 2 ‖F2ey‖ (ρ2 − γ2). (3.9)

If ρ1i > γ1i, ρ2 > γ2 hold, then from Lemma 2.5, one has

V̇ ≤ eT (AT0 P + PA0 + σPP +
1

σ
γ2

3I)e. (3.10)

Suppose [
AT0 P + PA0 + 1

σγ
2
3I P

P − 1
σ I

]
< 0 (3.11)

is satisfied, so that e(t) will make a global asymptotic convergence to zero, that is lim
t→∞

e = 0.

Remark 3.4. The linear matrix inequality (LMI) (3.11) can easily be solved using the Matlab LMI toolbox.
In the second case, when the ith type of fault fai does not take place, from (3.6), we have

ė = ((A− LC)e+ f(x̂, u, t)− f(x, u, t) + Ei(w1 − fai) +D(w2 − d))− Ēif̄ai. (3.12)

Under Assumption 2.1, Ei and Ēi are linearly independent, thus lim
t→∞

e 6= 0.

This completes the proof.

In accordance with the above principles, a total of q sliding mode observers are designed for the q fault
models and accordingly constructing an observer array.
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The observer corresponding to the ith type of fault model is given by{
˙̂xi(t) = Ax̂i(t) + L(y − ŷi) + f(x̂i, u, t) +Bu(t) + Eiw

i
1 +Dwi2,

ŷi(t) = Cx̂i(t),
(3.13)

where

wi1 =

{
−ρ1i

F i
1e

i
y

‖F i
1e

i
y‖ if eiy 6= 0,

0 if eiy = 0,
(3.14)

and

wi2 =

{
−ρ2

F2eiy

‖F2eiy‖ if eiy 6= 0,

0 if eiy = 0,
(3.15)

where eiy = ŷi− y, wi1 is used to isolate the effect upon the system by the fault fai, and wi2 is used to isolate
the effect upon the system by the unknown input disturbance d.

Remark 3.5. To reduce chattering in the sliding mode, a sign function sgn (s) can be used to replace the
sigmoid function in equation (3.14) and (3.15).

sgn(s) =
s

‖s‖
≈ 2

1 + e−as
− 1, (3.16)

where a is positive constant.

Definition 3.6. Let residual be ri =
∥∥eiy∥∥ (i = 1, 2, · · · , q).

The above analysis shows that residual ri generated by the ith observer is not sensitive to the ith type
of fault among the total q generated residuals, and ri maintains zero even if the ith type of fault occurs.
However, the residual ri is much more sensitive to the other (q − 1) types of faults. By showing a value
deviating from zero, it indicates that the type or types of fault have taken place. Different types of fault may
take place alone or together in actual projects. For the total q types of fault that have been modeled, each
combination of the generated q residuals corresponds to a possible fault case. Therefore, a logical judgment
table can be established for all fault cases. Concurrent faults can be detected and isolated by checking this
table.

4. Application and Verification

4.1. Mathematical Model

The voltage equation of a PMSM in d − q reference frame which is fixed on the direction of the rotor
permanent magnetic is given by [9] 

ud = Rsid +
dψd
dt
− ωψq,

uq = Rsiq +
dψq
dt

+ ωψd,

(4.1)

where
ud, uq : Voltage in d− q reference frame;
Rs : Stator winding phase resistance;
id, iq : Current in d− q reference frame;
ψd, ψq : Stator winding flux linkage components in d− q reference frame;
ω : Rotor electrical angular velocity.



J. He, C. F. Zhang, S. Mao, H. Wu, K. H. Zhao, J. Nonlinear Sci. Appl. 9 (2016), 2039–2048 2044

Suppose equation (4.1) is a surface-mounted permanent magnet synchronous motor, then the stator
winding shows the same electrical inductance on both d and q axes, i.e. Ld = Lq = L, the corresponding
flux linkage equation is {

ψd = Lid + ψr0,

ψq = Liq,
(4.2)

where
ψr0 : Nominal value of rotor permanent magnetic flux linkage.
If a PMSM encounters demagnetization failure, as shown in Figure 1, the amplitude and direction of the

flux linkage vector is accordingly changed. The flux linkage vector changes from the nominal value ψr0 to
ψr, Equation (4.2) is converted to {

ψd = ψr0 + ∆ψrd + Lid,

ψq = ∆ψrq + Liq,
(4.3)

where ∆ψrq is the flux component generated by permanent magnetic flux linkage ψr on q axes, ∆ψrq > 0,
whereas ψrd is the flux component generated by permanent magnetic flux linkage ψr on d axes, here ψrd =
ψr0 + ∆ψrd, ∆ψrd < 0.

0r
rd

rd

d

A

B

C

q d

q
rq

S N

r

Figure 1: Variation of PMSM flux linkage

Substituting (4.2) into (4.1), we get the voltage equation
ud = Rsid − ωLiq + L

did
dt
− ω∆ψrq +

d∆ψrd
dt

,

uq = Rsiq + L
diq
dt

+ ω(ψr0 + ∆ψrd) + ωLid +
d∆ψrq
dt

.

(4.4)

When compared with the current and other state variables, the flux linkage on both d and q axes may
be treated as a steady value because the permanent magnetic linkage variation rate is much slower in actual
projects, i.e.

d∆ψrq

dt ≈ 0, d∆ψrd
dt ≈ 0. Stator winding resistance may be subject to great perturbation if

the temperature changes, let Rs = R̄s + ∆Rs, where R̄s is nominal value of stator resistance, ∆Rs is the
perturbation value.

From (4.4), we obtain the current equation
did
dt

=
ud
L
− R̄s

L
id + ωiq + ω

∆ψrq
L
− ∆Rs

L
id,

diq
dt

=
uq
L
− R̄s

L
iq − ωid − ω

ψr0
L
− ω∆ψrd

L
− ∆Rs

L
iq.

(4.5)

Let stator current be the state variable, the Equation (4.5) represents the state equation in d−q reference
frame when demagnetization failure shown in Figure 1 occurs. Referring to (2.1), parameter matrixes of
(4.5) shall be
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x =

[
id
iq

]
, u =

[
ud
uq

]
, y =

[
id
iq

]
, f(x, u, t) =

[
0

−ωψr0

L

]
, fa =

[
fa1

fa2

]
=

[
∆ψrd
∆ψrq

]
,

A =

[
− R̄s

L ω

−ω − R̄s
L

]
, B =

[
1
L 0
0 1

L

]
, C =

[
1 0
0 1

]
, D =

[
−x1

L
−x2

L

]
,

E =
[
E1 E2

]
=

[
0 ω

L
−ω
L 0

]
, d(x, u, t) = ∆Rs.

The parameters for a PMSM are given in Table 1.

Table 1: Nominal value for PMSM
Parameters Nominal Value

Stator resistance / Ω 2.875
Number of pole pairs 4

Stator inductance / H 0.0085
Rotor PM flux / Wb 0.175

Rotor moment of inertia / Kgm2 0.008

4.2. Demagnetization Fault Detection Algorithm

(1) The observer for failure fa1 = ∆ψrd is designed as{
˙̂x1(t) = Ax̂1(t) + L(y − ŷ1) + f(x1, u, t) +Bu(t) + E1w

1
1 +Dw1

2,

ŷ1(t) = Cx̂1(t),
(4.6)

where

w1
1 =

{
−ρ11

F 1
1 e

1
y

‖F 1
1 e

1
y‖ if e1

y 6= 0,

0 if e1
y = 0,

(4.7)

and

w1
2 =

{
−ρ2

F2e1y

‖F2e1y‖ if e1
y 6= 0,

0 if e1
y = 0,

(4.8)

where e1
y = ŷ1 − y, and the residual is r1 =

∥∥e1
y

∥∥
2
.

(2) The observer for failure fa2 = ∆ψrq is designed as{
˙̂x2(t) = Ax̂2(t) + L(y − ŷ2) + f(x2, u, t) +Bu(t) + E2w

2
1 +Dw2

2,

ŷ2(t) = Cx̂2(t),
(4.9)

where

w2
1 =

{
−ρ12

F 2
1 e

2
y

‖F 2
1 e

2
y‖ if e2

y 6= 0,

0 if e2
y = 0,

(4.10)

and

w2
2 =

{
−ρ2

F2e2y

‖F2e2y‖ if e2
y 6= 0,

0 if e2
y = 0,

(4.11)

where e2
y = ŷ2 − y, and the residual is r2 =

∥∥e2
y

∥∥
2
.

Similarly, the sign functions in equations (4.7)-(4.8) and equations (4.10)-(4.11) are also replaced by the
sigmoid function (3.16), respectively.

The aforementioned matrices and parameters are given by

F1 =

[
F 1

1

F 2
1

]
=

[
0 −ω

L
ω
L 0

]
, F2 =

[
−x1

L −x2
L

]
, L =

[
k1 0
0 k2

]
, k1 > 0, k2 > 0.
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4.3. Simulation Results

The initial simulation conditions are x1(0) = 0, x2(0) = 0, x̂1(0) = 0.5 and x̂2(0) = 0.5, the parameters
are chosen as: ρ11 = 0.3, ρ12 = 0.3, ρ2 = 1, k1 = 1, k2 = 1 and a=1, setting TL = 5N . Random noises with
amplitudes within ±0.7 are selected to simulate ∆Rs, i.e. stator winding resistance perturbation.

Case 1: Only amplitude demagnetization occurs, i.e. fa1 6= 0, fa2 = 0.
In the first case, let the fault be a ramp function, that is, fa1 = −tWb. Assume that fa1 begins at

time instant of 0.1 second, and fa1 = 0 when t < 0.1 second. The residual generations shown in Figure 2
indicates that residual r1 remains unchanged at zero threshold, whereas r2 greatly varies, that is, amplitude
demagnetization occurs because residual r2 deviates from zero threshold.
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Figure 2: Detection of faultfa1 with faultfa2 free

Case 2: Demagnetization occurs on d and q axes simultaneously, i.e. fa1 6= 0, fa2 6= 0.
In the second case, two sinusoidal signals are selected to illustrate that the faults detection are sensitive to

incipient faults, that is, fa1 = − |0.05 cos(1000t)|Wb, fa2 = |0.05 sin(1000t)|Wb. Assume that fai(i = 1, 2)
begins at time instant of 0.1 seconds. The corresponding residual generations shown in Figure 3 indicates
that both r1 and r2 vary greatly at 0.1s when fa1 and fa2 simultaneously occur. This method is successful
for fault source identification purposes.

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

3

3.5

4

Time(s)

R
e

s
id

u
a

l(
A

)

(a) The residual r1 generation

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

Time(s)

R
e

s
id

u
a

l(
A

)

(b) The residual r2 generation

Figure 3: Detection of faultfa1 and faultfa2 simultaneously

4.4. Experimental Results

RT-Lab is a modular real-time simulation platform which can achieve hardware-in-the-loop simulation
(HILS). Figure 4 shows the RT-lab HILS configuration diagram for PMSM control systems. TMS320F2812
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is selected as the controller, and RT-lab OP5600 is selected to simulate the inverter and the PMSM. The
HILS of the PMSM can be realized by downloading the compiled code from the PMSM and the inverter
model for running in OP5600, and by downloading the C-code generated from the designed controller model
for running in DSP. PWM carrier frequency is set to 5 KHz, the sampling period is set to 50 µs.

s

PMSMController

RT-LAB

TMS320F2812PC

Figure 4: The RT-lab HILS configuration

The fault models are chosen the same as above in order to compare the experiment results with simulation
results. Figure 5 shows the experimental results of residual generations when fault signal fa1 = −tWb is
introduced at 0.1 s with fa2 free. The same as Figure 2, residual r1 remains unchanged at zero threshold,
whereas r2 varies greatly. Therefore, amplitude demagnetization can be confirmed because residual r2

deviates from zero threshold. Figure 6 shows the experimental results of residual generations when fault
signal fa1 = − |0.05 cos(1000t)|Wb and fa2 = |0.05 sin(1000t)|Wb are both introduced at 0.1 s. Figure 6
shows that both r1 and r2 significantly vary at 0.1 s when fa1 and fa2 simultaneously occur. Therefore,
fault source is identified successfully.

1
r

2
r

Figure 5: Detection of fault fa1 with fault fa2

free

1
r

2
r

Figure 6: Detection of fault fa1, fault fa2 simul-
taneously

The judgment rules are shown in Table 2, where ‘1’ represents ri 6= 0, ‘0’ represents ri = 0.

Table 2: Fault diagnosis decision rules

r2 r1 Fault Decisions

0 0 fault free
0 1 fault fa2

1 0 fault fa1

1 1 fault fa1, fa2 simultaneously

5. Conclusion

This paper designs a sliding mode observer for residual generations by employing the specific feature
of sliding mode variable structure technology, that is, being completely invariant to unknown input distur-
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bances. By removing unknown input disturbances from the system residual signals, the residual-based fault
detection cannot be affected by the unknown input disturbances, thereby a low threshold can be selected to
improve the fault detection sensitivity. The sliding mode observer can make the residual value approach zero
threshold with unknown input disturbances if fault free, and the system can accurately detect and locate
the faults if several faults simultaneously occur. By employing the proposed method in the demagnetization
fault detection for PMSM, series convincingly simulation and experiment results have verified the efficiency
of the method.
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