On Opial-Rozanova type inequalities

Chang-Jian Zhao ${ }^{\text {a,* }}$, Yue-Sheng $W u^{a}$, Wing-Sum Cheung ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, China Jiliang University, Hangzhou 310018, China.
${ }^{b}$ Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong.

Communicated by R. Saadati

Abstract

In the present paper we establish some inverses of Rozanova's type integral inequalities. The results in special cases yield reverse Rozanova's, Godunova's and Pölya's inequalities. © 2016 All rights reserved. Keywords: Opial's inequality, Jensen's inequality, Rozanova's inequality. 2010 MSC: 26E60.

1. Introduction

The well-known inequality due to Opial can be stated as follows (see [12]).
Theorem 1.1. Suppose $f \in C^{1}[0, h]$ satisfies $f(0)=f(h)=0$ and $f(x)>0$ for all $x \in(0, h)$. Then

$$
\begin{equation*}
\int_{0}^{h}\left|f(x) f^{\prime}(x)\right| d x \leq \frac{h}{4} \int_{0}^{h}\left(f^{\prime}(x)\right)^{2} d x \tag{1.1}
\end{equation*}
$$

The first Opial's type inequality was established by Willett [16] as follows:
Theorem 1.2. If $x(t)$ be absolutely continuous in $[0, a]$, and $x(0)=0$, then

$$
\begin{equation*}
\int_{0}^{a}\left|x(t) x^{\prime}(t)\right| d t \leq \frac{a}{2} \int_{0}^{a}\left|x^{\prime}(t)\right|^{2} d t \tag{1.2}
\end{equation*}
$$

A non-trivial generalization of Theorem 1.2 was established by Hua 10 as follows:

[^0]Theorem 1.3. Let $x(t)$ be absolutely continuous in $[0, a]$ and $x(0)=0$. If l be a positive integer, then

$$
\begin{equation*}
\int_{0}^{a}\left|x(t) x^{\prime}(t)\right| d t \leq \frac{a^{l}}{l+1} \int_{0}^{a}\left|x^{\prime}(t)\right|^{l+1} d t \tag{1.3}
\end{equation*}
$$

A sharper inequality was established by Godunova [9] as follows:
Theorem 1.4. Let $f(t)$ be convex and increasing function on $[0, \infty)$ with $f(0)=0$. If $x(t)$ is absolutely continuous on $[0, \tau]$, and $x(\alpha)=0$, then

$$
\begin{equation*}
\int_{\alpha}^{\tau} f^{\prime}(|x(t)|)\left|x^{\prime}(t)\right| d t \leq f\left(\int_{\alpha}^{\tau}\left|x^{\prime}(t)\right| d t\right) \tag{1.4}
\end{equation*}
$$

Rozanova [14] proved an extension of Inequality (1.4) which is embodied in the following:
Theorem 1.5. Let $f(t)$ and $g(t)$ be convex and increasing functions on $[0, \infty)$ with $f(0)=0$ and let $p(t) \geq 0$, $p^{\prime}(t)>0, t \in[\alpha, a]$ with $p(\alpha)=0$. If $x(t)$ is absolutely continuous on $[\alpha, a)$ and $x(\alpha)=0$, then

$$
\begin{equation*}
f\left(\int_{\alpha}^{a} p^{\prime}(t) \cdot g\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right) d t\right) \geq \int_{\alpha}^{a} p^{\prime}(t) \cdot g\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right) \cdot\left[f^{\prime}\left(p(t) \cdot g\left(\frac{|x(t)|}{p(t)}\right)\right)\right] d t \tag{1.5}
\end{equation*}
$$

The Inequality (1.5) will be called as Rozanova's inequality in the paper.
Opial's inequality and its generalizations, extensions and discretizations play a fundamental role in establishing the existence and uniqueness of initial and boundary value problems for ordinary and partial differential equations as well as difference equations [1, 4, 5, 6, 7, 8, 11] and [17]. For Opial type integral inequalities involving high-order partial derivatives see [3] and [18]. For an extensive survey on these inequalities, see [2].

The aim of the present paper is to establish some inverses of the Rozanova's Inequality (1.5) as follows.
Theorem 1.6. Let $f(t)$ and $g(t)$ be convex and decreasing functions on $[0, \infty)$ with $f(0)=0$ and let $p(t) \geq 0$, $p^{\prime}(t)>0, t \in[\alpha, \tau]$ with $p(\alpha)=0$. If $x(t)$ is absolutely continuous on $[\alpha, \tau)$ and $x(\alpha)=0$, then there exists $\lambda(0 \leq \lambda \leq 1)$, following inequality holds

$$
\begin{equation*}
f\left(\int_{\alpha}^{\tau} p^{\prime}(t) g\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right) d t\right) \leq \int_{\alpha}^{\tau} p^{\prime}(t) g\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right) f^{\prime}\left(\left(C_{g, \lambda}(\alpha, t)\right) \cdot p(t) g\left(\frac{|x(t)|}{p(t)}\right)\right) d t \tag{1.6}
\end{equation*}
$$

where

$$
C_{g, \lambda}(\alpha, t)=\frac{\lambda g(\alpha)+(1-\lambda) g(t)}{g(\lambda \alpha+(1-\lambda) t)}
$$

Remark 1.7. The reverse inequality in Theorem 1.6 is achieved. Moreover, in Theorem 1.5 we deal with convex and increasing functions f and g, while the reverse inequality in Theorem 1.6 is achieved for convex and decreasing functions f and g.

Theorem 1.8. Assume that
(I) $\quad f(t), g(t)$ and $x(t)$ are as in Theorem 1.6,
(II) $p(t)$ is increasing on $[0, \tau]$ with $p(0)=0$,
(III) $h(t)$ is concave and increasing on $[0, \infty)$,
(IV) $\phi(t)$ is increasing on $[0, a]$ with $\phi(0)=0$,
(V) \quad For $y(t)=\int_{0}^{t} p^{\prime}(s) g\left(\frac{\left|x^{\prime}(s)\right|}{p^{\prime}(s)}\right) d s$,

$$
\begin{equation*}
f^{\prime}(y(t)) y^{\prime}(t) \cdot \phi\left(\frac{1}{y^{\prime}(t)}\right) \geq \frac{f(y(\tau))}{y(\tau)} \cdot \phi^{\prime}\left(\frac{t}{y(\tau)}\right) \tag{1.7}
\end{equation*}
$$

Then there exists λ and $\mu(0 \leq \lambda, \mu \leq 1)$, following inequality holds

$$
\begin{equation*}
\omega\left(\int_{0}^{\tau} p^{\prime}(t) g\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right) d t\right) \leq E_{h, \mu}(0, \tau) \int_{0}^{\tau} f^{\prime}\left(E_{g, \lambda}^{-1}(0, t) p(t) g\left(\frac{|x(t)|}{p(t)}\right)\right) \cdot v\left(p^{\prime}(t) g\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right)\right) d t \tag{1.8}
\end{equation*}
$$

where

$$
\begin{align*}
E_{g, \lambda}(0, t) & =\frac{g((1-\lambda) t)}{\lambda g(0)+(1-\lambda) g(t)} \\
E_{h, \mu}(0, \tau) & =\frac{h((1-\mu) \tau)}{\mu h(0)+(1-\mu) h(\tau)} \\
v(z) & =z h\left(\phi\left(\frac{1}{z}\right)\right) \tag{1.9}
\end{align*}
$$

and

$$
\begin{equation*}
w(z)=f(z) h\left(\phi\left(\frac{\tau}{z}\right)\right) \tag{1.10}
\end{equation*}
$$

Remark 1.9. Inequality (1.8) just is an inverse of the following inequality established by Rozanova [15].

$$
\omega\left(\int_{0}^{\tau} p^{\prime}(t) g\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right) d t\right) \geq \int_{0}^{\tau} f^{\prime}\left(p(t) g\left(\frac{|x(t)|}{p(t)}\right)\right) \cdot v\left(p^{\prime}(t) g\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right)\right) d t
$$

On the other hand, for $x(t)=x_{1}(t), x_{1}^{\prime}(t)>0, x_{1}^{\prime}(0)=0, x(\tau)=b, g(t)=t, f(t)=\phi(t)=t^{2}$ and $h(t)=\sqrt{1+t}$, the inequality (1.8) reduces to an inverse of the following inequality established by Pölya [13.

$$
2 \int_{0}^{\tau} x_{1}(t)\left(1+\left(x_{1}^{\prime}(t)\right)^{2}\right)^{1 / 2} d t \leq b\left(\tau^{2}+b^{2}\right)^{1 / 2}
$$

2. Proof of main results

Lemma 2.1. Let p be a positive continuous function and ϕ be continuous function on $[a, b]$. Let f be a positive, convex and continuous function on an interval containing both $[a, b]$ and $\phi[a, b]$ as subsets. Then there exist $\lambda(0 \leq \lambda \leq 1)$ such that

$$
\begin{equation*}
f\left(\frac{\int_{a}^{b} p(x) \phi(x) d x}{\int_{a}^{b} p(x) d x}\right) \geq E_{f, \lambda}(a, b) \frac{\int_{a}^{b} p(x) f(\phi(x)) d x}{\int_{a}^{b} p(x) d x} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{f, \lambda}(a, b)=\frac{f(\lambda a+(1-\lambda) b)}{\lambda f(a)+(1-\lambda) f(b)} \tag{2.2}
\end{equation*}
$$

Proof. For any finite sequence of real numbers $\left\{u_{i}\right\}$ in a fixed closed interval $[a, b]$ and any sequence of positive numbers $\left\{q_{i}\right\}$, since $a \leq u_{i} \leq b$, there is a sequence $t_{i} \in[0,1]$ such that $u_{i}=t_{i} a+\left(1-t_{i}\right) b$. Therefore

$$
\begin{aligned}
\frac{\frac{\sum_{i=1}^{n} q_{i} f\left(u_{i}\right)}{\sum_{i=1}^{n} q_{i}}}{f\left(\frac{\sum_{i=1}^{n} q_{i} u_{i}}{\sum_{i=1}^{n} q_{i}}\right)}= & \frac{\frac{\sum_{i=1}^{n} q_{i} f\left(t_{i} a+\left(1-t_{i}\right) b\right)}{\sum_{i=1}^{n} q_{i}}}{f\left(\frac{\sum_{i=1}^{n} q_{i}\left(t_{i} a+\left(1-t_{i}\right) b\right)}{\sum_{i=1}^{n} q_{i}}\right)} \\
& \leq \frac{\sum_{i=1}^{n} q_{i}\left(t_{i} f(a)+\left(1-t_{i}\right) f(b)\right)}{f\left(\frac{\sum_{i=1}^{n} q_{i}\left(t_{i} a+\left(1-t_{i}\right) b\right)}{\sum_{i=1}^{n} q_{i}}\right)}
\end{aligned}
$$

$$
=\frac{\frac{\left.f(a) \sum_{i=1}^{n} q_{i} t_{i}+f(b) \sum_{i=1}^{n} q_{i}\left(1-t_{i}\right)\right)}{\sum_{i=1}^{n} q_{i}}}{f\left(\frac{\left.a \sum_{i=1}^{n} q_{i} t_{i}+b \sum_{i=1}^{n} q_{i}\left(1-t_{i}\right)\right)}{\sum_{i=1}^{n} q_{i}}\right)} .
$$

Hence

$$
f\left(\frac{\sum_{i=1}^{n} q_{i} u_{i}}{\sum_{i=1}^{n} q_{i}}\right) \geq \frac{f\left(a \frac{\sum_{i=1}^{n} q_{i} t_{i}}{\sum_{i=1}^{n} q_{i}}+b\left(1-\frac{\sum_{i=1}^{n} q_{i} t_{i}}{\sum_{i=1}^{n} q_{i}}\right)\right)}{f(a) \frac{\sum_{i=1}^{n} q_{i} t_{i}}{\sum_{i=1}^{n} q_{i}}+f(b)\left(1-\frac{\sum_{i=1}^{n} q_{i} t_{i}}{\sum_{i=1}^{n} q_{i}}\right)} \cdot \frac{\sum_{i=1}^{n} q_{i} f\left(u_{i}\right)}{\sum_{i=1}^{n} q_{i}}
$$

On the other hand, letting $x_{i}=a+\left(\frac{b-a}{n}\right) i, i=0,1, \ldots, n$, we have

$$
\triangle x_{i}=x_{i}-x_{i-1}=\frac{b-a}{n}, \quad i=1, \ldots, n
$$

Let $u_{i}:=\phi\left(x_{i}\right)$ and $q_{i}:=p\left(x_{i}\right) \triangle x_{i}, i=\ldots, n$, we obtain

$$
f\left(\frac{\sum_{i=1}^{n} p\left(x_{i}\right) \phi\left(x_{i}\right) \triangle x_{i}}{\sum_{i=1}^{n} p\left(x_{i}\right) \triangle x_{i}}\right) \geq E_{f}^{\prime}(a, b) \frac{\sum_{i=1}^{n} p\left(x_{i}\right) f\left(\phi\left(x_{i}\right)\right) \triangle x_{i}}{\sum_{i=1}^{n} p\left(x_{i}\right) \triangle x_{i}}
$$

where

$$
E_{f}^{\prime}(a, b)=\frac{f\left(a \frac{\sum_{i=1}^{n} p\left(x_{i}\right) t\left(x_{i}\right) \triangle x_{i}}{\sum_{i=1}^{n} p\left(x_{i}\right) \Delta x_{i}}+b\left(1-\frac{\sum_{i=1}^{n} p\left(x_{i}\right) t\left(x_{i}\right) \triangle x_{i}}{\sum_{i=1}^{n} p\left(x_{i}\right) \Delta x_{i}}\right)\right)}{f(a) \frac{\sum_{i=1}^{n} p\left(x_{i}\right) t\left(x_{i}\right) \triangle x_{i}}{\sum_{i=1}^{n} p\left(x_{i}\right) \triangle x_{i}}+f(b)\left(1-\frac{\sum_{i=1}^{n} p\left(x_{i}\right) t\left(x_{i}\right) \triangle x_{i}}{\sum_{i=1}^{n} p\left(x_{i}\right) \Delta x_{i}}\right)} .
$$

By taking limits as $n \rightarrow \infty$, we get

$$
f\left(\frac{\int_{a}^{b} p(x) \phi(x) d x}{\int_{a}^{b} p(x) d x}\right) \geq E_{f}(a, b) \frac{\int_{a}^{b} p(x) f(\phi(x)) d x}{\int_{a}^{b} p(x) d x}
$$

where

$$
E_{f}(a, b)=\frac{f(m a+n b)}{m f(a)+n f(b)}
$$

for some $0 \leq m, n \leq 1$ with $m+n=1$.
If $m=\lambda$ and $n=1-\lambda, 2.1$ easily follows.
Lemma 2.1 was also proved in [19] by the author, but there's a little mistake in that proof. A complete and correct proof has shown here.

Proof of Theorem 1.6

Proof. Let $y(t)=\int_{\alpha}^{t}\left|x^{\prime}(s)\right| d s, t \in[\alpha, \tau]$ so that $y^{\prime}(t)=\left|x^{\prime}(t)\right|$ and in view of

$$
|x(t)| \leq \int_{\alpha}^{t}\left|x^{\prime}(s)\right| d s
$$

we have

$$
y(t) \geq|x(t)|
$$

From the hypotheses and in view of the reverse Jensen's inequality in Lemma 2.1, we obtain for $0 \leq \lambda \leq 1$

$$
\begin{align*}
g\left(\frac{|x(t)|}{p(t)}\right) & \geq g\left(\frac{y(t)}{p(t)}\right) \\
& =g\left(\frac{\int_{\alpha}^{t} p^{\prime}(s) \frac{\left|x^{\prime}(s)\right|}{p^{\prime}(s)} d s}{\int_{\alpha}^{t} p^{\prime}(s) d s}\right) \tag{2.3}\\
& \geq\left(\frac{g(\lambda \alpha+(1-\lambda) t)}{\lambda g(\alpha)+(1-\lambda) g(t)}\right) \frac{1}{p(t)} \int_{\alpha}^{t} p^{\prime}(s) g\left(\frac{\left|x^{\prime}(s)\right|}{p^{\prime}(x)}\right) d s
\end{align*}
$$

On the other hand, from the hypotheses and by using Inequality 2.3), we have

$$
\begin{aligned}
& \int_{\alpha}^{\tau} p^{\prime}(t) g\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right) f^{\prime}\left(\frac{\lambda g(\alpha)+(1-\lambda) g(t)}{g(\lambda \alpha+(1-\lambda) t)} \cdot p(t) g\left(\frac{|x(t)|}{p(t)}\right)\right) d t \\
& \geq \int_{\alpha}^{\tau} p^{\prime}(t) g\left(\frac{y^{\prime}(t)}{p^{\prime}(t)}\right) f^{\prime}\left(\int_{\alpha}^{t} p^{\prime}(s) g\left(\frac{y^{\prime}(s)}{p^{\prime}(s)}\right) d s\right) d t \\
&=\int_{\alpha}^{\tau} \frac{d}{d t}\left[f\left(\int_{\alpha}^{t} p^{\prime}(s) g\left(\frac{y^{\prime}(s)}{p^{\prime}(s)}\right) d s\right)\right] d t \\
&=f\left(\int_{\alpha}^{\tau} p^{\prime}(t) g\left(\frac{y^{\prime}(t)}{p^{\prime}(t)}\right) d t\right) \\
&=f\left(\int_{\alpha}^{\tau} p^{\prime}(t) g\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right) d t\right)
\end{aligned}
$$

This completes the proof.

Proof of Theorem 1.8

Proof. From the reverse Jensen's inequality, we obtain

$$
p(t) g\left(\frac{|x(t)|}{p(t)}\right) \geq E_{g, \lambda}(0, t) y(t)
$$

where $E_{g, \lambda}(0, t)$ is as in 2.2 . Because g and h are convex and concave functions, respectively, so there exists $0 \leq \lambda, \mu \leq 1$, so that

$$
E_{g, \lambda}^{-1}(0, t)=\frac{\lambda g(0)+(1-\lambda) g(t)}{g((1-\lambda) t)} \geq 1
$$

and

$$
E_{h, \mu}(0, \tau)=\frac{h((1-\mu) \tau)}{\mu h(0)+(1-\mu) h(\tau)} \geq 1
$$

Hence

$$
\begin{equation*}
E_{h, \mu}(0, \tau) \int_{0}^{\tau} f^{\prime}\left(E_{g, \lambda}^{-1}(0, t) p(t) g\left(\frac{|x(t)|}{p(t)}\right)\right) \cdot v\left(p^{\prime}(t) g\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right)\right) d t \geq E_{h, \mu}(0, \tau) \int_{0}^{\tau} f^{\prime}(y(t)) \cdot v\left(y^{\prime}(t)\right) d t \tag{2.4}
\end{equation*}
$$

From $\sqrt{1.9}$ and $(2.4$, we have

$$
\begin{align*}
E_{h, \mu}(0, \tau) \int_{0}^{\tau} f^{\prime}\left(E_{g, \lambda}^{-1}(0, t) p(t) g\left(\frac{|x(t)|}{p(t)}\right)\right) & \cdot v\left(p^{\prime}(t) g\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right)\right) d t \tag{2.5}\\
& \geq E_{h, \mu}(0, \tau) \int_{0}^{\tau} f^{\prime}(y(t)) y^{\prime}(t) h\left(\phi\left(\frac{1}{y^{\prime}(t)}\right)\right) d t
\end{align*}
$$

From (2.1), 2.5 and in view of h is concave function, we obtain

$$
\begin{align*}
E_{h, \mu}(0, \tau) & \int_{0}^{\tau} f^{\prime}\left(E_{g, \lambda}^{-1}(0, t) p(t) g\left(\frac{|x(t)|}{p(t)}\right)\right) \cdot v\left(p^{\prime}(t) g\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right)\right) d t \\
& \geq E_{h, \mu}(0, \tau) \frac{\int_{0}^{\tau} f^{\prime}(y(t)) y^{\prime}(t) \cdot h\left(\phi\left(\frac{1}{y^{\prime}(t)}\right)\right) d t}{\int_{0}^{\tau} f^{\prime}(y(t)) y^{\prime}(t) d t} \int_{0}^{\tau} f^{\prime}(y(t)) y^{\prime}(t) d t \tag{2.6}\\
& \geq h\left(\frac{\int_{0}^{\tau} f^{\prime}(y(t)) y^{\prime}(t) \cdot \phi\left(\frac{1}{y^{\prime}(t)}\right) d t}{\int_{0}^{\tau} f^{\prime}(y(t)) y^{\prime}(t) d t}\right) f(y(\tau))
\end{align*}
$$

From (1.7), 1.10), 2.6) and in view of h is increasing function, we obtain

$$
\begin{aligned}
E_{h, \mu}(0, \tau) & \int_{0}^{\tau} f^{\prime}\left(E_{g, \lambda}^{-1}(0, t) p(t) g\left(\frac{|x(t)|}{p(t)}\right)\right) \cdot v\left(p^{\prime}(t) g\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right)\right) d t \\
& \geq h\left(\frac{\int_{0}^{\tau} \frac{f(y(\tau))}{y(\tau)} \cdot \phi^{\prime}\left(\frac{t}{y(\tau)}\right) d t}{\int_{0}^{\tau} f^{\prime}(y(t)) y^{\prime}(t) d t}\right) f(y(\tau)) \\
& =h\left(\frac{\frac{f(y(\tau))}{y(\tau)} \cdot \int_{0}^{\tau} \phi^{\prime}\left(\frac{t}{y(\tau)}\right) d t}{\int_{0}^{\tau}(f(y(t)))^{\prime} d t}\right) f(y(\tau)) \\
& =h\left(\phi\left(\frac{\tau}{y(\tau)}\right)\right) f(y(\tau)) \\
& =\omega(y(\tau))=\omega\left(\int_{0}^{\tau} p^{\prime}(t)\left(\frac{\left|x^{\prime}(t)\right|}{p^{\prime}(t)}\right) d t\right)
\end{aligned}
$$

This completes the proof.

Acknowledgement

Chang-Jian Zhao and Yue-Sheng Wu are supported by National Natural Science Foundation of China (11371334), and Wing-Sum Cheung is partially supported by a HKU Seed Grant for Basic Research.

References

[1] R. P. Agarwal, V. Lakshmikantham, Uniqueness and nonuniqueness criteria for ordinary differential equations, World Scientific, River Edge, (1993). 1
[2] R. P. Agarwal, P. Y. H. Pang, Opial inequalities with applications in differential and difference equations, Kluwer Academic Publishers, Dordrecht, (1995). 1
[3] R. P. Agarwal, P. Y. H. Pang, Sharp opial-type inequalities in two variables, Appl. Anal., 56 (1996), 227-242. 1
[4] R. P. Agarwal, E. Thandapani, On some new integro-differential inequalities, An. Ştiinţ. Univ. "Al. I. Cuza"' Iaşi Secţ. I a Mat., 28 (1982), 123-126. 1
[5] D. Baînov, P. Simeonov, Integral inequalities and applications, Kluwer Academic Publishers, Dordrecht, (1992). 1
[6] W. S. Cheung, On Opial-type inequalities in two variables, Aequationes Math., 38 (1989), 236-244. 1
[7] W. S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317-321. 1
[8] K. M. Das, An inequality similar to Opial's inequality, Proc. Amer. Math. Soc., 22 (1969), 258-261. 1 1
[9] E. K. Godunova, Integral'nye neravenstva s proizvodnysi i proizvol'nymi vypuklymi funkcijami, Uc. Zap. Mosk. Gos. Ped. In-ta im. Lenina, 460 (1972), 58-65. 1]
[10] L. G. Hua, On an inequality of Opial, Sci. Sinica, 14 (1965), 789-790. 1
[11] J. D. Li, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl., 167 (1992), 98-110. 1
[12] Z. Opial, Sur une inégalité, Ann. Polon. Math., 8 (1960), 29-32. 1
[13] G. Pólya, Advanced Problems and Solutions: Problems for Solution: 4264-4269, Amer. Math. Monthly, 54 (1947), 479-480. 1.9
[14] G. I. Rozanova, Integral'nye neravenstva s proizvodnysi i proizvol'nymi vypuklymi funkcijami, Uc. Zap. Mosk. Gos. Ped. In-ta im. Lenina, 460 (1972), 58-65. 1
[15] G. I. Rozanova, Ob odnom integral'nom neravenstve, svjazannom s neravenstvom Polia, Izvestija Vyss. Ucebn, Zaved. Mat., 125 (1975), 75-80. 1.9
[16] D. Willett, The existence-uniqueness theorem for an n-th order linear ordinary differential equation, Amer. Math. Monthly, 75 (1968), 174-178. 1
[17] G. S. Yang, A note on inequality similar to Opial inequality, Tamkang J. Math., 18 (1987), 101-104. 1
[18] C. J. Zhao, W. S. Cheung, Sharp integral inequalities involving high-order partial derivatives, J. Inequal. Appl., 2008 (2008), 10 pages. 1
[19] C. J. Zhao, W. S. Cheung, Reverse Hilbert's type integral inequalities, Math. Ineq. Appl., 17 (2014), 1551-1561. 2

[^0]: *Corresponding author
 Email addresses: chjzhao@163.com, chjzhao@aliyun.com (Chang-Jian Zhao), wuys@cjlu.edu.cn (Yue-Sheng Wu), wscheung@hku.hk (Wing-Sum Cheung)

