**Research** Article



Journal of Nonlinear Science and Applications



# On Opial-Rozanova type inequalities

Chang-Jian Zhao<sup>a,\*</sup>, Yue-Sheng Wu<sup>a</sup>, Wing-Sum Cheung<sup>b</sup>

<sup>a</sup>Department of Mathematics, China Jiliang University, Hangzhou 310018, China. <sup>b</sup>Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong.

Communicated by R. Saadati

## Abstract

In the present paper we establish some inverses of Rozanova's type integral inequalities. The results in special cases yield reverse Rozanova's, Godunova's and Pölya's inequalities. ©2016 All rights reserved.

Keywords: Opial's inequality, Jensen's inequality, Rozanova's inequality. 2010 MSC: 26E60.

# 1. Introduction

The well-known inequality due to Opial can be stated as follows (see [12]).

**Theorem 1.1.** Suppose  $f \in C^1[0,h]$  satisfies f(0) = f(h) = 0 and f(x) > 0 for all  $x \in (0,h)$ . Then

$$\int_{0}^{h} \left| f(x)f'(x) \right| dx \le \frac{h}{4} \int_{0}^{h} (f'(x))^{2} dx.$$
(1.1)

The first Opial's type inequality was established by Willett [16] as follows:

**Theorem 1.2.** If x(t) be absolutely continuous in [0, a], and x(0) = 0, then

$$\int_0^a |x(t)x'(t)| dt \le \frac{a}{2} \int_0^a |x'(t)|^2 dt.$$
(1.2)

A non-trivial generalization of Theorem 1.2 was established by Hua [10] as follows:

\*Corresponding author

Received 2015-10-02

Email addresses: chjzhao@163.com, chjzhao@aliyun.com (Chang-Jian Zhao), wuys@cjlu.edu.cn (Yue-Sheng Wu), wscheung@hku.hk (Wing-Sum Cheung)

**Theorem 1.3.** Let x(t) be absolutely continuous in [0, a] and x(0) = 0. If l be a positive integer, then

$$\int_{0}^{a} |x(t)x'(t)| dt \le \frac{a^{l}}{l+1} \int_{0}^{a} |x'(t)|^{l+1} dt.$$
(1.3)

A sharper inequality was established by Godunova [9] as follows:

**Theorem 1.4.** Let f(t) be convex and increasing function on  $[0, \infty)$  with f(0) = 0. If x(t) is absolutely continuous on  $[0, \tau]$ , and  $x(\alpha) = 0$ , then

$$\int_{\alpha}^{\tau} f'(|x(t)|)|x'(t)|dt \le f\left(\int_{\alpha}^{\tau} |x'(t)|dt\right).$$
(1.4)

Rozanova [14] proved an extension of Inequality (1.4) which is embodied in the following:

**Theorem 1.5.** Let f(t) and g(t) be convex and increasing functions on  $[0, \infty)$  with f(0) = 0 and let  $p(t) \ge 0$ ,  $p'(t) > 0, t \in [\alpha, a]$  with  $p(\alpha) = 0$ . If x(t) is absolutely continuous on  $[\alpha, a)$  and  $x(\alpha) = 0$ , then

$$f\left(\int_{\alpha}^{a} p'(t) \cdot g\left(\frac{|x'(t)|}{p'(t)}\right) dt\right) \ge \int_{\alpha}^{a} p'(t) \cdot g\left(\frac{|x'(t)|}{p'(t)}\right) \cdot \left[f'\left(p(t) \cdot g\left(\frac{|x(t)|}{p(t)}\right)\right)\right] dt.$$
(1.5)

The Inequality (1.5) will be called as Rozanova's inequality in the paper.

Opial's inequality and its generalizations, extensions and discretizations play a fundamental role in establishing the existence and uniqueness of initial and boundary value problems for ordinary and partial differential equations as well as difference equations [1, 4, 5, 6, 7, 8, 11] and [17]. For Opial type integral inequalities involving high-order partial derivatives see [3] and [18]. For an extensive survey on these inequalities, see [2].

The aim of the present paper is to establish some inverses of the Rozanova's Inequality (1.5) as follows.

**Theorem 1.6.** Let f(t) and g(t) be convex and decreasing functions on  $[0, \infty)$  with f(0) = 0 and let  $p(t) \ge 0$ , p'(t) > 0,  $t \in [\alpha, \tau]$  with  $p(\alpha) = 0$ . If x(t) is absolutely continuous on  $[\alpha, \tau)$  and  $x(\alpha) = 0$ , then there exists  $\lambda$   $(0 \le \lambda \le 1)$ , following inequality holds

$$f\left(\int_{\alpha}^{\tau} p'(t)g\left(\frac{|x'(t)|}{p'(t)}\right) dt\right) \le \int_{\alpha}^{\tau} p'(t)g\left(\frac{|x'(t)|}{p'(t)}\right) f'\left((C_{g,\lambda}(\alpha,t)) \cdot p(t)g\left(\frac{|x(t)|}{p(t)}\right)\right) dt.$$
(1.6)

where

$$C_{g,\lambda}(\alpha,t) = \frac{\lambda g(\alpha) + (1-\lambda)g(t)}{g(\lambda\alpha + (1-\lambda)t)}.$$

Remark 1.7. The reverse inequality in Theorem 1.6 is achieved. Moreover, in Theorem 1.5 we deal with convex and increasing functions f and g, while the reverse inequality in Theorem 1.6 is achieved for convex and decreasing functions f and g.

#### **Theorem 1.8.** Assume that

- (I) f(t), g(t) and x(t) are as in Theorem 1.6,
- (II) p(t) is increasing on  $[0, \tau]$  with p(0) = 0,
- (III) h(t) is concave and increasing on  $[0,\infty)$ ,
- (IV)  $\phi(t)$  is increasing on [0, a] with  $\phi(0) = 0$ ,

$$(V) \quad For \ y(t) = \int_0^t p'(s)g\left(\frac{|x'(s)|}{p'(s)}\right) ds,$$
$$f'\left(y(t)\right)y'(t) \cdot \phi\left(\frac{1}{y'(t)}\right) \ge \frac{f(y(\tau))}{y(\tau)} \cdot \phi'\left(\frac{t}{y(\tau)}\right). \tag{1.7}$$

Then there exists  $\lambda$  and  $\mu$  ( $0 \leq \lambda, \mu \leq 1$ ), following inequality holds

$$\omega\left(\int_0^\tau p'(t)g\left(\frac{|x'(t)|}{p'(t)}\right)dt\right) \le E_{h,\mu}(0,\tau)\int_0^\tau f'\left(E_{g,\lambda}^{-1}(0,t)p(t)g\left(\frac{|x(t)|}{p(t)}\right)\right) \cdot v\left(p'(t)g\left(\frac{|x'(t)|}{p'(t)}\right)\right)dt, \quad (1.8)$$

where

$$E_{g,\lambda}(0,t) = \frac{g((1-\lambda)t)}{\lambda g(0) + (1-\lambda)g(t)},$$
  

$$E_{h,\mu}(0,\tau) = \frac{h((1-\mu)\tau)}{\mu h(0) + (1-\mu)h(\tau)},$$
  

$$v(z) = zh\left(\phi\left(\frac{1}{z}\right)\right),$$
(1.9)

and

$$w(z) = f(z)h\left(\phi\left(\frac{\tau}{z}\right)\right). \tag{1.10}$$

*Remark* 1.9. Inequality (1.8) just is an inverse of the following inequality established by Rozanova [15].

$$\omega\left(\int_0^\tau p'(t)g\left(\frac{|x'(t)|}{p'(t)}\right)dt\right) \ge \int_0^\tau f'\left(p(t)g\left(\frac{|x(t)|}{p(t)}\right)\right) \cdot v\left(p'(t)g\left(\frac{|x'(t)|}{p'(t)}\right)\right)dt.$$

On the other hand, for  $x(t) = x_1(t)$ ,  $x'_1(t) > 0$ ,  $x'_1(0) = 0$ ,  $x(\tau) = b$ , g(t) = t,  $f(t) = \phi(t) = t^2$  and  $h(t) = \sqrt{1+t}$ , the inequality (1.8) reduces to an inverse of the following inequality established by Pölya [13].

$$2\int_0^\tau x_1(t) \left(1 + (x_1'(t))^2\right)^{1/2} dt \le b(\tau^2 + b^2)^{1/2}.$$

#### 2. Proof of main results

**Lemma 2.1.** Let p be a positive continuous function and  $\phi$  be continuous function on [a,b]. Let f be a positive, convex and continuous function on an interval containing both [a,b] and  $\phi[a,b]$  as subsets. Then there exist  $\lambda$  ( $0 \le \lambda \le 1$ ) such that

$$f\left(\frac{\int_{a}^{b} p(x)\phi(x)dx}{\int_{a}^{b} p(x)dx}\right) \ge E_{f,\lambda}(a,b)\frac{\int_{a}^{b} p(x)f(\phi(x))dx}{\int_{a}^{b} p(x)dx},$$
(2.1)

where

$$E_{f,\lambda}(a,b) = \frac{f(\lambda a + (1-\lambda)b)}{\lambda f(a) + (1-\lambda)f(b)}.$$
(2.2)

*Proof.* For any finite sequence of real numbers  $\{u_i\}$  in a fixed closed interval [a, b] and any sequence of positive numbers  $\{q_i\}$ , since  $a \leq u_i \leq b$ , there is a sequence  $t_i \in [0, 1]$  such that  $u_i = t_i a + (1 - t_i)b$ . Therefore

$$\frac{\sum_{i=1}^{n} q_i f(u_i)}{\sum_{i=1}^{n} q_i}}{f\left(\frac{\sum_{i=1}^{n} q_i u_i}{\sum_{i=1}^{n} q_i}\right)} = \frac{\frac{\sum_{i=1}^{n} q_i f(t_i a + (1 - t_i)b)}{\sum_{i=1}^{n} q_i}}{f\left(\frac{\sum_{i=1}^{n} q_i (t_i a + (1 - t_i)b)}{\sum_{i=1}^{n} q_i}\right)}$$
$$\leq \frac{\frac{\sum_{i=1}^{n} q_i (t_i f(a) + (1 - t_i)f(b))}{\sum_{i=1}^{n} q_i}}{f\left(\frac{\sum_{i=1}^{n} q_i (t_i a + (1 - t_i)b)}{\sum_{i=1}^{n} q_i}\right)}$$

$$=\frac{\frac{f(a)\sum_{i=1}^{n}q_{i}t_{i}+f(b)\sum_{i=1}^{n}q_{i}(1-t_{i}))}{\sum_{i=1}^{n}q_{i}}}{f\left(\frac{a\sum_{i=1}^{n}q_{i}t_{i}+b\sum_{i=1}^{n}q_{i}(1-t_{i}))}{\sum_{i=1}^{n}q_{i}}\right)}.$$

Hence

$$f\left(\frac{\sum_{i=1}^{n} q_{i}u_{i}}{\sum_{i=1}^{n} q_{i}}\right) \geq \frac{f\left(a\frac{\sum_{i=1}^{n} q_{i}t_{i}}{\sum_{i=1}^{n} q_{i}} + b\left(1 - \frac{\sum_{i=1}^{n} q_{i}t_{i}}{\sum_{i=1}^{n} q_{i}}\right)\right)}{f(a)\frac{\sum_{i=1}^{n} q_{i}t_{i}}{\sum_{i=1}^{n} q_{i}} + f(b)\left(1 - \frac{\sum_{i=1}^{n} q_{i}t_{i}}{\sum_{i=1}^{n} q_{i}}\right)} \cdot \frac{\sum_{i=1}^{n} q_{i}f(u_{i})}{\sum_{i=1}^{n} q_{i}}$$

On the other hand, letting  $x_i = a + \left(\frac{b-a}{n}\right)i$ , i = 0, 1, ..., n, we have

$$\Delta x_i = x_i - x_{i-1} = \frac{b-a}{n}, \qquad i = 1, \dots, n$$

Let  $u_i := \phi(x_i)$  and  $q_i := p(x_i) \bigtriangleup x_i$ ,  $i = \ldots, n$ , we obtain

$$f\left(\frac{\sum_{i=1}^{n} p(x_i)\phi(x_i) \bigtriangleup x_i}{\sum_{i=1}^{n} p(x_i) \bigtriangleup x_i}\right) \ge E'_f(a,b)\frac{\sum_{i=1}^{n} p(x_i)f(\phi(x_i)) \bigtriangleup x_i}{\sum_{i=1}^{n} p(x_i) \bigtriangleup x_i}$$

where

$$E'_{f}(a,b) = \frac{f\left(a\frac{\sum_{i=1}^{n} p(x_{i})t(x_{i}) \Delta x_{i}}{\sum_{i=1}^{n} p(x_{i}) \Delta x_{i}} + b\left(1 - \frac{\sum_{i=1}^{n} p(x_{i})t(x_{i}) \Delta x_{i}}{\sum_{i=1}^{n} p(x_{i}) \Delta x_{i}}\right)\right)}{f(a)\frac{\sum_{i=1}^{n} p(x_{i})t(x_{i}) \Delta x_{i}}{\sum_{i=1}^{n} p(x_{i}) \Delta x_{i}} + f(b)\left(1 - \frac{\sum_{i=1}^{n} p(x_{i})t(x_{i}) \Delta x_{i}}{\sum_{i=1}^{n} p(x_{i}) \Delta x_{i}}\right)}$$

By taking limits as  $n \to \infty$ , we get

$$f\left(\frac{\int_{a}^{b} p(x)\phi(x)dx}{\int_{a}^{b} p(x)dx}\right) \ge E_{f}(a,b)\frac{\int_{a}^{b} p(x)f(\phi(x))dx}{\int_{a}^{b} p(x)dx}$$

where

$$E_f(a,b) = \frac{f(ma+nb)}{mf(a) + nf(b)}$$

for some  $0 \le m, n \le 1$  with m + n = 1.

If  $m = \lambda$  and  $n = 1 - \lambda$ , (2.1) easily follows.

Lemma 2.1 was also proved in [19] by the author, but there's a little mistake in that proof. A complete and correct proof has shown here.

# Proof of Theorem 1.6

*Proof.* Let 
$$y(t) = \int_{\alpha}^{t} |x'(s)| ds$$
,  $t \in [\alpha, \tau]$  so that  $y'(t) = |x'(t)|$  and in view of  $|x(t)| \leq \int_{\alpha}^{t} |x'(s)| ds$ ,

$$y(t) \ge |x(t)|.$$

From the hypotheses and in view of the reverse Jensen's inequality in Lemma 2.1, we obtain for  $0 \le \lambda \le 1$ 

$$g\left(\frac{|x(t)|}{p(t)}\right) \ge g\left(\frac{y(t)}{p(t)}\right)$$

$$= g\left(\frac{\int_{\alpha}^{t} p'(s) \frac{|x'(s)|}{p'(s)} ds}{\int_{\alpha}^{t} p'(s) ds}\right)$$

$$\ge \left(\frac{g(\lambda \alpha + (1-\lambda)t)}{\lambda g(\alpha) + (1-\lambda)g(t)}\right) \frac{1}{p(t)} \int_{\alpha}^{t} p'(s) g\left(\frac{|x'(s)|}{p'(x)}\right) ds.$$
(2.3)

On the other hand, from the hypotheses and by using Inequality (2.3), we have

$$\begin{split} \int_{\alpha}^{\tau} p'(t)g\left(\frac{|x'(t)|}{p'(t)}\right) f'\left(\frac{\lambda g(\alpha) + (1-\lambda)g(t)}{g(\lambda\alpha + (1-\lambda)t)} \cdot p(t)g\left(\frac{|x(t)|}{p(t)}\right)\right) dt \\ &\geq \int_{\alpha}^{\tau} p'(t)g\left(\frac{y'(t)}{p'(t)}\right) f'\left(\int_{\alpha}^{t} p'(s)g\left(\frac{y'(s)}{p'(s)}\right) ds\right) dt \\ &= \int_{\alpha}^{\tau} \frac{d}{dt} \left[ f\left(\int_{\alpha}^{t} p'(s)g\left(\frac{y'(s)}{p'(s)}\right) ds\right) \right] dt \\ &= f\left(\int_{\alpha}^{\tau} p'(t)g\left(\frac{y'(t)}{p'(t)}\right) dt\right) \\ &= f\left(\int_{\alpha}^{\tau} p'(t)g\left(\frac{|x'(t)|}{p'(t)}\right) dt\right). \end{split}$$

This completes the proof.

## Proof of Theorem 1.8

Proof. From the reverse Jensen's inequality, we obtain

$$p(t)g\left(\frac{|x(t)|}{p(t)}\right) \ge E_{g,\lambda}(0,t)y(t),$$

where  $E_{g,\lambda}(0,t)$  is as in (2.2). Because g and h are convex and concave functions, respectively, so there exists  $0 \leq \lambda, \mu \leq 1$ , so that

$$E_{g,\lambda}^{-1}(0,t) = \frac{\lambda g(0) + (1-\lambda)g(t)}{g((1-\lambda)t)} \ge 1,$$

and

$$E_{h,\mu}(0,\tau) = \frac{h((1-\mu)\tau)}{\mu h(0) + (1-\mu)h(\tau)} \ge 1.$$

Hence

$$E_{h,\mu}(0,\tau) \int_{0}^{\tau} f'\left(E_{g,\lambda}^{-1}(0,t)p(t)g\left(\frac{|x(t)|}{p(t)}\right)\right) \cdot v\left(p'(t)g\left(\frac{|x'(t)|}{p'(t)}\right)\right) dt \ge E_{h,\mu}(0,\tau) \int_{0}^{\tau} f'\left(y(t)\right) \cdot v\left(y'(t)\right) dt.$$
(2.4)

From (1.9) and (2.4), we have

$$E_{h,\mu}(0,\tau) \int_0^\tau f'\left(E_{g,\lambda}^{-1}(0,t)p(t)g\left(\frac{|x(t)|}{p(t)}\right)\right) \cdot v\left(p'(t)g\left(\frac{|x'(t)|}{p'(t)}\right)\right) dt$$
  

$$\geq E_{h,\mu}(0,\tau) \int_0^\tau f'\left(y(t)\right)y'(t)h\left(\phi\left(\frac{1}{y'(t)}\right)\right) dt.$$
(2.5)

From (2.1), (2.5) and in view of h is concave function, we obtain

$$E_{h,\mu}(0,\tau) \int_{0}^{\tau} f'\left(E_{g,\lambda}^{-1}(0,t)p(t)g\left(\frac{|x(t)|}{p(t)}\right)\right) \cdot v\left(p'(t)g\left(\frac{|x'(t)|}{p'(t)}\right)\right) dt$$

$$\geq E_{h,\mu}(0,\tau) \frac{\int_{0}^{\tau} f'(y(t))y'(t) \cdot h\left(\phi\left(\frac{1}{y'(t)}\right)\right) dt}{\int_{0}^{\tau} f'(y(t))y'(t) dt} \int_{0}^{\tau} f'(y(t))y'(t) dt \qquad (2.6)$$

$$\geq h\left(\frac{\int_{0}^{\tau} f'(y(t))y'(t) \cdot \phi\left(\frac{1}{y'(t)}\right) dt}{\int_{0}^{\tau} f'(y(t))y'(t) dt}\right) f(y(\tau)).$$

From (1.7), (1.10), (2.6) and in view of h is increasing function, we obtain

$$\begin{split} E_{h,\mu}(0,\tau) &\int_0^\tau f'\left(E_{g,\lambda}^{-1}(0,t)p(t)g\left(\frac{|x(t)|}{p(t)}\right)\right) \cdot v\left(p'(t)g\left(\frac{|x'(t)|}{p'(t)}\right)\right) dt \\ &\geq h\left(\frac{\int_0^\tau \frac{f(y(\tau))}{y(\tau)} \cdot \phi'\left(\frac{t}{y(\tau)}\right) dt}{\int_0^\tau f'(y(t)) y'(t) dt}\right) f(y(\tau)) \\ &= h\left(\frac{\frac{f(y(\tau))}{y(\tau)} \cdot \int_0^\tau \phi'\left(\frac{t}{y(\tau)}\right) dt}{\int_0^\tau (f(y(t)))' dt}\right) f(y(\tau)) \\ &= h\left(\phi\left(\frac{\tau}{y(\tau)}\right)\right) f(y(\tau)) \\ &= \omega(y(\tau)) = \omega\left(\int_0^\tau p'(t)\left(\frac{|x'(t)|}{p'(t)}\right) dt\right). \end{split}$$

This completes the proof.

#### Acknowledgement

Chang-Jian Zhao and Yue-Sheng Wu are supported by National Natural Science Foundation of China (11371334), and Wing-Sum Cheung is partially supported by a HKU Seed Grant for Basic Research.

#### References

- R. P. Agarwal, V. Lakshmikantham, Uniqueness and nonuniqueness criteria for ordinary differential equations, World Scientific, River Edge, (1993).
- [2] R. P. Agarwal, P. Y. H. Pang, Opial inequalities with applications in differential and difference equations, Kluwer Academic Publishers, Dordrecht, (1995). 1
- [3] R. P. Agarwal, P. Y. H. Pang, Sharp opial-type inequalities in two variables, Appl. Anal., 56 (1996), 227–242. 1
- [4] R. P. Agarwal, E. Thandapani, On some new integro-differential inequalities, An. Ştiinţ. Univ. "Al. I. Cuza"' Iaşi Secţ. I a Mat., 28 (1982), 123–126. 1
- [5] D. Baînov, P. Simeonov, Integral inequalities and applications, Kluwer Academic Publishers, Dordrecht, (1992). 1
- [6] W. S. Cheung, On Opial-type inequalities in two variables, Aequationes Math., 38 (1989), 236–244. 1
- [7] W. S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317–321. 1
- [8] K. M. Das, An inequality similar to Opial's inequality, Proc. Amer. Math. Soc., 22 (1969), 258–261. 1
- [9] E. K. Godunova, Integral'nye neravenstva s proizvodnysi i proizvol'nymi vypuklymi funkcijami, Uc. Zap. Mosk. Gos. Ped. In-ta im. Lenina, 460 (1972), 58–65.
- [10] L. G. Hua, On an inequality of Opial, Sci. Sinica, **14** (1965), 789–790. 1
- [11] J. D. Li, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl., 167 (1992), 98–110. 1
- [12] Z. Opial, Sur une inégalité, Ann. Polon. Math., 8 (1960), 29-32. 1
- [13] G. Pólya, Advanced Problems and Solutions: Problems for Solution: 4264-4269, Amer. Math. Monthly, 54 (1947), 479–480. 1.9
- [14] G. I. Rozanova, Integral'nye neravenstva s proizvodnysi i proizvol'nymi vypuklymi funkcijami, Uc. Zap. Mosk. Gos. Ped. In-ta im. Lenina, 460 (1972), 58–65.1
- [15] G. I. Rozanova, Ob odnom integral'nom neravenstve, svjazannom s neravenstvom Polia, Izvestija Vyss. Ucebn, Zaved. Mat., 125 (1975), 75–80. 1.9
- [16] D. Willett, The existence-uniqueness theorem for an n-th order linear ordinary differential equation, Amer. Math. Monthly, 75 (1968), 174–178. 1
- [17] G. S. Yang, A note on inequality similar to Opial inequality, Tamkang J. Math., 18 (1987), 101–104. 1
- [18] C. J. Zhao, W. S. Cheung, Sharp integral inequalities involving high-order partial derivatives, J. Inequal. Appl., 2008 (2008), 10 pages. 1
- [19] C. J. Zhao, W. S. Cheung, Reverse Hilbert's type integral inequalities, Math. Ineq. Appl., 17 (2014), 1551–1561. 2