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Abstract

For a multi-group Heroin epidemic model with nonlinear incidence rate and distributed delays, we
study some aspects of its global dynamics. By a rigorous analysis of the model, we establish that the
model demonstrates a sharp threshold property, completely determined by the values of <0: if <0 ≤ 1,
then the drug-free equilibrium is globally asymptotically stable; if <0 > 1, then there exists a unique
endemic equilibrium and it is globally asymptotically stable. A matrix-theoretic method based on the
Perron eigenvector is used to prove the global asymptotic stability of the drug-free equilibrium and a graph-
theoretic method based on Kirchhoff’s matrix tree theorem was used to guide the construction of Lyapunov
functionals for the global asymptotic stability of the endemic equilibrium. c©2016 All rights reserved.
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1. Introduction

In recent years, based on the fact that the spread of heroin habituation and addiction shows many
phenomena of epidemics, many researchers have paid attentions to investigate epidemic dynamics of heroin
users from the mathematical and epidemiological point of view (see e.g. [18, 26, 28] and the references
cited therein). For decades, it was believed that the host population is often typically divided into several
disjoint classes depending on disease status such as susceptibles, heroin users and heroin users undergoing
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treatment, whose numbers are denoted by S(t), U1(t) and U2(t), respectively (see e.g. [18, 28] and references
cited therein).

However, recent studies have revealed that recovered individuals may revert back to the infective class
through the reactivation of the latent infection or incomplete treatment [3]. This is a feature of many
infectious disease, for example, human and bovine tuberculosis [15], and herpes [23]. On the other hand,
whether having a drug-using partner or having no partner were also significantly associated with a higher
risk of relapse situation [14]. Thus it is realistic to consider the relapse phenomenon of frequent heroin using,
which may relate to many psychological and behavioral factors, such as perceived stress, negative affects,
positive outcome expectancies about substance use [14].

Considering the relapse time is not a constant, distributed parameter over the interval [0, τ ], where τ is
the limit superior of the delay, is incorporated into the ODE heroin epidemic model. Liu and Zhang [14]
studied the following model:

dS(t)

dt
= Λ− βS(t)U1(t)− µS(t),

dU1(t)

dt
= βS(t)U1(t)− pU1(t) +

∫ τ

0
f(s)pU1(t− s)e−(µ+δ2)sds− (µ+ δ1)U1(t),

dU2(t)

dt
= pU1(t)−

∫ τ

0
f(s)pU1(t− s)e−(µ+δ2)sds− (µ+ δ2)U2(t),

(1.1)

where the epidemic meanings of all parameters in (1.1) are as follows:
Λ: the recruitment rate of entering the susceptible individuals.
µ: the natural death rate of host individuals.
β: the rate of becoming infectious heroin user through contact between susceptible individual and drug

user.
p: the rate of drug users who enter treatment.
δ1: the sum of rates of drug-related deaths of heroin users and recovery.
δ2: the sum of rates of drug-related deaths of heroin users undergoing treatment and immunity to drug

addition.
All parameters are assumed to be non-negative for more realistic consideration. It is also assumed that

heroin users who quit using drugs but are not longer susceptible individuals. The term∫ τ

0
f(s)pU1(t− s)e−(µ+δ2)sds

in the equations of (1.1) represents the rate at which the drug users undergoing treatment relapsing to drug
users, where e−(µ+δ2)s accounts for the survival probability. f is non-negative and continuous and satisfies∫ τ

0 f(s)ds = 1.
Considering the reduced model of (1.1), without the equation of U2(t), Liu and Zhang [14] studied the

dynamics of (1.1). It was concluded that the drug-free equilibrium E0 = (Λ/µ, 0) is globally asymptotically

stable (GAS) if R0 =
β Λ
µ

P+µ+δ1−pf̂
< 1, see Theorem 3.1 of [14], where f̂ =

∫ τ
0 f(s)e−(µ+δ2)sds. Further, if R0

is more than one, there exists an endemic equilibrium E∗ = ( Λ
µR0

, µ(R0−1)
β ), which is locally asymptotically

stable. The uniform persistence of (1.1) was also established in [14], but no analytic proofs are given to
obtain the global stability of endemic equilibrium. By using the direct Lyapunov method and constructing
appropriate Lyapunov functional, Huang and Liu in [8] have proved that the endemic equilibrium E∗ of
(1.1) is globally asymptotically stable whenever it exists.

In this paper, we aim at providing an alternative perspective by focusing on the epidemic dynamics of
heroin users. More specifically, we propose a multi-group model described by ordinary differential equations
with distributed delays accounting for relapse phenomenon from heroin users undergoing treatment to heroin
users. We obtained a similar scenario as that in Huang and Liu in [8] and other multi-group epidemic models.

Since multi-group models can play important roles in considering the heterogeneity (e.g., sex, age, space
and so on) of host population, the study of the multi-group heroin model can contribute to aid specialist
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teams in devising treatment strategies. It should be pointed here that for a class of multi-group SEIR
models described by ordinary differential equations, a graph-theoretic approach to the method of global
Lyapunov functions was proposed and used to obtain the global stability of a unique endemic equilibrium
in [6]. During the past decades, the multi-group epidemic models have been extensively studied by many
authors (see, for example, [5, 6, 9, 12, 13, 21, 24, 25, 27] and the references therein). These studies have
enriched our knowledge of epidemic models with heterogeneity.

To the best of our knowledge, the model studied in this paper is new and this is the first result on
epidemic dynamics of heroin user in a multi-group model with relapse distribution and nonlinear incidence
rate, which provides us with one motivation to conduct our work.

The rest of this paper is organized as follows. In Section 2, we present a multi-group model and its
simplified form with distributed delays. Section 3 is devoted to proving that the solutions of our model are
positive and bounded. In Section 4, some preliminary results are presented for our model. Sections 5 and 6
provide the proofs of global stability of equilibria. This paper ends with a brief summary.

2. Model formulation

Multi-group models have been developed to study the dynamics of heterogeneity (e.g., sex, age, space
and so on) of host population in the literature. We refer the reader to the papers by Guo, Li and Shuai
[5, 6, 12], for nice papers on multi-group modeling method and its justification.

The host population is divided into n homogeneous groups. Within i-th group, denote Si, U1i and U2i

the numbers of susceptibles, drug users and drug users undergoing treatment at time t, respectively. Since
nonlinear incidence of infection has been observed in disease transmission dynamics, it has been suggested
that the standard bilinear incidence rate shall be modified into a nonlinear incidence rate in many researches
(see e.g. [10, 16, 17] and references cited therein). Assuming that infection incidence in the i-th group can
be calculated as

n∑
j=1

βijG(Si(t))U1j(t).

The sum in above equation takes into account cross-infections from all groups, and βij represents the
transmission coefficient between compartments Si and U1j . The nonlinear function G(S(t)) is assumed to
satisfy

(A1) G : R+ → R+ is continuously differentiable with G(0) = 0; G′(S) > 0 for S > 0.
In this paper, we study some aspects of the global dynamics for the following system of differential

equations, n-group heroin epidemic model related to (1.1), to describe the epidemic dynamics of heroin
users:

dS(t)

dt
= Λi −

n∑
j=1

βijG(Si(t))U1j(t)− µiSi(t),

dU1i(t)

dt
=

n∑
j=1

βijG(Si(t))U1j(t)− piU1i(t) +

∫ τ

0
fi(s)piU1i(t− s)e−(µi+δ2i)sds− (µi + δ1i)U1i,

dU2i(t)

dt
= piU1i(t)− (µi + δ2i)U2i −

∫ τ

0
fi(s)piU1i(t− s)e−(µi+δ2i)sds, i = 1, 2, · · · , n.

(2.1)

The parameters are described in Table (1). The initial conditions for model (2.1) are:

(Si(θ), U1i(θ), U2i(θ)) = φi, i = 1, 2, · · · , n, (2.2)

where φi = (φsi(θ), φ1i(θ), φ2i(θ)) ∈ C([−τ, 0],R3
+). C([−τ, 0],R3

+) stands for the space of continuous func-
tions mapping [−τ, 0] into R3

+, equipped with the supremum norm, ‖φi‖ = maxθ∈[−τ,0] |φi(θ)|. For the
continuity of the solutions of (2.1), we set

φ2i(0) =

∫ τ

0

∫ 0

−s
fi(s)piU1i(η)e(µi+δ2i)ηdηds. (2.3)
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Table 1: The descriptions of the parameters in the model (2.1).

Parameter Description

Λi constant recruitment rate in group i;
µi death rate of individuals in group i;
pi the rate of drug users who enter treatment in group i;
δ1i the sum of rates of drug-related deaths of heroin users and recovery in group i;
δ2i the sum of rates of drug-related deaths of heroin users undergoing treatment

and immunity to drug addition in group i;
βij the rate of becoming infectious heroin user into group i through contact

between susceptible individual in group i and drug user in group j.

It follows from the third equation of (2.1) and initial condition (2.3) that

U2i(t) =

∫ τ

0

∫ t

t−s
fi(s)piU1i(η)e−(µi+δ2i)(t−η)dηds.

In order to make the mathematics tractable, we make the following assumptions:

Assumption 2.1. Consider system (2.1), we make the following assumptions on parameters:

(i) Λi, µi, pi, δ1i, δ2i and βij are positive for all i = 1, 2, . . . , n.

(ii) βij is nonnegative, and n-square matrix (βij)1≤i,j≤n is irreducible [1].

Denote by B = (βij)1≤i,j≤n the contact matrix, which encodes the patterns of contact and transmission
among groups that are built into the model.

Based on the fact that U2i does not appear in other equations of (2.1), it suffices only to work on two
out of the three variables and therefore, the dynamics are governed by the reduced system

dSi(t)

dt
= Λi −

n∑
j=1

βijG(Si(t))U1j(t)− µiSi(t), i = 1, 2, · · · , n,

dU1i(t)

dt
=

n∑
j=1

βijG(Si(t))U1j(t)− piU1i(t) +

∫ τ

0
fi(s)piU1i(t− s)e−(µi+δ2i)sds− (µi + δ1i)U1i.

(2.4)

The initial conditions for model (2.4) are:

Si(θ) = φsi(θ), U1i(θ) = φ1i(θ), i = 1, 2, · · · , n, (2.5)

where φi = (φsi(θ), φ1i(θ)) ∈ C([−τ, 0],R2
+), the space of continuous functions mapping [−τ, 0] into R2

+. In
the rest of this paper, we shall investigate the dynamics of system (2.4) with initial conditions (2.5).

3. Positivity and boundedness of solutions

The standard fundamental theory of FDEs [7] implies that there is a unique solution

(Si(t), U1i(t)), U1i(t)), i = 1, 2, · · · , n

to the system with given initial conditions (φsi(θ), φ1i(θ), φ2i(θ)), i = 1, 2, . . . , n.
The following results address the well-posedness of system (2.1) with (2.2).

Theorem 3.1. Let (Si(t), U1i(t), U2i(t)), i = 1, 2, · · · , n be a solution of system (2.1) satisfying (2.2). Then
it remains non-negative and bounded for all t ≥ 0.
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Proof. First, for i = 1, 2, · · · , n, we prove that Si(t) > 0 for all t ≥ 0. If there exists a t0 > 0, such
that minSi(t0) = 0, and Si(t) > 0 for all t ∈ (0, t0). Without the loss of generality, we may assume that
Si(t0) = 0. Thus, we obtain S′i(t0) = Λi > 0, which leads to a contradiction. Hence, for i = 1, 2, · · · , n,
Si(t) > 0, for all t ≥ 0.

Using the variation of constants formula to the second equation of system (2.1), we obtain

U1i(t) = e−(µi+pi+δ1i)tφ1i(θ)

+

∫ t

0
e−(µi+pi+δ1i)(t−ξ)

[ n∑
j=1

βijG(Si(ξ))U1j(ξ) +

∫ τ

0
fi(s)piU1i(ξ − s)e−(µi+δ2i)sds

]
dξ.

Hence, U1i(t) ≥ 0 if φ1i(θ) > 0. Recall that

U2i(t) =

∫ τ

0

∫ t

t−s
fi(s)piU1i(η)e−(µi+δ2i)(t−η)dηds ≥ 0.

Next, we prove the boundedness of the solutions. From the first equation of (2.1), we have

dSi(t)

dt
≤ Λi − µiSi(t),

it follows that for i = 1, 2, · · · , n, we have lim supt→∞ Si(t) ≤ S0
i = Λi/µi.

Furthermore, adding all equations of (2.1), we have

dSi(t)

dt
+
dU1i(t)

dt
+
dU2i(t)

dt
= Λi − µi(Si + U1i(t) + U2i(t))− δ1iU1i(t)− δ2iU2i(t)

≤ Λi − µi(Si(t) + U1i + U2i(t)), i = 1, 2, · · · , n.

Hence we have lim supt→∞(Si(t) + U1i(t) + U2i(t)) ≤ Λi/µi. Thus, the compact feasible region

Γ :=

{
(Si, U1i, U2i) ∈ R3n : 0 ≤ Si(t) ≤ S0

i , 0 ≤ Si(t) + U1i(t) + U2i(t) ≤ Λi/µi, i = 1, 2, · · · , n
}

is positively invariant for system (2.1). From the biological significance, we only need to consider (2.4) in
the following region

Γ0 :=

{
(Si, U1i, ) ∈ R2n : 0 ≤ Si(t) ≤ S0

i , 0 ≤ Si(t) + U1i(t) ≤ Λi/µi, i = 1, 2, · · · , n
}
.

That is, the well-posedness of the system (2.4) directly follows. This completes the proof.

4. Basic reproduction number and equilibria

It is easy to see system (2.4) always admits an equilibrium which is labeled as P0 = (S0
1 , 0, · · · , S0

n, 0),
where S0

i = Λi
µi
, i = 1, 2, · · · , n, and it is called the drug-free equilibrium (DFE). It can be verified that

solutions of (2.4) with initial condition

(S1(0), U11(0), · · · , Sn(0), U1n(0)) ∈ R2n
+

remain non-negative. Therefore, in what follows, we consider model (2.4) in R2n
+ . Let

Qi :=

∫ τ

0
fi(s)e

−(µi+δ2i)ds. (4.1)
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It can be verified that Qi ∈ (0, 1) for all i.
For system (2.4), let

F =

 β11G(S0
1) β12G(S0

1) · · · β1nG(S0
1)

...
...

. . .
...

βn1G(S0
n) βn2G(S0

n) · · · βnnG(S0
n)

 and V = diag(µi + δ1i + pi − piQi),

then the next generation matrix is

FV−1 =


β11G(S0

1)
µ1+δ11+p1−p1Q1

β12G(S0
1)

µ2+δ12+p2−p2Q2
· · · β1nG(S0

1)
µn+δ1n+pn−pnQn

...
...

. . .
...

βn1G(S0
n)

µ1+δ11+p1−p1Q1

βn2G(S0
1)

µ2+δ12+p2−p2Q2
· · · βnnG(S0

n)
µn+δ1n+pn−pnQn

 .

Thus the basic reproduction number of model (2.4) is defined by the spectral radius of the next generation
matrix (see e.g. [4, 22]):

<0 = ρ(FV−1),

where ρ(·) denotes the spectral radius of matrix. It follows from the fact that ρ(FV−1) = ρ(V−1F), we have

<0 = ρ(M0), (4.2)

where

M0 = V−1F =


β11G(S0

1)
µ1+δ11+p1−p1Q1

β12G(S0
1)

µ1+δ11+p1−p1Q1
· · · β1nG(S0

1)
µ1+δ11+p1−p1Q1

...
...

. . .
...

βn1G(S0
n)

µn+δ1n+pn−pnQn
βn2G(S0

1)
µn+δ1n+pn−pnQn · · · βnnG(S0

n)
µn+δ1n+pn−pnQn

 .

Since it can be verified that system (2.4) satisfies conditions (A1) − (A5) of [22, Theorem 2], we have the
following lemma.

Lemma 4.1. For system (2.4), the DFE P0 is locally asymptotically stable if <0 < 1 while it is unstable if
<0 > 1.

Equilibrium solution of system (2.4) given by solution P ∗ = (S∗1 , U
∗
1i, · · · , S∗n, U∗1n) ∈ R2n in the interior

of Γ is called an endemic equilibrium (EE), where S∗i , U
∗
1i > 0 satisfy the equilibrium equations:

Λi −
n∑
j=1

βijG(S∗i )U∗1j − µiS∗i = 0, (4.3)

and

(µi + δ1i + pi − piQi)U∗1i =

n∑
j=1

βijG(S∗i )U∗1j . (4.4)

5. Global stability of the DFE

The global dynamical behaviors of the DFE of system (2.4) is completely established in the following
theorem. Let

H(z) = z − ln z − 1, ∀z > 0. (5.1)

Obviously, H : R+ → R+ attains its strict global minimum at z = 1 and H(1) = 0.
Then we have the following theorem:

Theorem 5.1. Consider system (2.4) and suppose that (A1) holds. Then, the DFE of system (2.4) is
globally asymptotically stable if <0 ≤ 1 and it is unstable if <0 ≤ 1.



X. Liu, J. Wang, J. Nonlinear Sci. Appl. 9 (2016), 2149–2160 2155

Proof. Since B = (βij)1≤i,j≤n is irreducible, the nonnegative matrix M0 =
(

βijG(S0
i )

µi+δ1i+pi−piQi

)
n×n

is also

irreducible, and M0 has a positive left eigenvector (ω1, ω2, · · · , ωn) corresponding to the spectral radius
<0 = ρ(M0) ≤ 1. Let

ci =
ωi

µi + δ1i + pi − piQi
> 0.

Consider a Lyapunov functional

LDFE =
n∑
i=1

ci

[
G(S0

i )H

(
G(Si(t))

G(S0
i )

)
+ U1i(t) + Ui+

]
,

where Ui+ is given as
∫ τ

0

∫ s
0 fi(s)pie

−(µi+δ2i)sU1i(t− σ)dσds.
By (5.1) and assumption (A1), we know that LDFE ≥ 0 with equality if and only if Si(t) = S0

i , U1i(t) = 0
and U1i(t− s) = 0 for almost all s ≥ 0.

Using integration by parts, we can compute the derivative of Ui+ along the solution of (2.4) as follows

dUi+
dt

=

∫ τ

0
fi(s)pie

−(µi+δ2i)s

[
d

dt

∫ s

0
U1i(t− σ)dσ

]
ds

= −
∫ τ

0
fi(s)pie

−(µi+δ2i)s

∫ s

0

[
d

dσ
U1i(t− σ)dσ

]
ds

=

∫ τ

0
fi(s)pie

−(µi+δ2i)s

[
U1i(t)− U1i(t− s)

]
ds

= QipiU1i(t)−
∫ τ

0
fi(s)pie

−(µi+δ2i)sU1i(t− s)ds.

Thus the derivative of LDFE is given as

dLDFE
dt

∣∣∣∣
(2.4))

=
n∑
i=1

ci

{[
G(Si(t))−G(S0

i )

G(Si(t))

][
Λi − µiSi(t)−

n∑
j=1

βijG(Si(t))U1j(t)

]

+
n∑
j=1

βijG(Si(t))U1j(t)− piU1i(t) +

∫ τ

0
fi(s)piU1i(t− s)e−(µi+δ2i)sds− (µi + δ1i)U1i

+QipiU1i(t)−
∫ τ

0
fi(s)pie

−(µi+δ2i)sU1i(t− s)ds
}

=
n∑
i=1

ci

[
G(Si(t))−G(S0

i )

G(Si(t))

][
µiS

0
i − µiSi(t)

]

+
n∑
i=1

ωi
µi + δ1i + pi − piQi

[ n∑
j=1

βijG(S0
i )U1j − (µi + δ1i + pi − piQi)U1i(t)

]

=

n∑
i=1

ci

[
G(Si(t))−G(S0

i )

G(Si(t))

][
µiS

0
i − µiSi(t)

]
+ (ω1, ω2, · · · , ωn)(M0U1 − U1)

≤
(
ρ(M0)− 1

)
(ω1, ω2, · · · , ωn)U1 ≤ 0, if <0 ≤ 1. (5.2)

Here U1 = (U11(t), U12(t), · · · , U1n(t))T . Let

Y =

{
(S1, U11, · · · , Sn, U1n) | L′DFE |(2.4)= 0

}
,
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and Z be the largest compact invariant set in Y . We will show Z = {(S0
1 , 0, · · · , S0

n, 0)}. From inequality

(2.4) and ci > 0, dLDFE
dt

∣∣
(2.4)

= 0 implies that

[
G(Si(t))−G(S0

i )
G(Si(t))

][
µi − µiSi(t)

]
= 0, and thus Si(t) = S0

i = Λi
µi

.

Hence, from the first equation of (2.4), we obtain

n∑
j=1

βijG(Si(t))U1j(t) = 0,

and thus
βijG(Si(t))U1j(t) = 0

for all t ≥ 0 and 1 ≤ i, j ≤ n. Then, by irreducibility of B, for each j, there exists i 6= j such that βij 6= 0,
thus U1j(t) = 0, j = 1, 2, · · · , n. Therefore Z = (S0

1 , 0, · · · , S0
n, 0). Thus, from the LaSalle’s invariance

principle [11], it follows that the DFE P0 is globally asymptotically stable in Γ.

If <0 > 1 and U1 6= 0, it follows that

(
ρ(M0) − 1

)
(ω1, ω2, · · · , ωn)U1 > 0, which implies that, in a

sufficiently small enough neighborhood of (S0
1 , 0, · · · , S0

n, 0), dLDFE
dt

∣∣
(2.4)

> 0. Therefore, (S0
1 , 0, · · · , S0

n, 0) is

unstable if <0 > 1.

6. Global stability of the EE

In this section, question such as the global stability of the EE will be analyzed. Before going into details,
we need one lemma to ensure that EE exists when <0 > 1. In fact, an argument similar to that in the
proof of [27, Theorem 3.2] can be used to show that system (2.4) is uniformly persistent. Together with the
uniform boundedness of solutions in Γ0, we arrive at the following lemma, illustrating that EE of system
(2.4) exists in Γ0 (see e.g. [2, Theorem 2.8.6] or [20, Theorem D.3]).

Lemma 6.1. If <0 > 1, then system (2.4) is uniformly persistent. Furthermore, there exists an P ∗ in the
interior Γ0 of Γ.

Using Lemma 6.1, we prove the following theorem, which is one of the main results of this paper.

Theorem 6.2. Consider system (2.4) and suppose that (A1) holds. If <0 > 1 and (Si(t), U1i(t)) is a
solution to (2.4) that lies in Γ , then

lim
t→∞

(Si(t), U1i(t)) = P ∗ = (S∗1 , U
∗
11, · · · , S∗n, U∗1n)

in the interior of Γ0.

Proof. Define a Lyapunov functional as

LEE = LS + LI + Li−,

where 

LS =

∫ Si(t)

S∗
i

G(λ)−G(S∗i )

G(λ)
dλ;

LI = U∗1iH

(
U1i

U∗1i

)
;

Li− =

∫ τ

0

∫ s

0
fi(s)pie

−(µ2+δ2i)sU∗1iH

(
U1i(t− σ)

U∗1i

)
dσds.

(6.1)

It follows from (A1) that LEE ≥ 0 with equality if and only if Si(t) = S∗i , U1i(t) = U∗1i and U1i(t−σ) = U∗1i
for almost all σ ≥ 0. In fact, the non-negativity of LI and Li− are obvious. LS ≥ 0 based on the facts that(

1− G(S∗
i )

G(Si)

)
(Si − S∗1) ≥ 0 when Si ≥ S∗i and

(
1− G(S∗

i )
G(Si)

)
(S∗1 − Si) ≥ 0 when Si ≤ S∗i .
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Differentiating LS along the solution of system (2.4) and using equilibrium equations (4.3)-(4.4), we
obtain

dLS
dt

∣∣∣∣
(2.4)

=
G(Si)−G(S∗i )

G(Si)

[
µiS

∗
i +

n∑
j=1

βijG(S∗i )U∗1j −
n∑
j=1

βijG(Si(t))U1j(t)− µiSi(t)
]

=
G(Si)−G(S∗i )

G(Si)

[
µiS

∗
i − µiSi(t)

]
+

n∑
j=1

βijG(S∗i )U∗1j −
n∑
j=1

βijG(Si(t))U1j(t)

−
n∑
j=1

βij
[G(S∗i )]2U∗1j

G(Si)
+

n∑
j=1

βijG(S∗i )U1j(t).

(6.2)

Differentiating LI along the solution of system (2.4), we obtain

dLI
dt

∣∣∣∣
(2.4)

=
U1i − U∗1i
U1i

{
−
[ n∑
j=1

βijG(S∗i )
U∗1j
U∗1i

+ piQi

]
U1i(t) +

n∑
j=1

βijG(Si(t))U1j(t)

+

∫ τ

0
fi(s)piU1i(t− s)e−(µi+δ2i)sds

}
= −

n∑
j=1

βijG(S∗i )
U∗1jU1i(t)

U∗1i
− piQiU1i(t) +

n∑
j=1

βijG(Si(t))U1j(t)

+

∫ τ

0
fi(s)piU1i(t− s)e−(µi+δ2i)sds+

n∑
j=1

βijG(S∗i )U∗1j + piQiU
∗
1i

−
n∑
j=1

βij
G(Si(t))U1j(t)U

∗
1i

U1i(t)
−
∫ τ

0
fi(s)pi

U1i(t− s)U∗1i
U1i(t)

e−(µi+δ2i)sds.

(6.3)

Taking derivative to Li− with respect to t and using integration by parts, we obtain

dLi−
dt

∣∣∣∣
(2.4)

=

∫ τ

0
U∗1ifi(s)pie

−(µi+δ2i)s
d

dt

[ ∫ s

0
H

(
U1i(t− σ)

U∗1i

)
dσ

]
ds

= −
∫ τ

0
U∗1ifi(s)pie

−(µi+δ2i)s

∫ s

0

d

dσ

[
H

(
U1i(t− σ)

U∗1i

)]
dσds

= −
∫ τ

0
U∗1ifi(s)pie

−(µi+δ2i)sH

(
U1i(t− σ)

U∗1i

)∣∣∣σ=s

0
ds

=

∫ τ

0
fi(s)pie

−(µi+δ2i)s

[
U1i(t)− U1i(t− s) + U∗1i ln

U1i(t− s)
U1i(t)

]
ds.

(6.4)

Combining equations (6.2)-(6.4) yields

dLEE
dt

∣∣∣∣
(2.4)

=
G(Si)−G(S∗i )

G(Si)

[
µiS

∗
i − µiSi(t)

]
+

n∑
j=1

βijG(S∗i )U∗1j

[
2− G(Si(t))U1j(t)U

∗
1i

G(S∗i )U∗1jU1i(t)
− G(S∗i )

G(Si)
+
U1j(t)

U∗1j
− U1i(t)

U∗1i

]

− U∗1i
∫ τ

0
fi(s)pie

−(µi+δ2i)sH

(
U1i(t− s)
U1i(t)

)
ds

=
G(Si)−G(S∗i )

G(Si)

[
µiS

∗
i − µiSi(t)

]
−

n∑
j=1

βijG(S∗i )U∗1jH

(
G(S∗i )

G(Si(t))

)
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−
n∑
j=1

βijG(S∗i )U∗1jH

(
G(Si(t))U1j(t)U

∗
1i

G(S∗i )U∗1jU1i(t)

)

− U∗1i
∫ τ

0
fi(s)pie

−(µi+δ2i)sH

(
U1i(t− s)
U1i(t)

)
ds

+
n∑
j=1

βijG(S∗i )U∗1j

[
U1j(t)

U∗1j
− U1i(t)

U∗1i
− ln

U∗1iU1j(t)

U1i(t)U∗1j

]

≤
n∑
j=1

βijG(S∗i )U∗1j

[
U1j(t)

U∗1j
− U1i(t)

U∗1i
− ln

U∗1iU1j(t)

U1i(t)U∗1j

]
.

Here we have used the following inequalities:

G(Si)−G(S∗i )

G(Si)

[
µiS

∗
i − µiSi(t)

]
≤ 0;

H

(
G(S∗i )

G(Si(t))

)
≥ 0;

H

(
G(Si(t))U1j(t)U

∗
1i

G(S∗i )U∗1jU1i(t)

)
≥ 0;

H

(
U1i(t− s)
U1i(t)

)
≥ 0.

(6.5)

Further, we set
β̄ij = βijG(S∗i )U∗1j , 1 ≤ i, j ≤ n,

and

B̄ =


Σl 6=1β̄1l −β̄21 · · · −β̄n1

−β̄12 Σl 6=2β̄2l · · · −β̄n2
...

...
. . .

...
−β̄1n −β̄2n · · · Σl 6=nβ̄nl

 .
Note that B̄ is the Laplacian matrix of the matrix (β̄ij)1≤i,j≤n. Since (βij)1≤i,j≤n is irreducible, it follows
that matrices (β̄ij)1≤i,j≤n and B̄ are also irreducible. Let Cij denote the cofactor of the (i, j) entry of B̄. We
know that system B̄v = 0 has a positive solution v = (v1, v2, · · · , vn), where vi = Cii > 0 for i = 1, 2, · · · , n.

Set

L =
n∑
i=1

viLEE ,

then

n∑
i=1

vi
dLEE
dt

∣∣∣
(2.4)
≤

n∑
i,j=1

viβ̄ij

[
U1j(t)

U∗1j
− U1i(t)

U∗1i
− ln

U∗1iU1j(t)

U1i(t)U∗1j

]

=

n∑
i,j=1

viβ̄ij

[
U1j(t)

U∗1j
− U1i(t)

U∗1i

]
−

n∑
i,j=1

viβ̄ij

[
ln
U∗1iU1j(t)

U1i(t)U∗1j

]
=: H1 −H2,

where 
H1 =

n∑
i,j=1

viβ̄ij

[
U1j(t)

U∗1j
− U1i(t)

U∗1i

]
;

H2 =
n∑

i,j=1

viβ̄ij

[
ln
U∗1iU1j(t)

U1i(t)U∗1j

]
.
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Next, we prove that H1 ≡ 0 for all U11, U12, · · · , U1n > 0. From B̄v = 0, we have

n∑
j=1

β̄jivj =
n∑
k=1

β̄ikvi.

Putting β̄ji = βjiG(S∗j )U∗1i into above yields

n∑
j=1

βjiG(S∗j )U∗1ivj =
n∑
k=1

βikG(S∗i )U∗1kvi, i = 1, 2, · · · , n.

This implies that

n∑
i,j=1

viβijG(S∗i )U1j(t) =
n∑
i=1

U1i

n∑
j=1

βjiG(S∗j )vj =
n∑
i=1

U1i

U∗1i

n∑
k=1

βikG(S∗i )U∗1kvi =
n∑

i,j=1

viβijG(S∗i )U∗1j
U1i

U∗1i
,

and thus H1 ≡ 0 for all U11, U12, · · · , U1n > 0. Similar to the arguments in Section 5 of [19], just replacing
k = 1, Ek = U1i and Ej = U1j in the equations (5.9) and (5.10) of [19], we can easily obtain H2 ≡ 0 for all
U11, U12, · · · , U1n > 0, from the classic graph-theoretic method based on Kirchhoff’s matrix tree theorem.

Therefore, the function L =
∑n

i=1 viLEE as defined in the Theorem 3.1 of [12] is a Lyapunov function for
system (2.4), namely, dL

dt ≤ 0 for all (S1, U11, S2, U12, · · · , Sn, U1n) ∈ Γ. One can only show that the largest

invariant subset where {dLdt = 0} is the singleton {P ∗} using the same argument as that in [6, 12, 19]. By
LaSalle’s invariance principle, P ∗ is globally asymptotically stable in Γ. That is, limt→∞(Si(t), U1i(t)) =
P ∗ = (S∗1 , U

∗
11, · · · , S∗n, U∗1n). This completes the proof of Theorem 6.2.

7. Conclusion

In this paper, we considered a delayed multi-group heroin epidemic model with relapse phenomenon
and nonlinear incidence rate. The main contributions of the paper are the proofs of global stability of
equilibria. The distributed delays are introduced by the time needed to return to an untreated drug user,
which are not constants but vary according to drug users’ different temporal, social, and physical contexts.
Although including the nonlinear incidence rate combined with the relapse distributed delays into the multi-
group model leads to the analysis of the resulting system becoming very complex, we are able to make a
rigorous analysis of the model and establish a sharp threshold property. By using the method of constructing
Lyapunov functionals based on graph-theoretical approach for coupled systems, sufficient conditions for the
global stability of equilibria are given.
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