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Abstract

In this paper, we introduce the concepts of gpy-cyclic-Banach contraction mapping, gpb-cyclic-Kannan
mapping and gpp-cyclic S-quasi-contraction mapping and establish the existence and uniqueness of fixed
point theorems for these mappings in quasi-partial b-metric spaces. Some examples are presented to validate
our results. (©2016 All rights reserved.
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1. Introduction and preliminaries

The concept of quasi-metric spaces was introduced by Wilson in [19] as a generalization of standard
metric spaces. Rolddn-Lépez-de-Hierro et al. [16] gave some coincidence point theorems and obtained some
very recent results in the setting of quasi-metric spaces. Matthews also generalized the standard metric
spaces to partial-metric spaces by replacing the condition d(x,z) = 0 with the condition d(z,z) < d(z,y)
for all z,y ([14, [15]). Partial-metric spaces have applications in theoretical computer science [3]. Hitzler and
Seda introduced dislocated metric spaces [7]. Czerwik presented the notion of b-metric space [5]. Many other
generalized metric spaces, such as partial b-metric spaces, metric-like spaces and quasi-b-metric-like, were
introduced (see, e.g., ([, 8, 17, 18]) and the references therein). Especially, as a further generalization for
the quasi-metric spaces and partial-metric spaces, Karapinar et al.[I0] introduced the notion of quasi-partial
metric space and discussed the existence of fixed points of self-mappings T on quasi-partial metric spaces.
Very recently, following ([5, [10} [14]), Gupta and Gautam [6] have generalized quasi-partial metric spaces to
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the class of quasi-partial b-metric spaces and have focused on the fixed points of some self-mappings which
have a deep relationship with T-orbitally lower semi-continuous functions introduced by Karapinar et al. in
[10]. Some better results of fixed point are claimed in [6].

Corresponding to the development of spaces, many mappings have been presented since Banach con-
traction principle was introduced in [2]. For example, in 1974, Ciri¢ [4] defined quasi-contraction mappings
and stated some fixed point results in which it has shown that the condition of quasi-contractivity implies
all conclusions of Banach’s contraction principle. We recall the concept as follows:

Let (X, d) be a metric space. A mapping T : X — X is said to be a quasi-contraction mapping if there
exists B € [0,1) such that

d(Tz,Ty) < BM (z,y)

for all z,y € X, where
M(z,y) = max{d(z,y),d(z,Tx),d(y,Ty), d(z,Ty),d(y, Tx)}.

We also review the concept of cyclic mapping as follows:
Let A and B be nonempty subsets of a metric space (X,d), T': AUB — AU B is called cyclic if
T(A) C Band T(B) C A.
In 1969, Kannan introduced the concept of Kannan mapping in [9]:
Let (X,d) be a metric space. A mapping 7' : X — X is said to be a Kannan mapping if there exists
A € [0, 3) such that
d(Tx, Ty) < Md(z, Tx) + Md(y, Ty)

for all z,y € X.

In 2003, Kirk et al. [12] introduced cyclic contraction mapping as follows:

Let (X,d) be a metric space. A cyclic mapping T': AU B — AU B is said to be a cyclic contraction
mapping if there exists A € [0,1) such that

d(Tx, Ty) < Md(z,y)

for any z € A and y € B.

In 2010, Karapinar et al. [11] introduced Kannan type cyclic contraction as follows:

Let (X,d) be a metric space. A cyclic mapping T : AU B — AU B is said to be a Kannan type cyclic
contraction if there exists A € [0, 1) such that

d(Tz, Ty) < Xd(z,Tx) + Nd(y, Ty)

for any z € A and y € B.

Recently, Klin-eam and Suanoom introduced dislocated quasi-b-metric spaces and investigated the fixed
points of Geraghty type dgb-cyclic-Banach contraction mapping and dgb-cyclic-Kannan mapping [13]. In-
spired and motivated by Karapinar et al. [II], Gupta et al. [6] and Klin-eam et al. [13], we introduce
the notions: qpp-cyclic-Banach contraction mappings, qpb-cyclic-Kannan mappings and qpp-cyclic B-quasi-
contraction mappings. The corresponding fixed point results for these three kinds of mappings in the setting
of quasi-partial b-metric spaces (QPBMS) are provided. Our results complement and enrich the main results
of Gupta et al. in the literature [6]. We also provide some examples to show the generality and effectiveness
of our results.

Throughout this paper, N and R4 denote the set of all positive integers and the set of all nonnegative
real numbers, respectively. We begin with the following definition as a recall from ([7], [19]).

Definition 1.1. Let X be a nonempty set. Suppose that the mapping d : X x X — [0,00) satisfies the
following conditions:

(dy) d(xz,z) =0 for all z € X;
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(d2) d(z,y) = d(y,z) = 0 implies x = y for all z,y € X
(d3) d(x,y) = d(y,x) for all T,y € X?
(dg) d(z,y) < d(x,z) +d(z,y) for all z,y,z € X.

If d satisfies conditions (d;), (d2) and (d4), then d is called a quasi-metric on X. If d satisfies conditions
(d2), (d3) and (d4), then d is called a dislocated metric on X. If it satisfies conditions (dy) and (dy4), it is
called a dislocated quasi-metric. If d satisfies conditions (di)-(d4), then d is called a (standard) metric on
X.

The concept of a quasi-partial metric space was introduced by Karapinar et al.

Definition 1.2 ([I0]). A quasi-partial metric on a nonempty set X is a function ¢ : X x X — R, satisfying
the following conditions:
(QPM1) If g(z,z) = q(z,y) = q(z,y), then z = y.
(QPM2) ¢(z, x) < q(=,y).
(QPM3) g(z, z) < q(y,z).
(QPM4) q(z,y) + q(z,2) < q(x, z) + q(z,y) for all x,y, z € X.

A quasi-partial metric space is a pair (X, ¢) such that X is a nonempty set and ¢ is a quasi-partial metric
on X.
For each metric ¢ : X x X — R, the function d, : X x X — R defined by

dg(7,y) = q(z,y) + q(y,7) — q(z,7) — q(y,y)

is a (standard) metric on X.
The next Lemma shows the relationship between the quasi-partial metric and the standard metric.

Lemma 1.3 ([10]). Let (X, q) be a quasi-partial metric space and (X, dq) be the corresponding metric space.
Then (X, q) is complete if and only if (X, d,) is complete.

For each metric ¢ : X x X — R, the function dg,, : X x X — R, defined by

dqm(.%',y) = q(.%',y) - q(.%',lll')

is a dislocated quasi-metric.
Gupta et al. [6] introduced the concept of quasi-partial b-metric space and gave some properties on such
spaces in this section.

Definition 1.4 ([6]). A quasi-partial b-metric on a nonempty set X is a function gp, : X x X — R4 such
that for some real number s > 1 and all x,y,z € X:

(QPb1) If qpy(2, x) = qpy(x,y) = qpe(y, y), then z =y,

(QPb2) qpp(z, ) < qpo(z,y),

(QPbs3) gpy(z, =) < qpo(y, v),

(QPba) gps(,y) < slgpe(x, 2) + aps(2,y)] — aps(2, 2).

A quasi-partial b-metric space (QPBMS) is a pair (X, gpp) such that X is a nonempty set and gpy is a
generalization of quasi-partial metric on X.

Example 1.5. Let X = [0, §]. Define the metric
gpy(x,y) = sin 2|z —y| +x

for any (z,y) € X x X.
It can be demonstrated that (X, ¢py) is a quasi-partial b-metric space. Actually, if gpy(z,z) = gpp(z,y) =
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apy(y,y), that is, x = sin 2|z — y| + = y, then it is obvious that (QPb;) holds for any (z,y) € X x X. In
addition, sin 2|z — y[ > 0 and sin 2|z — y| > |z — y| when |z —y| € [0, §], then
app(z,z) = x < sin2|z — y| + 2z = qpy(,y)
and
apy(z, ) =
[z —y+yl

<z —yl + 1yl
<sin2ly —z|+y

= qpp(y, x)

are true, hence (QPba) and (QPbs) hold for any (z,y) € X x X. Moreover, when 2(|z — z|+ |z —y]) € [0, 5],
sin2(|z — z[ + |z —y|) < 2(|lz — 2| + [z — yl), we get

apy(z,y) + qpy(z, 2) = sin 2|z — y[ + 2 + 2

<sin2(lz —z|+|z—y|) +x+ 2
S2Ale =2+ lz—y)) +a+2
< 2sin2lx — z| +2sin2|z —y|+x + 2

2
2

(sin2]x — z| +sin 2|z — y| + = + 2)
< s(ape(, 2) + apy(2,9))

for all z,y,z € X and s > 2, (QPby) holds, hence (X, gpp) is a quasi-partial b-metric space with s > 2.
Lemma 1.6 ([0]). Every quasi-partial metric space is a quasi-partial b-metric, but the converse is not true.

Each quasi-partial b-metric gp, on X induces a topology 7, on X whose base is the family of open
gpp-balls { By, (z,0) : @ € X,0 > 0}, where Bgp, (x,0) = {y € X : |qpp(x,y) — qpp(z, z)| < J}.

Next we define convergent sequence, Cauchy sequence, completeness of space and continuity in quasi-
partial b-metric spaces.

Definition 1.7 ([6]). Let (X, gpy) be a quasi-partial b-metric. Then:

(i) A sequence {z,}7>, C X converges to x € X if and only if

qpy(x,x) = lm gqpy(z,x,) = Um gpy(2n, ).
n—oo n—oo

(ii) A sequence {x,}5°, C X is called a Cauchy sequence if and only if lim gpy(zm,zy,) and
n,Mm—00

lim  gpp(xn, Tm) exist (and are finite).
,M—>00
(iii) The quasi-partial b-metric space (X, gpp) is said to be complete if every Cauchy sequence {z,}>2, C
X converges with respect to Fp, to a point x € X such that gpy(z,z) = lir_r>1 oy (Tm, ) =
m,n—00
lim qpb(CUn,ﬂfm)-
m,n—o0

(iv) A mapping f : X — X is said to be continuous at x € X if for every € > 0 there exists § > 0 such
that f(B(zo,0)) C B(f(wo),e€).

We denote simply gpp-converges to x by x, APty 2. Under a special case, we state the uniqueness of the

limit of a sequence in a quasi-partial b-metric space, which is very useful in the proof of the main theorems.
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emma 0. € e a quasit-partia -Mmetric space an i _ e a sequence in . Ty — T
L 1.8. Let (X, qpy) be a quasi-partial b-metric sp d{x, )2, b q n X. If oy 2 2,

2y % y and qpy(z,x) = qpo(y,y) = 0, then z = y.
Proof. Assume that z, =% z and z,, =% y in (X, qpy), then
qpp(z,2) = lim gpy(zn, ) = lim gpy(z,z,) =0
n—oo n—oo
and
apy(y,y) = lim gpy(xn,y) = lim qps(y, z,) = 0.
n—oo n—oo
Using (QPby), we have

slapy (@, zn) + qpu (@0, y)] — qpp(Tn, Tn)
slapu (T, zn) + qpo(Tn, )]

apy(z,y) <
<

for every n € N. Taking limit as n — oo in the above inequality, we have
apy(@,y) < s[lim gpy(x,25) + lim gpy(2n, y)]
n—oo n—oo
=0.

Therefore we get gpy(z,z) = qpp(x,y) = qpu(y,y) = 0 which implies from the property (QPb;) that z =
Y- O

Remark 1.9. Generally, the limit of a sequence in a quasi-partial b-metric space is not unique.

2. gpp-cyclic-Banach contraction mapping in quasi-partial b-metric spaces

In this section, we extend fixed point theorem for Banach contraction mappings in standard metric
spaces to gpp-cyclic-Banach contraction mappings in the setting of quasi-partial b-metric spaces.

Definition 2.1. Let A and B be nonempty subsets of a quasi-partial b-metric space (X, gpp). A cyclic
mapping 7' : AU B — AU B is said to be a gpy-cyclic-Banach contraction mapping if there exists k € [0, 1)
such that if s > 1, sk < 1, then

app(Tx, Ty) < kapy (2, y) (2.1)
holds both for z € A,y € B and for z € B,y € A.

Theorem 2.2. Let A and B be two nonempty closed subsets of a complete quasi-partial b-metric space
(X, qpy) and T be a cyclic mapping which is a qpy-cyclic-Banach contraction. Then AN B is nonempty and
T has a unique fized point in AN B.

Proof. Let z € A, noting the contractive condition of the theorem, we have

apy(T?z, Tz) = qpy(T(Tz), Tz)
< kqpy(Tx, x)

and

apy(T, T?z) = qpy(Tz, T(Tx))
< kapy(z, T'x).

Let o = max{qpy(x, Tx), qpp(Tx, )}, thus

app(Tz, T?z) < ko, qpy(T?2, Tx,) < ko (2.2)
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Moreover, applying inequality , we have
app(T?z, T32) < Ko,  qpy(T3z,T%z,) < Ko (2.3)
Hence
qpp(T"x, T ) < k"o, qpp(T" Mz, T"z,) < k"o (2.4)
for every n € N.

Let m,n € N and m < n, using (QPby)

qpp(T"z, T™z) < slgpy(T™x, T™ 1 x) + qpp (T o, T x)] — qpp(T™ e, T 1)

slapp (T2, T™ ) + qpyp (T2, T"))

qub(me’ Tm+11,) + s2qpb(Tm+lx’ Tm+2.%') + s2qpb(Tm+2x, Tnx)
)

<
<
<
< sqpy(T™x, T ) + S2qpy(T™ o, T 2) + ..+ s Mgpy (T L, T).

Noting sk < 1 and applying (2.4)),

qpp(T™2, T"z) < (sk™ + k™ 4. 4 "™ D

ml—(sk)"™™
= sk 1— sk

sk™
STk

Taking limit as m,n — oo in the above inequality, we have

lim gpy(T™2, T"x) <0,

m,n— 00

thus
lim gpp(T™x, T"x) = 0. (2.5)

m,n—00

Similarly, we obtain

apy(T"z, T"z) < slgpy(T"z, T™ ' x) + qpp (T, T"2)] — qpp (T2, T 2)
slape(T"2, T ' x) + qpyp (T2, T )]
s2quy (T, T 22) + s2qpy (T 22, T )

+ sqpy(T™ 2, T™ ) — sqpy(T™ 22, T 2)

NN IN

< 82qpb(T":L’, Tm+2x> + Squb(Tm+2$, Tm+1$) + qub<Tm+133, me)
<" apy (T2, TV M) + " L apy (T, T ) + .+ sqpyp (T 2, T )
< (sE™ 4+ s2EmT 4 4 s e
S R
1— sk
sk™
< Q.
1— sk

Taking limit as m,n — oo in the above inequality, we have

lim  gpp(T"x, T™x) <0,
m,n—o00
thus
lim gpp(T"z, T™z) = 0. (2.6)

m,n— 00
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Egs. (2.5) and (2.6)) indicate that sequence {T"z}>°, is a Cauchy sequence.
Since (X, gpy) is complete, therefore {T"z}2° ; converges to some w € X, that is,

gpp(w,w) = lim gpp(T"z,w) = lim gpp(w,T"x)

= lim g¢pp(T"z, T™z) = lim qpp(T"2z,T"z) = 0.
m,n—00 m,n—00

Observe that {7272}, is a sequence in A and {T?""12}°° | is a sequence in B in a way that both sequences
converge to w. Also, note that A and B are closed, we have w € AN B. On the other hand,

qpy(T"z, Tw) < kqpy(T" 2, w).
Taking limit as n — oo in the above inequality, we have

lim gpy(T"x, Tw) < k lim qpy(T" 1z, w) =0,
n—00 n—00

hence
lim qpy(T"x, Tw) = 0. (2.8)
n—oo

Similarly, it can be derived
lim gpp(Tw, T"x) = 0. (2.9)
n—oo

In addition, by the contractive condition of theorem and in combination with (2.7]), we get
apy(Tw, Tw) < kgpy(w,w) =0

implies
qpp(Tw, Tw) = 0. (2.10)

Equations (2.8)), (2.9) and (2.10) show that the sequence {I™z}>°, is also convergent to Tw. Applying
Lemma [1.8 we obtain Tw = w.

Assume that there exists another fixed point w* of T in A U B, that is, Tw* = w*, then from the
contractive condition ([2.1)),
app(w, w) = qpp(Tw", Tw) < kgpy(w, w).

Since k € [0,1), we get gpy(w*,w) = 0. In addition, note that

gpy(w*, w*) = gpp(Tw*, Tw") < kgpp(w™, w")
implies
gpp(w*,w*) = 0. (2.11)
It follows from gpy(w,w) = gpp(w*,w) = gpp(w*,w*) = 0 that w = w*.

Analogously, when x € B, the same results can be stated. O

Example 2.3. Let X = [-Z,%] and T : AUB — AU B defined by To = —¥2Z where A = [-7F,0] and

B =0, ]. Define the metric

app(r,y) = |z —y| + |z]

for any (z,y) € X x X.

First, we will show that (X, gpp) is a quasi-partial b-metric space. If gpy(z,x) = gpp(z,y) = qpo(y,y),
that is, |z| = |x — y| + |z| = |y|, then it is obvious that (QPb;) holds for any (z,y) € X x X. And (QPbs)
is true due to

qpp(z,x) = |z| < |z —y| + |z| = gpp(, ).



X. Fan, J. Nonlinear Sci. Appl. 9 (2016), 2175-2189 2182

In addition,

qpe(z, ) = |7|
=z —y+yl (2.12)
<z —yl + lyl
= qpu(y, ),

which implies that (QPbs) holds for any (z,y) € X x X. Moreover, we observe that for any x,y,z € X,

apy(w,y) + qpe(z, 2) = [z — y| + 2] + |2]
|z — 2| + |z —y| + |z] + |2|

<
< S(qpb(xa Z) + qpb(za y))a

where s > 1, (QPby) holds, hence (X, gpp) is a quasi-partial b-metric space with s > 1.
Next, we verify that the mapping T is a gpp-cyclic-Banach contraction. If z € A, then Tz € [0, g] C B.

If € B, then Tx € [—%,O] C A. Hence the map T is cyclic on X because T(A) C B and T(B) C A.
Calculating

sinx siny sinx

Tz, Ty) =

1 . . (2.13)
= 1(| sinx — siny| + | sinz|).

Considering function f(u) = sinwu,u € [~7, §] and using the differential mean value theorem, there exists
¢ € [-7%, §] such that _ .
sinx — siny
f(Q)=cos(=———
r—y
for any z,y € [-F, ], hence
|sinx —siny| < |z —y|.

Thus

L, . : :
qpp(Tz, Ty) = Z(‘ sinz — siny| + |sin z|)

1 1
< gle—ul+ Jle] (2.14)

< kapy(z,y)

for all z,y € [-7, %] and % < k < 1. Choosing s > 1 and i < k < 1 such that sk < 1, T satisfies the
qpp-cyclic-Banach contraction of Theorem and x = 0 is the unique fixed point of T'.

3. gpb-cyclic-Kannan mapping in quasi-partial b-metric spaces

In this section, we extend fixed point theorem for Kannan mappings in the setting of quasi-partial
b-metric spaces.

Definition 3.1. Let A and B be nonempty subsets of a quasi-partial b-metric space (X,qgpy). A cyclic
mapping T : AU B — AU B is said to be a gpy-cyclic-Kannan mapping if there exists A € [0, %) such that
ifs>1,8\< %, then

aps(Tz, Ty) < Agpy(z, Tx) + Aqps(y, Ty) (3.1)

holds both for x € A,y € B and for x € B,y € A.
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Theorem 3.2. Let A and B be two nonempty closed subsets of a complete quasi-partial b-metric space
(X, qpp) and T be a cyclic mapping which is a qpb-cyclic-Kannan mapping. Then AN B is nonempty and
T has a unique fized point in AN B.

Proof. Let z € A, considering condition (3.1)), we have

apy(Tz, T?x) = qpy(Tx, T(Tw))

) (3.2)
< Agpo (@, Tw) + Aqpy(T, T ),
thus
9 A
app(Tz, T72) < 7 ape(2, Tx). (3.3)
Using (3.3)), we get
qpp(T?z, Tx) = qpy(T(Tx), Tx)
< Agpy(Tx, T?x) + Agp(z, Tx)
)\2
S 7o aws(@, T2) + Agpy (@, T)
< (e, Ta)
X 1— )\qpb z,1x).
Set 0 = qpp(x, T'x). Moreover, we have
A\ A\
apo(T%2, T32) < (=) 06, qpp(T32,T%2,) < [ ——~ ) 6. (3.4)
1—A 1—A
Hence \ . \ n
qpp(T"z, T 2) < (1_/\> 5, qpo(T" 'z, Thz,) < <1_)\) ) (3.5)

for every n € N.
Let m,n € N and m < n, using (QPby)

apo(T™ 2, T"x) < slapy(T™ 2, T™ ' x) + qpy(T™ 2, T"2)] — qpo (T2, T 2)

< slgpp(T™2, T ) + qpyp(T™ iz, T )]

< sqpy(T™ 2, T™ ) 4+ 2qpy(T™ o, T 22) + s2qpy (T2, TM2)

< sqpy (T, T™ ) + $2qpy(T™ e, T 20) + . 4 s Mgpy (T Lo, T ).

. A .
Setting v = T and using (3.5)),
qpp(T™z, T"z) < (9™ + 2™ 4 4 5"y h)§
el
1—sy

Because A € [0, %) and s\ < %, therefore v, sy € [0,1). Furthermore,

m

apy(T™z, T"z) < 187 :

Taking limit as m,n — oo in the above inequality, we have

lim gpy(T™2, T"x) <0,

m,n— 00
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thus
lim gpp(T™x, T"z) = 0. (3.6)

m,n— 00

Also,

qpo (T, T™x) < slgpp(T"x, T ) + qpp (T, T™x)] — qpo(T™H e, T )
s[qpy(T"z, T™ M 2) + qpy(T™ 2, T 2)]
s2qpy(T"x, T™z) + > qpy (T2, T )

+ sqpy(T™ 2, T™ ) — sqpy(T™ 22, T 2)

NN N

< S2qpy(T™z, T 22) 4 $2qpy (T 22, T 2) + sqpy (T e, T™x)
<" apy (T2, TV ') + " L apy (T, T %) + .+ sqpyp (T 2, T )
< (S,ym +82,7m+1 4. +Sn—m,yn—1)5

1— n—m
_ gy (s7)" ™™ &

1— sy

m

< s
1— sy

Taking limit as m,n — oo in the above inequality, we have

lim  gpp(T"x, T™z) <0,
™m,n—00
thus
lim gpp(T"z, T™z) = 0. (3.7)
m,n—00
Egs. (3.6) and (3.7) indicate that sequence {T"z}2° ; is a Cauchy sequence.
Since (X, gpy) is complete, therefore {T™x}7° | converges to some w € X, that is,
gpp(w,w) = lim qpp(T"x,w) = lim gpp(w,T"x)
= lim g¢pp(T"z, T™z) = lim qpp(T™"x, T"z) = 0.
m,n—00 m,n—o0
Observe that {T?"2}%° , is a sequence in A and {T?""12}°° | is a sequence in B in a way that both sequences
converge to w. Note also that A and B are closed, we have w € AN B. On the other hand,

qpp(T™z, Tw) < Agpp(T™ Lo, T"z) + Agpy(w, Tw). (3.9)

Taking limit as n — oo in the above inequality, we have

lim gpy(T"z, Tw) < Agpy(w, Tw). (3.10)
n—oo
By (QPby),
Agpp(w, Tw) < sA[gpp(w, T"z) + qpp(T"x, Tw)] — Agpp(T" 2z, T" x) (3.11)
< sA\[gpp(w, T"x) + qpp(T"x, Tw)] '
for every n € N. Taking limit as n — oo in the above inequality, we get
Agpp(w, Tw) < sA lim gpy(T"x, Tw). (3.12)
n—oo

Thus, applying 10 and (12, we obain
lim gpp(T"x, Tw) < Agpp(w, Tw) < sA lim gpp(T"z, Tw). (3.13)
n—oo n—oo
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Since sA € [0, 1), we obtain

lim gpy(T"x, Tw) = qpp(w, Tw) = 0. (3.14)
n—oo

Similarly, it can be derived
lim gpp(Tw, T"z) = qpp(Tw,w) = 0. (3.15)
n—oo

In addition, by the contractive condition of theorem and in combination with (3.14)), we get

qpp(Tw, Tw) < Agpp(w, Tw) + Agpp(w, Tw)

= 2\gpp(w, Tw) (3.16)
=0

implies
gpy(Tw, Tw) = 0. (3.17)

Equations (3.14), (3.15) and (3.17)) show that the sequence {T"x}5°; is also convergent to Tw. Applying
Lemma we obtain Tw = w.

Assume that there exists another fixed point w* of T in A U B, that is, Tw* = w*, then from the
contractive condition ,

qpy(w+, w) = gpp(Tw", Tw)
< Agpp(w*, Tw™) + Agpp(w, Tw) (3.18)
< Agpp(w™, w”) + Agpp(w, w).
In addition, note that
apy(w, w) = qpp(Tw, Tw)
< 2Agpp(w, Tw) (3.19)
= 2X\gpp(w,w)
and 2\ € [0,1), we get gpp(w,w) = 0. Similarly, we obtain that gpy(w*,w*) = 0. Moreover, by (3.18]),

qpy(w*,w) = 0. Tt follows from gpp(w,w) = gpp(w*,w) = gpp(w*,w*) = 0 that w = w*.
Analogously, when x € B, the same results can be stated. O

An example of gpb-cyclic-Kannan mapping in quasi-partial b-metric space is provided to illustrate The-
orem 3.2,

Example 3.3. Let X = [-3,3] and T : AUB — AU B defined by Tz = —%x, where A = [~1,0] and
B =10, %] Define the metric

1
qpo(,y) = |z —y[2 + |z]
for any (z,y) € X x X.

If gpy(z,x) = qpp(z,y) = qpe(y,y), that is, |z| = |z — y|% + || = |y|, then it is obvious that (QPb;) holds
for any (x,y) € X x X. In addition, |z — y]% >0and |y —z| < |y — a:|% when |z — y| € [0,1], then

1
qpp(z,x) = |z| < |z —y|2 + 2] = qps(z,y)
and
qpp(z,7) = |2 = |r — Y + Y|

<ly—z+ |yl

1
<y — )2 + |yl
= qpp(y, @)
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are true, then (QPbsy) and (QPbs) hold for any (z,y) € X x X. Moreover, we observe that

aps(@,y) + apo(z, 2) = |z — y|2 + ] + |2]

(J& — 2| + |2 — yl)7 + |2| + |z
& — 2|2 + |z — y|2 + o] + |2]
= qpo(z,2) + qpp(2, )

< slgpp(z, 2) + qpu(2,9)]

<
<

for any x,y,z € X and s > 1, (QPby) holds, hence (X, gpp) is a quasi-partial b-metric space with s > 1

Next, we verify that the mapping 7' is a gpp-cyclic-Kannan contraction. If x € A, then Tz € [0, 11
If € B, then Tx € [—4:,0] C A. Hence the map T is cyclic on X because T(A) C B and T(B) C A. On
the other hand,

V2 1 1
app(Tz, Ty) = *Im —yl2 + |- gx\

1 1 1
(!w\ +[yl)z + g!w\ + g\y!
V2
4

\f
+

(S
[NIE

N

el Ly
1ol
8 Y

x|z +
(3.20)

1
| 2

N

B Dt Ly
1ol
Yy 3 89

ooT@
oo\ ©

N

KM&M%M%M%M%

202218 + L] + | 21F + o))
9 19
3 83/ )

< (qpb(fv Tx) + qpy(y, Ty))

< Mapo(, Tz) + qpo(y, Ty))

for all z,y € X and A € [%, %) Choosing s and A such that s\ < %, T satisfies the gpp-cyclic-Kannan
mapping of Theorem and x = 0 is the unique fixed point of T'.

4. gpp-cyclic B-quasi-contraction mapping in quasi-partial b-metric spaces

In this section, we extend Cirié¢’s fixed point theorem for quasi-contraction type mappings in the setting
of quasi-partial b-metric spaces.

Let A and B be nonempty subsets of a quasi-partial b-metric space (X, gpp). Andlet T: AUB — AUB
is a cyclic mapping. We denote

M(z,y) = max{gpy(x,y), qps(x, Tx), qps(y, Ty), qpo(z, Ty), qps(y, Tx) }
for any z,y € X.

Definition 4.1. Let A and B be nonempty subsets of a quasi-partial b-metric space (X, gpp) with s > 1
A cyclic mapping T : AU B — AU B is said to be a qpp-cyclic S-quasi-contraction mapping if there exists
B €[0,3) such that if Bs € [0,1), then

holds both for x € A,y € B and for x € B,y € A.

Next, we give the result for a gpp-cyclic S-quasi-contraction mapping which is an extension of the result
of Cirié.
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Theorem 4.2. Let A and B be two nonempty closed subsets of a complete quasi-partial b-metric space
(X, qpp) with s > 1 and T be a cyclic mapping which is a qpy-cyclic f-quasi-contraction. Then AN B is
nonempty and T has a unique fixed point in AN B.

Proof. Let x € A and denote z,,1 = Tz, = T" 2, 29 = . From condition (#.1]), we obtain

qpb(xna anrl) < ,BM(;Un,l, xn)
< B max {qpb(l'nfb xn)a qpb(l’nfla T$n,1), qpb(xna T.fL'n), qpb(xnflv Txn), qpb($na T:Unfl)}

//\

maX{CIpb Tn— 1,$n QPb(DUn—hUﬁn),QPb(wn,ﬂCnH),QPb(mn—17$n+1)7q}?b(l‘n,xn)}
max{

apy(Tn—1,Tn), qpp(Tn, $n+1),qpb(xn-l,xnﬂ),qpb(xml‘n)}
for any n € N. Property (QPba) shows gpy(zn, xn) < qpo(Tn, Tnt1), SO

apy(Zn, Tny1) < Bmax {QPb(fEn—l, Tn), qPo(Tn, Tt 1), @Pu(Tn—1, $n+1)}-
Furthermore, from (QPby), we have

S[qpb(xnfly xn) + qpb(mm xn+l)] - qpb(xna l‘n)
S[qpb(xn—l, xn) + qpb(xn, xn+1)]

qpp(Tn—1, Tny1) <
<

with s > 1, hence

apy(Tn, Tny1) < fmax {qpb(wnfl, Tn), qPb(Tns Tny1), a0 (Tn—1, xn+1)}
< fmax {qpb(xn—1, Tn), qPb(Tn, Tny1), s[apo(Tn—1, Tn) + qDb(Tn, xn+1)]}
= Bs[qpb(xnfla xn) + qpb(mna anrl)]'

Subsequently,
Bs

1— s
fzs. It can be derived that 0 < k < 1 because s € [0, %) It follows

qpb(a?n,an) < qpb(xn—laxn)-

Set k =

kqpb(xn—lv xn)
o< K"qpp(x, 1)
= k"qpp(x, Tx).

qpb(xny xn—i—l) <
<

Similarly, we get

qpb(Tnt1, Tn) < kqpp(@n, Tn—1)
<< Elgpe(z, @)
= k"qpy(Tx, ).

Letting o« = max{qpy(Tx, ), qpp(x, Tx)}, thus
apy(Tn, Tnt1) < K0, qpy(Tns1, Tn) < K

The latter process of proof for the theorem is same as Theorem thus we omit it. This completes the
proof. O
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Example 4.3. Let X =[5, {5] and define gpp : X x X — Ry as
qpp(z,y) = sin 2|z — y| + ||

for any (z,y) € X x X. (X, gpp) is a quasi-partial b-metric space with s > 2 as claimed in Example

Let T: AUB — AU B defined by Tz = —45, where A = [~{5,0] and B = [0, {z]. If # € A, then
Tz €[0,155] C B. If z € B, then Tz € [~153,0] C A. Hence the map T is cyclic on X due to T'(A) C B
and T'(B) C A.

Because |z —y| € [0, §] and when sinu < u < sin 2u, u € [0, §] holds, then
Ty x
Ta,Ty) =sin2 15— L]+~ =
=y 1
= sin — + 12|$|
T — 1
< | . ul | el
(4.2)

N

L sin 2z — 4| + —|af
g sin2lz —yl+ e

1 .
< (sin2lz — y| + [z

1

= gqpb(x,y)'

In addition,
apy(x,y) < M(z,y) = max{qpy(x,y), qps(x, Tx), qpp(y, Ty), app(x, Ty), qps(y, Tx) }, thus

1
apy(Tx, Ty) < EM(:v,y)

< BM(x,y)

(4.3)

for B € [%, %)
Choosing s and 8 such that 8s < %, T satisfies the gpp-cyclic S-quasi-contraction mapping of Theorem
and z = 0 is the unique fixed point of T'.
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