Fixed point theorems for cyclic mappings in quasi-partial b-metric spaces

Xiaoming Fan
School of Mathematical Sciences, Harbin Normal University, Harbin, 150025, P. R. China.

Communicated by R. Saadati

Abstract

In this paper, we introduce the concepts of $q p_{b}$-cyclic-Banach contraction mapping, $q p b$-cyclic-Kannan mapping and $q p_{b}$-cyclic β-quasi-contraction mapping and establish the existence and uniqueness of fixed point theorems for these mappings in quasi-partial b-metric spaces. Some examples are presented to validate our results. © 2016 All rights reserved.

Keywords: Quasi-partial b-metric space, fixed point theorems, $q p_{b}$-cyclic-Banach contraction mapping, $q p b$-cyclic-Kannan mapping, $q p_{b}$-cyclic β-quasi-contraction mapping.
2010 MSC: 47H09, 47H10.

1. Introduction and preliminaries

The concept of quasi-metric spaces was introduced by Wilson in [19] as a generalization of standard metric spaces. Roldán-López-de-Hierro et al. [16] gave some coincidence point theorems and obtained some very recent results in the setting of quasi-metric spaces. Matthews also generalized the standard metric spaces to partial-metric spaces by replacing the condition $d(x, x)=0$ with the condition $d(x, x) \leqslant d(x, y)$ for all $x, y([14,15)$. Partial-metric spaces have applications in theoretical computer science [3]. Hitzler and Seda introduced dislocated metric spaces [7]. Czerwik presented the notion of b-metric space [5]. Many other generalized metric spaces, such as partial b-metric spaces, metric-like spaces and quasi- b-metric-like, were introduced (see, e.g., ([1, 8, [17, 18]) and the references therein). Especially, as a further generalization for the quasi-metric spaces and partial-metric spaces, Karapinar et al. [10] introduced the notion of quasi-partial metric space and discussed the existence of fixed points of self-mappings T on quasi-partial metric spaces. Very recently, following ($[5,10,14]$), Gupta and Gautam [6] have generalized quasi-partial metric spaces to

[^0]the class of quasi-partial b-metric spaces and have focused on the fixed points of some self-mappings which have a deep relationship with T-orbitally lower semi-continuous functions introduced by Karapinar et al. in [10]. Some better results of fixed point are claimed in [6].

Corresponding to the development of spaces, many mappings have been presented since Banach contraction principle was introduced in [2]. For example, in 1974, Ćirić [4] defined quasi-contraction mappings and stated some fixed point results in which it has shown that the condition of quasi-contractivity implies all conclusions of Banach's contraction principle. We recall the concept as follows:

Let (X, d) be a metric space. A mapping $T: X \rightarrow X$ is said to be a quasi-contraction mapping if there exists $\beta \in[0,1)$ such that

$$
d(T x, T y) \leqslant \beta M(x, y)
$$

for all $x, y \in X$, where

$$
M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

We also review the concept of cyclic mapping as follows:
Let A and B be nonempty subsets of a metric space $(X, d), T: A \cup B \rightarrow A \cup B$ is called cyclic if $T(A) \subset B$ and $T(B) \subset A$.

In 1969, Kannan introduced the concept of Kannan mapping in 9]:
Let (X, d) be a metric space. A mapping $T: X \rightarrow X$ is said to be a Kannan mapping if there exists $\lambda \in\left[0, \frac{1}{2}\right)$ such that

$$
d(T x, T y) \leqslant \lambda d(x, T x)+\lambda d(y, T y)
$$

for all $x, y \in X$.
In 2003, Kirk et al. 12 introduced cyclic contraction mapping as follows:
Let (X, d) be a metric space. A cyclic mapping $T: A \cup B \rightarrow A \cup B$ is said to be a cyclic contraction mapping if there exists $\lambda \in[0,1)$ such that

$$
d(T x, T y) \leqslant \lambda d(x, y)
$$

for any $x \in A$ and $y \in B$.
In 2010, Karapinar et al. [11] introduced Kannan type cyclic contraction as follows:
Let (X, d) be a metric space. A cyclic mapping $T: A \cup B \rightarrow A \cup B$ is said to be a Kannan type cyclic contraction if there exists $\lambda \in\left[0, \frac{1}{2}\right)$ such that

$$
d(T x, T y) \leqslant \lambda d(x, T x)+\lambda d(y, T y)
$$

for any $x \in A$ and $y \in B$.
Recently, Klin-eam and Suanoom introduced dislocated quasi- b-metric spaces and investigated the fixed points of Geraghty type $d q b$-cyclic-Banach contraction mapping and $d q b$-cyclic-Kannan mapping [13]. Inspired and motivated by Karapinar et al. [11], Gupta et al. [6] and Klin-eam et al. [13], we introduce the notions: $q p_{b}$-cyclic-Banach contraction mappings, qpb-cyclic-Kannan mappings and $q p_{b}$-cyclic β-quasicontraction mappings. The corresponding fixed point results for these three kinds of mappings in the setting of quasi-partial b-metric spaces (QPBMS) are provided. Our results complement and enrich the main results of Gupta et al. in the literature [6]. We also provide some examples to show the generality and effectiveness of our results.

Throughout this paper, \mathbb{N} and \mathbb{R}_{+}denote the set of all positive integers and the set of all nonnegative real numbers, respectively. We begin with the following definition as a recall from ([7, [19]).

Definition 1.1. Let X be a nonempty set. Suppose that the mapping $d: X \times X \rightarrow[0, \infty)$ satisfies the following conditions:
$\left(\mathrm{d}_{1}\right) d(x, x)=0$ for all $x \in X ;$
$\left(\mathrm{d}_{2}\right) d(x, y)=d(y, x)=0$ implies $x=y$ for all $x, y \in X$;
$\left(\mathrm{d}_{3}\right) d(x, y)=d(y, x)$ for all $x, y \in X ;$
$\left(\mathrm{d}_{4}\right) d(x, y) \leqslant d(x, z)+d(z, y)$ for all $x, y, z \in X$.
If d satisfies conditions $\left(\mathrm{d}_{1}\right),\left(\mathrm{d}_{2}\right)$ and $\left(\mathrm{d}_{4}\right)$, then d is called a quasi-metric on X. If d satisfies conditions $\left(\mathrm{d}_{2}\right)$, $\left(\mathrm{d}_{3}\right)$ and $\left(\mathrm{d}_{4}\right)$, then d is called a dislocated metric on X. If it satisfies conditions $\left(\mathrm{d}_{2}\right)$ and $\left(\mathrm{d}_{4}\right)$, it is called a dislocated quasi-metric. If d satisfies conditions $\left(\mathrm{d}_{1}\right)-\left(\mathrm{d}_{4}\right)$, then d is called a (standard) metric on X.

The concept of a quasi-partial metric space was introduced by Karapinar et al.
Definition $1.2([10])$. A quasi-partial metric on a nonempty set X is a function $q: X \times X \rightarrow \mathbb{R}_{+}$, satisfying the following conditions:
(QPM1) If $q(x, x)=q(x, y)=q(x, y)$, then $x=y$.
(QPM2) $q(x, x) \leqslant q(x, y)$.
(QPM3) $q(x, x) \leqslant q(y, x)$.
(QPM4) $q(x, y)+q(z, z) \leqslant q(x, z)+q(z, y)$ for all $x, y, z \in X$.
A quasi-partial metric space is a pair (X, q) such that X is a nonempty set and q is a quasi-partial metric on X.

For each metric $q: X \times X \rightarrow \mathbb{R}_{+}$, the function $d_{q}: X \times X \rightarrow \mathbb{R}_{+}$defined by

$$
d_{q}(x, y)=q(x, y)+q(y, x)-q(x, x)-q(y, y)
$$

is a (standard) metric on X.
The next Lemma shows the relationship between the quasi-partial metric and the standard metric.
Lemma $1.3([10])$. Let (X, q) be a quasi-partial metric space and $\left(X, d_{q}\right)$ be the corresponding metric space. Then (X, q) is complete if and only if $\left(X, d_{q}\right)$ is complete.

For each metric $q: X \times X \rightarrow \mathbb{R}_{+}$, the function $d_{q m}: X \times X \rightarrow \mathbb{R}_{+}$defined by

$$
d_{q m}(x, y)=q(x, y)-q(x, x)
$$

is a dislocated quasi-metric.
Gupta et al. [6] introduced the concept of quasi-partial b-metric space and gave some properties on such spaces in this section.

Definition 1.4 ([6]). A quasi-partial b-metric on a nonempty set X is a function $q p_{b}: X \times X \rightarrow \mathbb{R}_{+}$such that for some real number $s \geqslant 1$ and all $x, y, z \in X$:
$\left(\mathrm{QPb}_{1}\right)$ If $q p_{b}(x, x)=q p_{b}(x, y)=q p_{b}(y, y)$, then $x=y$,
$\left(\mathrm{QPb}_{2}\right) q p_{b}(x, x) \leqslant q p_{b}(x, y)$,
$\left(\mathrm{QPb}_{3}\right) q p_{b}(x, x) \leqslant q p_{b}(y, x)$,
$\left(\mathrm{QPb}_{4}\right) q p_{b}(x, y) \leqslant s\left[q p_{b}(x, z)+q p_{b}(z, y)\right]-q p_{b}(z, z)$.
A quasi-partial b-metric space (QPBMS) is a pair $\left(X, q p_{b}\right)$ such that X is a nonempty set and $q p_{b}$ is a generalization of quasi-partial metric on X.

Example 1.5. Let $X=\left[0, \frac{\pi}{8}\right]$. Define the metric

$$
q p_{b}(x, y)=\sin 2|x-y|+x
$$

for any $(x, y) \in X \times X$.
It can be demonstrated that $\left(X, q p_{b}\right)$ is a quasi-partial b-metric space. Actually, if $q p_{b}(x, x)=q p_{b}(x, y)=$
$q p_{b}(y, y)$, that is, $x=\sin 2|x-y|+x=y$, then it is obvious that $\left(\mathrm{QPb}_{1}\right)$ holds for any $(x, y) \in X \times X$. In addition, $\sin 2|x-y| \geqslant 0$ and $\sin 2|x-y| \geqslant|x-y|$ when $|x-y| \in\left[0, \frac{\pi}{8}\right]$, then

$$
q p_{b}(x, x)=x \leqslant \sin 2|x-y|+x=q p_{b}(x, y)
$$

and

$$
\begin{aligned}
q p_{b}(x, x) & =x \\
& =|x-y+y| \\
& \leqslant|x-y|+|y| \\
& \leqslant \sin 2|y-x|+y \\
& =q p_{b}(y, x)
\end{aligned}
$$

are true, hence $\left(\mathrm{QPb}_{2}\right)$ and $\left(\mathrm{QPb}_{3}\right)$ hold for any $(x, y) \in X \times X$. Moreover, when $2(|x-z|+|z-y|) \in\left[0, \frac{\pi}{2}\right]$, $\sin 2(|x-z|+|z-y|) \leqslant 2(|x-z|+|z-y|)$, we get

$$
\begin{aligned}
q p_{b}(x, y)+q p_{b}(z, z) & =\sin 2|x-y|+x+z \\
& \leqslant \sin 2(|x-z|+|z-y|)+x+z \\
& \leqslant 2(|x-z|+|z-y|)+x+z \\
& \leqslant 2 \sin 2|x-z|+2 \sin 2|z-y|+x+z \\
& =2(\sin 2|x-z|+\sin 2|z-y|+x+z) \\
& \leqslant s\left(q p_{b}(x, z)+q p_{b}(z, y)\right)
\end{aligned}
$$

for all $x, y, z \in X$ and $s \geqslant 2,\left(\mathrm{QPb}_{4}\right)$ holds, hence $\left(X, q p_{b}\right)$ is a quasi-partial b-metric space with $s \geqslant 2$.
Lemma 1.6 ([6]). Every quasi-partial metric space is a quasi-partial b-metric, but the converse is not true.
Each quasi-partial b-metric $q p_{b}$ on X induces a topology $\mathscr{T}_{q p_{b}}$ on X whose base is the family of open $q p_{b}$-balls $\left\{B_{q p_{b}}(x, \delta): x \in X, \delta>0\right\}$, where $B_{q p_{b}}(x, \delta)=\left\{y \in X:\left|q p_{b}(x, y)-q p_{b}(x, x)\right|<\delta\right\}$.

Next we define convergent sequence, Cauchy sequence, completeness of space and continuity in quasipartial b-metric spaces.

Definition 1.7 (6]). Let $\left(X, q p_{b}\right)$ be a quasi-partial b-metric. Then:
(i) A sequence $\left\{x_{n}\right\}_{n=0}^{\infty} \subset X$ converges to $x \in X$ if and only if

$$
q p_{b}(x, x)=\lim _{n \rightarrow \infty} q p_{b}\left(x, x_{n}\right)=\lim _{n \rightarrow \infty} q p_{b}\left(x_{n}, x\right)
$$

(ii) A sequence $\left\{x_{n}\right\}_{n=0}^{\infty} \subset X$ is called a Cauchy sequence if and only if $\lim _{n, m \rightarrow \infty} q p_{b}\left(x_{m}, x_{n}\right)$ and $\lim _{n, m \rightarrow \infty} q p_{b}\left(x_{n}, x_{m}\right)$ exist (and are finite).
(iii) The quasi-partial b-metric space $\left(X, q p_{b}\right)$ is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}_{n=0}^{\infty} \subset$ X converges with respect to $\mathscr{T}_{q p_{b}}$ to a point $x \in X$ such that $q p_{b}(x, x)=\lim _{m, n \rightarrow \infty} q p_{b}\left(x_{m}, x_{n}\right)=$ $\lim _{m, n \rightarrow \infty} q p_{b}\left(x_{n}, x_{m}\right)$.
(iv) A mapping $f: X \rightarrow X$ is said to be continuous at $x \in X$ if for every $\epsilon>0$ there exists $\delta>0$ such that $f\left(B\left(x_{0}, \delta\right)\right) \subset B\left(f\left(x_{0}\right), \epsilon\right)$.

We denote simply $q p_{b}$-converges to x by $x_{n} \xrightarrow{q p_{b}} x$. Under a special case, we state the uniqueness of the limit of a sequence in a quasi-partial b-metric space, which is very useful in the proof of the main theorems.

Lemma 1.8. Let $\left(X, q p_{b}\right)$ be a quasi-partial b-metric space and $\left\{x_{n}\right\}_{n=0}^{\infty}$ be a sequence in X. If $x_{n} \xrightarrow{q p_{b}} x$, $x_{n} \xrightarrow{q p_{b}} y$ and $q p_{b}(x, x)=q p_{b}(y, y)=0$, then $x=y$.

Proof. Assume that $x_{n} \xrightarrow{q p_{b}} x$ and $x_{n} \xrightarrow{q p_{b}} y$ in $\left(X, q p_{b}\right)$, then

$$
q p_{b}(x, x)=\lim _{n \rightarrow \infty} q p_{b}\left(x_{n}, x\right)=\lim _{n \rightarrow \infty} q p_{b}\left(x, x_{n}\right)=0
$$

and

$$
q p_{b}(y, y)=\lim _{n \rightarrow \infty} q p_{b}\left(x_{n}, y\right)=\lim _{n \rightarrow \infty} q p_{b}\left(y, x_{n}\right)=0
$$

Using $\left(\mathrm{QPb}_{4}\right)$, we have

$$
\begin{aligned}
q p_{b}(x, y) & \leqslant s\left[q p_{b}\left(x, x_{n}\right)+q p_{b}\left(x_{n}, y\right)\right]-q p_{b}\left(x_{n}, x_{n}\right) \\
& \leqslant s\left[q p_{b}\left(x, x_{n}\right)+q p_{b}\left(x_{n}, y\right)\right]
\end{aligned}
$$

for every $n \in \mathbb{N}$. Taking limit as $n \rightarrow \infty$ in the above inequality, we have

$$
\begin{aligned}
q p_{b}(x, y) & \leqslant s\left[\lim _{n \rightarrow \infty} q p_{b}\left(x, x_{n}\right)+\lim _{n \rightarrow \infty} q p_{b}\left(x_{n}, y\right)\right] \\
& =0
\end{aligned}
$$

Therefore we get $q p_{b}(x, x)=q p_{b}(x, y)=q p_{b}(y, y)=0$ which implies from the property $\left(\mathrm{QPb}_{1}\right)$ that $x=$ y.

Remark 1.9. Generally, the limit of a sequence in a quasi-partial b-metric space is not unique.

2. $q p_{b}$-cyclic-Banach contraction mapping in quasi-partial b-metric spaces

In this section, we extend fixed point theorem for Banach contraction mappings in standard metric spaces to $q p_{b}$-cyclic-Banach contraction mappings in the setting of quasi-partial b-metric spaces.

Definition 2.1. Let A and B be nonempty subsets of a quasi-partial b-metric space $\left(X, q p_{b}\right)$. A cyclic mapping $T: A \cup B \rightarrow A \cup B$ is said to be a $q p_{b}$-cyclic-Banach contraction mapping if there exists $k \in[0,1$) such that if $s \geqslant 1, s k<1$, then

$$
\begin{equation*}
q p_{b}(T x, T y) \leqslant k q p_{b}(x, y) \tag{2.1}
\end{equation*}
$$

holds both for $x \in A, y \in B$ and for $x \in B, y \in A$.
Theorem 2.2. Let A and B be two nonempty closed subsets of a complete quasi-partial b-metric space $\left(X, q p_{b}\right)$ and T be a cyclic mapping which is a $q p_{b}$-cyclic-Banach contraction. Then $A \cap B$ is nonempty and T has a unique fixed point in $A \cap B$.

Proof. Let $x \in A$, noting the contractive condition of the theorem, we have

$$
\begin{aligned}
q p_{b}\left(T^{2} x, T x\right) & =q p_{b}(T(T x), T x) \\
& \leqslant k q p_{b}(T x, x)
\end{aligned}
$$

and

$$
\begin{aligned}
q p_{b}\left(T x, T^{2} x\right) & =q p_{b}(T x, T(T x)) \\
& \leqslant k q p_{b}(x, T x)
\end{aligned}
$$

Let $\alpha=\max \left\{q p_{b}(x, T x), q p_{b}(T x, x)\right\}$, thus

$$
\begin{equation*}
q p_{b}\left(T x, T^{2} x\right) \leqslant k \alpha, \quad q p_{b}\left(T^{2} x, T x,\right) \leqslant k \alpha \tag{2.2}
\end{equation*}
$$

Moreover, applying inequality (2.2), we have

$$
\begin{equation*}
q p_{b}\left(T^{2} x, T^{3} x\right) \leqslant k^{2} \alpha, \quad q p_{b}\left(T^{3} x, T^{2} x,\right) \leqslant k^{2} \alpha \tag{2.3}
\end{equation*}
$$

Hence

$$
\begin{equation*}
q p_{b}\left(T^{n} x, T^{n+1} x\right) \leqslant k^{n} \alpha, \quad q p_{b}\left(T^{n+1} x, T^{n} x,\right) \leqslant k^{n} \alpha \tag{2.4}
\end{equation*}
$$

for every $n \in \mathbb{N}$.
Let $m, n \in \mathbb{N}$ and $m<n$, using $\left(\mathrm{QPb}_{4}\right)$

$$
\begin{aligned}
q p_{b}\left(T^{m} x, T^{n} x\right) & \leqslant s\left[q p_{b}\left(T^{m} x, T^{m+1} x\right)+q p_{b}\left(T^{m+1} x, T^{n} x\right)\right]-q p_{b}\left(T^{m+1} x, T^{m+1} x\right) \\
& \leqslant s\left[q p_{b}\left(T^{m} x, T^{m+1} x\right)+q p_{b}\left(T^{m+1} x, T^{n} x\right)\right] \\
& \leqslant s q p_{b}\left(T^{m} x, T^{m+1} x\right)+s^{2} q p_{b}\left(T^{m+1} x, T^{m+2} x\right)+s^{2} q p_{b}\left(T^{m+2} x, T^{n} x\right) \\
& \leqslant \operatorname{sqp}_{b}\left(T^{m} x, T^{m+1} x\right)+s^{2} q p_{b}\left(T^{m+1} x, T^{m+2} x\right)+\ldots+s^{n-m} q p_{b}\left(T^{n-1} x, T^{n} x\right)
\end{aligned}
$$

Noting $s k<1$ and applying (2.4),

$$
\begin{aligned}
q p_{b}\left(T^{m} x, T^{n} x\right) & \leqslant\left(s k^{m}+s^{2} k^{m+1}+\ldots+s^{n-m} k^{n-1}\right) \alpha \\
& =s k^{m} \frac{1-(s k)^{n-m}}{1-s k} \alpha \\
& \leqslant \frac{s k^{m}}{1-s k} \alpha
\end{aligned}
$$

Taking limit as $m, n \rightarrow \infty$ in the above inequality, we have

$$
\lim _{m, n \rightarrow \infty} q p_{b}\left(T^{m} x, T^{n} x\right) \leqslant 0
$$

thus

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} q p_{b}\left(T^{m} x, T^{n} x\right)=0 \tag{2.5}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{aligned}
& q p_{b}\left(T^{n} x, T^{m} x\right) \leqslant s\left[q p_{b}\left(T^{n} x, T^{m+1} x\right)+q p_{b}\left(T^{m+1} x, T^{m} x\right)\right]-q p_{b}\left(T^{m+1} x, T^{m+1} x\right) \\
& \leqslant s\left[q p_{b}\left(T^{n} x, T^{m+1} x\right)+q p_{b}\left(T^{m+1} x, T^{m} x\right)\right] \\
& \leqslant s^{2} q p_{b}\left(T^{n} x, T^{m+2} x\right)+s^{2} q p_{b}\left(T^{m+2} x, T^{m+1} x\right) \\
&+s q p_{b}\left(T^{m+1} x, T^{m} x\right)-s q p_{b}\left(T^{m+2} x, T^{m+2} x\right) \\
& \leqslant s^{2} q p_{b}\left(T^{n} x, T^{m+2} x\right)+s^{2} q p_{b}\left(T^{m+2} x, T^{m+1} x\right)+s q p_{b}\left(T^{m+1} x, T^{m} x\right) \\
& \leqslant s^{n-m} q p_{b}\left(T^{n} x, T^{n-1} x\right)+s^{n-m-1} q p_{b}\left(T^{n-1} x, T^{n-2} x\right)+\ldots+s q p_{b}\left(T^{m+1} x, T^{m} x\right) \\
& \leqslant\left(s k^{m}+s^{2} k^{m+1}+\ldots+s^{n-m} k^{n-1}\right) \alpha \\
&= s k^{m} \frac{1-(s k)^{n-m}}{1-s k} \alpha \\
& \leqslant s k^{m} \\
& 1-s k
\end{aligned} .
$$

Taking limit as $m, n \rightarrow \infty$ in the above inequality, we have

$$
\lim _{m, n \rightarrow \infty} q p_{b}\left(T^{n} x, T^{m} x\right) \leqslant 0
$$

thus

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} q p_{b}\left(T^{n} x, T^{m} x\right)=0 \tag{2.6}
\end{equation*}
$$

Eqs. (2.5) and 2.6) indicate that sequence $\left\{T^{n} x\right\}_{n=1}^{\infty}$ is a Cauchy sequence.
Since $\left(X, q p_{b}\right)$ is complete, therefore $\left\{T^{n} x\right\}_{n=1}^{\infty}$ converges to some $\omega \in X$, that is,

$$
\begin{align*}
q p_{b}(\omega, \omega) & =\lim _{n \rightarrow \infty} q p_{b}\left(T^{n} x, \omega\right)=\lim _{n \rightarrow \infty} q p_{b}\left(\omega, T^{n} x\right) \\
& =\lim _{m, n \rightarrow \infty} q p_{b}\left(T^{n} x, T^{m} x\right)=\lim _{m, n \rightarrow \infty} q p_{b}\left(T^{m} x, T^{n} x\right)=0 \tag{2.7}
\end{align*}
$$

Observe that $\left\{T^{2 n} x\right\}_{n=0}^{\infty}$ is a sequence in A and $\left\{T^{2 n-1} x\right\}_{n=1}^{\infty}$ is a sequence in B in a way that both sequences converge to ω. Also, note that A and B are closed, we have $\omega \in A \cap B$. On the other hand,

$$
q p_{b}\left(T^{n} x, T \omega\right) \leqslant k q p_{b}\left(T^{n-1} x, \omega\right)
$$

Taking limit as $n \rightarrow \infty$ in the above inequality, we have

$$
\lim _{n \rightarrow \infty} q p_{b}\left(T^{n} x, T \omega\right) \leqslant k \lim _{n \rightarrow \infty} q p_{b}\left(T^{n-1} x, \omega\right)=0
$$

hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} q p_{b}\left(T^{n} x, T \omega\right)=0 \tag{2.8}
\end{equation*}
$$

Similarly, it can be derived

$$
\begin{equation*}
\lim _{n \rightarrow \infty} q p_{b}\left(T \omega, T^{n} x\right)=0 \tag{2.9}
\end{equation*}
$$

In addition, by the contractive condition of theorem and in combination with (2.7), we get

$$
q p_{b}(T \omega, T \omega) \leqslant k q p_{b}(\omega, \omega)=0
$$

implies

$$
\begin{equation*}
q p_{b}(T \omega, T \omega)=0 \tag{2.10}
\end{equation*}
$$

Equations (2.8), 2.9) and 2.10 show that the sequence $\left\{T^{n} x\right\}_{n=1}^{\infty}$ is also convergent to $T \omega$. Applying Lemma 1.8, we obtain $T \omega=\omega$.

Assume that there exists another fixed point ω^{*} of T in $A \cup B$, that is, $T \omega^{*}=\omega^{*}$, then from the contractive condition (2.1),

$$
q p_{b}(\omega *, \omega)=q p_{b}\left(T \omega^{*}, T \omega\right) \leqslant k q p_{b}(\omega *, \omega) .
$$

Since $k \in[0,1)$, we get $q p_{b}(\omega *, \omega)=0$. In addition, note that

$$
q p_{b}\left(\omega^{*}, \omega^{*}\right)=q p_{b}\left(T \omega^{*}, T \omega^{*}\right) \leqslant k q p_{b}\left(\omega^{*}, \omega^{*}\right)
$$

implies

$$
\begin{equation*}
q p_{b}\left(\omega^{*}, \omega^{*}\right)=0 \tag{2.11}
\end{equation*}
$$

It follows from $q p_{b}(\omega, \omega)=q p_{b}\left(\omega^{*}, \omega\right)=q p_{b}\left(\omega^{*}, \omega^{*}\right)=0$ that $\omega=\omega^{*}$.
Analogously, when $x \in B$, the same results can be stated.
Example 2.3. Let $X=\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ and $T: A \cup B \rightarrow A \cup B$ defined by $T x=-\frac{\sin x}{4}$, where $A=\left[-\frac{\pi}{4}, 0\right]$ and $B=\left[0, \frac{\pi}{4}\right]$. Define the metric

$$
q p_{b}(x, y)=|x-y|+|x|
$$

for any $(x, y) \in X \times X$.
First, we will show that $\left(X, q p_{b}\right)$ is a quasi-partial b-metric space. If $q p_{b}(x, x)=q p_{b}(x, y)=q p_{b}(y, y)$, that is, $|x|=|x-y|+|x|=|y|$, then it is obvious that $\left(\mathrm{QPb}_{1}\right)$ holds for any $(x, y) \in X \times X$. And $\left(\mathrm{QPb}_{2}\right)$ is true due to

$$
q p_{b}(x, x)=|x| \leqslant|x-y|+|x|=q p_{b}(x, y)
$$

In addition,

$$
\begin{align*}
q p_{b}(x, x) & =|x| \\
& =|x-y+y| \tag{2.12}\\
& \leqslant|x-y|+|y| \\
& =q p_{b}(y, x),
\end{align*}
$$

which implies that $\left(\mathrm{QPb}_{3}\right)$ holds for any $(x, y) \in X \times X$. Moreover, we observe that for any $x, y, z \in X$,

$$
\begin{aligned}
q p_{b}(x, y)+q p_{b}(z, z) & =|x-y|+|x|+|z| \\
& \leqslant|x-z|+|z-y|+|x|+|z| \\
& \leqslant s\left(q p_{b}(x, z)+q p_{b}(z, y)\right)
\end{aligned}
$$

where $s \geqslant 1,\left(\mathrm{QPb}_{4}\right)$ holds, hence $\left(X, q p_{b}\right)$ is a quasi-partial b-metric space with $s \geqslant 1$.
Next, we verify that the mapping T is a $q p_{b}$-cyclic-Banach contraction. If $x \in A$, then $T x \in\left[0, \frac{\sqrt{2}}{8}\right] \subset B$. If $x \in B$, then $T x \in\left[-\frac{\sqrt{2}}{8}, 0\right] \subset A$. Hence the map T is cyclic on X because $T(A) \subset B$ and $T(B) \subset A$. Calculating

$$
\begin{align*}
q p_{b}(T x, T y) & =\left|\frac{\sin x}{4}-\frac{\sin y}{4}\right|+\left|-\frac{\sin x}{4}\right| \tag{2.13}\\
& =\frac{1}{4}(|\sin x-\sin y|+|\sin x|)
\end{align*}
$$

Considering function $f(u)=\sin u, u \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ and using the differential mean value theorem, there exists $\zeta \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ such that

$$
f^{\prime}(\zeta)=\cos \zeta=\frac{\sin x-\sin y}{x-y}
$$

for any $x, y \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, hence

$$
|\sin x-\sin y| \leqslant|x-y| .
$$

Thus

$$
\begin{align*}
q p_{b}(T x, T y) & =\frac{1}{4}(|\sin x-\sin y|+|\sin x|) \\
& \leqslant \frac{1}{4}|x-y|+\frac{1}{4}|x| \tag{2.14}\\
& \leqslant k q p_{b}(x, y)
\end{align*}
$$

for all $x, y \in\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ and $\frac{1}{4} \leqslant k<1$. Choosing $s \geqslant 1$ and $\frac{1}{4} \leqslant k<1$ such that $s k<1, T$ satisfies the $q p_{b}$-cyclic-Banach contraction of Theorem 2.2 and $x=0$ is the unique fixed point of T.

3. $q p b$-cyclic-Kannan mapping in quasi-partial b-metric spaces

In this section, we extend fixed point theorem for Kannan mappings in the setting of quasi-partial b-metric spaces.

Definition 3.1. Let A and B be nonempty subsets of a quasi-partial b-metric space $\left(X, q p_{b}\right)$. A cyclic mapping $T: A \cup B \rightarrow A \cup B$ is said to be a qpo-cyclic-Kannan mapping if there exists $\lambda \in\left[0, \frac{1}{2}\right)$ such that if $s \geqslant 1, s \lambda<\frac{1}{2}$, then

$$
\begin{equation*}
q p_{b}(T x, T y) \leqslant \lambda q p_{b}(x, T x)+\lambda q p_{b}(y, T y) \tag{3.1}
\end{equation*}
$$

holds both for $x \in A, y \in B$ and for $x \in B, y \in A$.

Theorem 3.2. Let A and B be two nonempty closed subsets of a complete quasi-partial b-metric space $\left(X, q p_{b}\right)$ and T be a cyclic mapping which is a qpb-cyclic-Kannan mapping. Then $A \cap B$ is nonempty and T has a unique fixed point in $A \cap B$.

Proof. Let $x \in A$, considering condition (3.1), we have

$$
\begin{align*}
q p_{b}\left(T x, T^{2} x\right) & =q p_{b}(T x, T(T x)) \\
& \leqslant \lambda q p_{b}(x, T x)+\lambda q p_{b}\left(T x, T^{2} x\right) \tag{3.2}
\end{align*}
$$

thus

$$
\begin{equation*}
q p_{b}\left(T x, T^{2} x\right) \leqslant \frac{\lambda}{1-\lambda} q p_{b}(x, T x) \tag{3.3}
\end{equation*}
$$

Using (3.3), we get

$$
\begin{aligned}
q p_{b}\left(T^{2} x, T x\right) & =q p_{b}(T(T x), T x) \\
& \leqslant \lambda q p_{b}\left(T x, T^{2} x\right)+\lambda q p_{b}(x, T x) \\
& \leqslant \frac{\lambda^{2}}{1-\lambda} q p_{b}(x, T x)+\lambda q p_{b}(x, T x) \\
& \leqslant \frac{\lambda}{1-\lambda} q p_{b}(x, T x)
\end{aligned}
$$

Set $\delta=q p_{b}(x, T x)$. Moreover, we have

$$
\begin{equation*}
q p_{b}\left(T^{2} x, T^{3} x\right) \leqslant\left(\frac{\lambda}{1-\lambda}\right)^{2} \delta, \quad q p_{b}\left(T^{3} x, T^{2} x,\right) \leqslant\left(\frac{\lambda}{1-\lambda}\right)^{2} \delta \tag{3.4}
\end{equation*}
$$

Hence

$$
\begin{equation*}
q p_{b}\left(T^{n} x, T^{n+1} x\right) \leqslant\left(\frac{\lambda}{1-\lambda}\right)^{n} \delta, \quad q p_{b}\left(T^{n+1} x, T^{n} x,\right) \leqslant\left(\frac{\lambda}{1-\lambda}\right)^{n} \delta \tag{3.5}
\end{equation*}
$$

for every $n \in \mathbb{N}$.
Let $m, n \in \mathbb{N}$ and $m<n$, using $\left(\mathrm{QPb}_{4}\right)$

$$
\begin{aligned}
q p_{b}\left(T^{m} x, T^{n} x\right) & \leqslant s\left[q p_{b}\left(T^{m} x, T^{m+1} x\right)+q p_{b}\left(T^{m+1} x, T^{n} x\right)\right]-q p_{b}\left(T^{m+1} x, T^{m+1} x\right) \\
& \leqslant s\left[q p_{b}\left(T^{m} x, T^{m+1} x\right)+q p_{b}\left(T^{m+1} x, T^{n} x\right)\right] \\
& \leqslant s q p_{b}\left(T^{m} x, T^{m+1} x\right)+s^{2} q p_{b}\left(T^{m+1} x, T^{m+2} x\right)+s^{2} q p_{b}\left(T^{m+2} x, T^{n} x\right) \\
& \leqslant \operatorname{sqp}_{b}\left(T^{m} x, T^{m+1} x\right)+s^{2} q p_{b}\left(T^{m+1} x, T^{m+2} x\right)+\ldots+s^{n-m} q p_{b}\left(T^{n-1} x, T^{n} x\right)
\end{aligned}
$$

Setting $\gamma=\frac{\lambda}{1-\lambda}$ and using (3.5),

$$
\begin{aligned}
q p_{b}\left(T^{m} x, T^{n} x\right) & \leqslant\left(s \gamma^{m}+s^{2} \gamma^{m+1}+\ldots+s^{n-m} \gamma^{n-1}\right) \delta \\
& =s \gamma^{m} \frac{1-(s \gamma)^{n-m}}{1-s \gamma} \delta
\end{aligned}
$$

Because $\lambda \in\left[0, \frac{1}{2}\right)$ and $s \lambda<\frac{1}{2}$, therefore $\gamma, s \gamma \in[0,1)$. Furthermore,

$$
q p_{b}\left(T^{m} x, T^{n} x\right) \leqslant \frac{s \gamma^{m}}{1-s \gamma} \delta
$$

Taking limit as $m, n \rightarrow \infty$ in the above inequality, we have

$$
\lim _{m, n \rightarrow \infty} q p_{b}\left(T^{m} x, T^{n} x\right) \leqslant 0
$$

thus

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} q p_{b}\left(T^{m} x, T^{n} x\right)=0 \tag{3.6}
\end{equation*}
$$

Also,

$$
\begin{aligned}
& q p_{b}\left(T^{n} x, T^{m} x\right) \leqslant s\left[q p_{b}\left(T^{n} x, T^{m+1} x\right)+q p_{b}\left(T^{m+1} x, T^{m} x\right)\right]-q p_{b}\left(T^{m+1} x, T^{m+1} x\right) \\
& \leqslant s\left[q p_{b}\left(T^{n} x, T^{m+1} x\right)+q p_{b}\left(T^{m+1} x, T^{m} x\right)\right] \\
& \leqslant s^{2} q p_{b}\left(T^{n} x, T^{m+2} x\right)+s^{2} q p_{b}\left(T^{m+2} x, T^{m+1} x\right) \\
&+s q p_{b}\left(T^{m+1} x, T^{m} x\right)-s q p_{b}\left(T^{m+2} x, T^{m+2} x\right) \\
& \leqslant s^{2} q p_{b}\left(T^{n} x, T^{m+2} x\right)+s^{2} q p_{b}\left(T^{m+2} x, T^{m+1} x\right)+s q p_{b}\left(T^{m+1} x, T^{m} x\right) \\
& \leqslant s^{n-m} q p_{b}\left(T^{n} x, T^{n-1} x\right)+s^{n-m-1} q p_{b}\left(T^{n-1} x, T^{n-2} x\right)+\ldots+s q p_{b}\left(T^{m+1} x, T^{m} x\right) \\
& \leqslant\left(s \gamma^{m}+s^{2} \gamma^{m+1}+\ldots+s^{n-m} \gamma^{n-1}\right) \delta \\
&= s \gamma^{m} \frac{1-(s \gamma)^{n-m}}{1-s \gamma} \delta \\
& \leqslant \frac{s \gamma^{m}}{1-s \gamma} \delta
\end{aligned}
$$

Taking limit as $m, n \rightarrow \infty$ in the above inequality, we have

$$
\lim _{m, n \rightarrow \infty} q p_{b}\left(T^{n} x, T^{m} x\right) \leqslant 0
$$

thus

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} q p_{b}\left(T^{n} x, T^{m} x\right)=0 \tag{3.7}
\end{equation*}
$$

Eqs. (3.6) and (3.7) indicate that sequence $\left\{T^{n} x\right\}_{n=1}^{\infty}$ is a Cauchy sequence.
Since $\left(X, q p_{b}\right)$ is complete, therefore $\left\{T^{n} x\right\}_{n=1}^{\infty}$ converges to some $\omega \in X$, that is,

$$
\begin{align*}
q p_{b}(\omega, \omega) & =\lim _{n \rightarrow \infty} q p_{b}\left(T^{n} x, \omega\right)=\lim _{n \rightarrow \infty} q p_{b}\left(\omega, T^{n} x\right) \\
& =\lim _{m, n \rightarrow \infty} q p_{b}\left(T^{n} x, T^{m} x\right)=\lim _{m, n \rightarrow \infty} q p_{b}\left(T^{m} x, T^{n} x\right)=0 \tag{3.8}
\end{align*}
$$

Observe that $\left\{T^{2 n} x\right\}_{n=0}^{\infty}$ is a sequence in A and $\left\{T^{2 n-1} x\right\}_{n=1}^{\infty}$ is a sequence in B in a way that both sequences converge to ω. Note also that A and B are closed, we have $\omega \in A \cap B$. On the other hand,

$$
\begin{equation*}
q p_{b}\left(T^{n} x, T \omega\right) \leqslant \lambda q p_{b}\left(T^{n-1} x, T^{n} x\right)+\lambda q p_{b}(\omega, T \omega) \tag{3.9}
\end{equation*}
$$

Taking limit as $n \rightarrow \infty$ in the above inequality, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} q p_{b}\left(T^{n} x, T \omega\right) \leqslant \lambda q p_{b}(\omega, T \omega) \tag{3.10}
\end{equation*}
$$

By $\left(\mathrm{QPb}_{4}\right)$,

$$
\begin{align*}
\lambda q p_{b}(\omega, T \omega) & \leqslant s \lambda\left[q p_{b}\left(\omega, T^{n} x\right)+q p_{b}\left(T^{n} x, T \omega\right)\right]-\lambda q p_{b}\left(T^{n} x, T^{n} x\right) \\
& \leqslant s \lambda\left[q p_{b}\left(\omega, T^{n} x\right)+q p_{b}\left(T^{n} x, T \omega\right)\right] \tag{3.11}
\end{align*}
$$

for every $n \in \mathbb{N}$. Taking limit as $n \rightarrow \infty$ in the above inequality, we get

$$
\begin{equation*}
\lambda q p_{b}(\omega, T \omega) \leqslant s \lambda \lim _{n \rightarrow \infty} q p_{b}\left(T^{n} x, T \omega\right) \tag{3.12}
\end{equation*}
$$

Thus, applying 3.10 and 3.12 , we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} q p_{b}\left(T^{n} x, T \omega\right) \leqslant \lambda q p_{b}(\omega, T \omega) \leqslant s \lambda \lim _{n \rightarrow \infty} q p_{b}\left(T^{n} x, T \omega\right) \tag{3.13}
\end{equation*}
$$

Since $s \lambda \in\left[0, \frac{1}{2}\right)$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} q p_{b}\left(T^{n} x, T \omega\right)=q p_{b}(\omega, T \omega)=0 \tag{3.14}
\end{equation*}
$$

Similarly, it can be derived

$$
\begin{equation*}
\lim _{n \rightarrow \infty} q p_{b}\left(T \omega, T^{n} x\right)=q p_{b}(T \omega, \omega)=0 \tag{3.15}
\end{equation*}
$$

In addition, by the contractive condition of theorem and in combination with (3.14), we get

$$
\begin{align*}
q p_{b}(T \omega, T \omega) & \leqslant \lambda q p_{b}(\omega, T \omega)+\lambda q p_{b}(\omega, T \omega) \\
& =2 \lambda q p_{b}(\omega, T \omega) \tag{3.16}\\
& =0
\end{align*}
$$

implies

$$
\begin{equation*}
q p_{b}(T \omega, T \omega)=0 \tag{3.17}
\end{equation*}
$$

Equations (3.14), 3.15 and (3.17) show that the sequence $\left\{T^{n} x\right\}_{n=1}^{\infty}$ is also convergent to $T \omega$. Applying Lemma 1.8, we obtain $T \omega=\omega$.

Assume that there exists another fixed point ω^{*} of T in $A \cup B$, that is, $T \omega^{*}=\omega^{*}$, then from the contractive condition (3.1),

$$
\begin{align*}
q p_{b}(\omega *, \omega) & =q p_{b}\left(T \omega^{*}, T \omega\right) \\
& \leqslant \lambda q p_{b}\left(\omega^{*}, T \omega^{*}\right)+\lambda q p_{b}(\omega, T \omega) \tag{3.18}\\
& \leqslant \lambda q p_{b}\left(\omega^{*}, \omega^{*}\right)+\lambda q p_{b}(\omega, \omega)
\end{align*}
$$

In addition, note that

$$
\begin{align*}
q p_{b}(\omega, \omega) & =q p_{b}(T \omega, T \omega) \\
& \leqslant 2 \lambda q p_{b}(\omega, T \omega) \tag{3.19}\\
& =2 \lambda q p_{b}(\omega, \omega)
\end{align*}
$$

and $2 \lambda \in[0,1)$, we get $q p_{b}(\omega, \omega)=0$. Similarly, we obtain that $q p_{b}\left(\omega^{*}, \omega^{*}\right)=0$. Moreover, by (3.18), $q p_{b}\left(\omega^{*}, \omega\right)=0$. It follows from $q p_{b}(\omega, \omega)=q p_{b}\left(\omega^{*}, \omega\right)=q p_{b}\left(\omega^{*}, \omega^{*}\right)=0$ that $\omega=\omega^{*}$.

Analogously, when $x \in B$, the same results can be stated.
An example of $q p b$-cyclic-Kannan mapping in quasi-partial b-metric space is provided to illustrate Theorem 3.2.
Example 3.3. Let $X=\left[-\frac{1}{2}, \frac{1}{2}\right]$ and $T: A \cup B \rightarrow A \cup B$ defined by $T x=-\frac{1}{8} x$, where $A=\left[-\frac{1}{2}, 0\right]$ and $B=\left[0, \frac{1}{2}\right]$. Define the metric

$$
q p_{b}(x, y)=|x-y|^{\frac{1}{2}}+|x|
$$

for any $(x, y) \in X \times X$.
If $q p_{b}(x, x)=q p_{b}(x, y)=q p_{b}(y, y)$, that is, $|x|=|x-y|^{\frac{1}{2}}+|x|=|y|$, then it is obvious that $\left(\mathrm{QPb}_{1}\right)$ holds for any $(x, y) \in X \times X$. In addition, $|x-y|^{\frac{1}{2}} \geqslant 0$ and $|y-x| \leqslant|y-x|^{\frac{1}{2}}$ when $|x-y| \in[0,1]$, then

$$
q p_{b}(x, x)=|x| \leqslant|x-y|^{\frac{1}{2}}+|x|=q p_{b}(x, y)
$$

and

$$
\begin{aligned}
q p_{b}(x, x) & =|x|=|x-y+y| \\
& \leqslant|y-x|+|y| \\
& \leqslant|y-x|^{\frac{1}{2}}+|y| \\
& =q p_{b}(y, x)
\end{aligned}
$$

are true, then $\left(\mathrm{QPb}_{2}\right)$ and $\left(\mathrm{QPb}_{3}\right)$ hold for any $(x, y) \in X \times X$. Moreover, we observe that

$$
\begin{aligned}
q p_{b}(x, y)+q p_{b}(z, z) & =|x-y|^{\frac{1}{2}}+|x|+|z| \\
& \leqslant(|x-z|+|z-y|)^{\frac{1}{2}}+|x|+|z| \\
& \leqslant|x-z|^{\frac{1}{2}}+|z-y|^{\frac{1}{2}}+|x|+|z| \\
& =q p_{b}(x, z)+q p_{b}(z, y) \\
& \leqslant s\left[q p_{b}(x, z)+q p_{b}(z, y)\right]
\end{aligned}
$$

for any $x, y, z \in X$ and $s \geqslant 1,\left(\mathrm{QPb}_{4}\right)$ holds, hence $\left(X, q p_{b}\right)$ is a quasi-partial b-metric space with $s \geqslant 1$.
Next, we verify that the mapping T is a $q p_{b}$-cyclic-Kannan contraction. If $x \in A$, then $T x \in\left[0, \frac{1}{16}\right] \subset B$. If $x \in B$, then $T x \in\left[-\frac{1}{16}, 0\right] \subset A$. Hence the map T is cyclic on X because $T(A) \subset B$ and $T(B) \subset A$. On the other hand,

$$
\begin{align*}
q p_{b}(T x, T y) & =\frac{\sqrt{2}}{4}|x-y|^{\frac{1}{2}}+\left|-\frac{1}{8} x\right| \\
& \leqslant \frac{\sqrt{2}}{4}(|x|+|y|)^{\frac{1}{2}}+\frac{1}{8}|x|+\frac{1}{8}|y| \\
& \leqslant \frac{\sqrt{2}}{4}|x|^{\frac{1}{2}}+\frac{\sqrt{2}}{4}|y|^{\frac{1}{2}}+\frac{1}{8}|x|+\frac{1}{8}|y| \\
& \leqslant \frac{\sqrt{2}}{4}\left|\frac{9}{8} x\right|^{\frac{1}{2}}+\frac{\sqrt{2}}{4}\left|\frac{9}{8} y\right|^{\frac{1}{2}}+\frac{1}{8}|x|+\frac{1}{8}|y| \tag{3.20}\\
& \leqslant \frac{\sqrt{2}}{4}\left(\left|\frac{9}{8} x\right|^{\frac{1}{2}}+|x|+\left|\frac{9}{8} y\right|^{\frac{1}{2}}+|y|\right) \\
& \leqslant \frac{\sqrt{2}}{4}\left(q p_{b}(x, T x)+q p_{b}(y, T y)\right) \\
& \leqslant \lambda\left(q p_{b}(x, T x)+q p_{b}(y, T y)\right)
\end{align*}
$$

for all $x, y \in X$ and $\lambda \in\left[\frac{\sqrt{2}}{4}, \frac{1}{2}\right)$. Choosing s and λ such that $s \lambda<\frac{1}{2}, T$ satisfies the $q p_{b}$-cyclic-Kannan mapping of Theorem 3.2 and $x=0$ is the unique fixed point of T.

4. $q p_{b}$-cyclic β-quasi-contraction mapping in quasi-partial b-metric spaces

In this section, we extend Ćiric's fixed point theorem for quasi-contraction type mappings in the setting of quasi-partial b-metric spaces.

Let A and B be nonempty subsets of a quasi-partial b-metric space $\left(X, q p_{b}\right)$. And let $T: A \cup B \rightarrow A \cup B$ is a cyclic mapping. We denote

$$
M(x, y)=\max \left\{q p_{b}(x, y), q p_{b}(x, T x), q p_{b}(y, T y), q p_{b}(x, T y), q p_{b}(y, T x)\right\}
$$

for any $x, y \in X$.
Definition 4.1. Let A and B be nonempty subsets of a quasi-partial b-metric space $\left(X, q p_{b}\right)$ with $s \geqslant 1$. A cyclic mapping $T: A \cup B \rightarrow A \cup B$ is said to be a $q p_{b}$-cyclic β-quasi-contraction mapping if there exists $\beta \in\left[0, \frac{1}{2}\right)$ such that if $\beta s \in\left[0, \frac{1}{2}\right)$, then

$$
\begin{equation*}
q p_{b}(T x, T y) \leqslant \beta M(x, y) \tag{4.1}
\end{equation*}
$$

holds both for $x \in A, y \in B$ and for $x \in B, y \in A$.
Next, we give the result for a $q p_{b}$-cyclic β-quasi-contraction mapping which is an extension of the result of Ćirić.

Theorem 4.2. Let A and B be two nonempty closed subsets of a complete quasi-partial b-metric space $\left(X, q p_{b}\right)$ with $s \geqslant 1$ and T be a cyclic mapping which is a qp p_{b}-cyclic β-quasi-contraction. Then $A \cap B$ is nonempty and T has a unique fixed point in $A \cap B$.

Proof. Let $x \in A$ and denote $x_{n+1}=T x_{n}=T^{n+1} x, x_{0}=x$. From condition 4.1), we obtain

$$
\begin{aligned}
q p_{b}\left(x_{n}, x_{n+1}\right) & \leqslant \beta M\left(x_{n-1}, x_{n}\right) \\
& \leqslant \beta \max \left\{q p_{b}\left(x_{n-1}, x_{n}\right), q p_{b}\left(x_{n-1}, T x_{n-1}\right), q p_{b}\left(x_{n}, T x_{n}\right), q p_{b}\left(x_{n-1}, T x_{n}\right), q p_{b}\left(x_{n}, T x_{n-1}\right)\right\} \\
& \leqslant \beta \max \left\{q p_{b}\left(x_{n-1}, x_{n}\right), q p_{b}\left(x_{n-1}, x_{n}\right), q p_{b}\left(x_{n}, x_{n+1}\right), q p_{b}\left(x_{n-1}, x_{n+1}\right), q p_{b}\left(x_{n}, x_{n}\right)\right\} \\
& \leqslant \beta \max \left\{q p_{b}\left(x_{n-1}, x_{n}\right), q p_{b}\left(x_{n}, x_{n+1}\right), q p_{b}\left(x_{n-1}, x_{n+1}\right), q p_{b}\left(x_{n}, x_{n}\right)\right\}
\end{aligned}
$$

for any $n \in \mathbb{N}$. Property $\left(\mathrm{QPb}_{2}\right)$ shows $q p_{b}\left(x_{n}, x_{n}\right) \leqslant q p_{b}\left(x_{n}, x_{n+1}\right)$, so

$$
q p_{b}\left(x_{n}, x_{n+1}\right) \leqslant \beta \max \left\{q p_{b}\left(x_{n-1}, x_{n}\right), q p_{b}\left(x_{n}, x_{n+1}\right), q p_{b}\left(x_{n-1}, x_{n+1}\right)\right\}
$$

Furthermore, from $\left(\mathrm{QPb}_{4}\right)$, we have

$$
\begin{aligned}
q p_{b}\left(x_{n-1}, x_{n+1}\right) & \leqslant s\left[q p_{b}\left(x_{n-1}, x_{n}\right)+q p_{b}\left(x_{n}, x_{n+1}\right)\right]-q p_{b}\left(x_{n}, x_{n}\right) \\
& \leqslant s\left[q p_{b}\left(x_{n-1}, x_{n}\right)+q p_{b}\left(x_{n}, x_{n+1}\right)\right]
\end{aligned}
$$

with $s \geqslant 1$, hence

$$
\begin{aligned}
q p_{b}\left(x_{n}, x_{n+1}\right) & \leqslant \beta \max \left\{q p_{b}\left(x_{n-1}, x_{n}\right), q p_{b}\left(x_{n}, x_{n+1}\right), q p_{b}\left(x_{n-1}, x_{n+1}\right)\right\} \\
& \leqslant \beta \max \left\{q p_{b}\left(x_{n-1}, x_{n}\right), q p_{b}\left(x_{n}, x_{n+1}\right), s\left[q p_{b}\left(x_{n-1}, x_{n}\right)+q p_{b}\left(x_{n}, x_{n+1}\right)\right]\right\} \\
& =\beta s\left[q p_{b}\left(x_{n-1}, x_{n}\right)+q p_{b}\left(x_{n}, x_{n+1}\right)\right]
\end{aligned}
$$

Subsequently,

$$
q p_{b}\left(x_{n}, x_{n+1}\right) \leqslant \frac{\beta s}{1-\beta s} q p_{b}\left(x_{n-1}, x_{n}\right)
$$

Set $k=\frac{\beta s}{1-\beta s}$. It can be derived that $0 \leqslant k<1$ because $\beta s \in\left[0, \frac{1}{2}\right)$. It follows

$$
\begin{aligned}
q p_{b}\left(x_{n}, x_{n+1}\right) & \leqslant k q p_{b}\left(x_{n-1}, x_{n}\right) \\
& \leqslant \ldots \leqslant k^{n} q p_{b}\left(x, x_{1}\right) \\
& =k^{n} q p_{b}(x, T x)
\end{aligned}
$$

Similarly, we get

$$
\begin{aligned}
q p_{b}\left(x_{n+1}, x_{n}\right) & \leqslant k q p_{b}\left(x_{n}, x_{n-1}\right) \\
& \leqslant \ldots \leqslant k^{n} q p_{b}\left(x_{1}, x\right) \\
& =k^{n} q p_{b}(T x, x)
\end{aligned}
$$

Letting $\alpha=\max \left\{q p_{b}(T x, x), q p_{b}(x, T x)\right\}$, thus

$$
q p_{b}\left(x_{n}, x_{n+1}\right) \leqslant k^{n} \alpha, \quad q p_{b}\left(x_{n+1}, x_{n}\right) \leqslant k^{n} \alpha
$$

The latter process of proof for the theorem is same as Theorem 2.2, thus we omit it. This completes the proof.

Example 4.3. Let $X=\left[-\frac{\pi}{16}, \frac{\pi}{16}\right]$ and define $q p_{b}: X \times X \rightarrow \mathbb{R}_{+}$as

$$
q p_{b}(x, y)=\sin 2|x-y|+|x|
$$

for any $(x, y) \in X \times X .\left(X, q p_{b}\right)$ is a quasi-partial b-metric space with $s \geqslant 2$ as claimed in Example 1.5 .
Let $T: A \cup B \rightarrow A \cup B$ defined by $T x=-\frac{x}{12}$, where $A=\left[-\frac{\pi}{16}, 0\right]$ and $B=\left[0, \frac{\pi}{16}\right]$. If $x \in A$, then $T x \in\left[0, \frac{\pi}{192}\right] \subset B$. If $x \in B$, then $T x \in\left[-\frac{\pi}{192}, 0\right] \subset A$. Hence the map T is cyclic on X due to $T(A) \subset B$ and $T(B) \subset A$.
Because $|x-y| \in\left[0, \frac{\pi}{8}\right]$ and when $\sin u \leqslant u \leqslant \sin 2 u, u \in\left[0, \frac{\pi}{8}\right]$ holds, then

$$
\begin{align*}
q p_{b}(T x, T y) & =\sin 2\left|\frac{x}{12}-\frac{y}{12}\right|+\left|-\frac{x}{12}\right| \\
& =\sin \frac{|x-y|}{6}+\frac{1}{12}|x| \\
& \leqslant \frac{|x-y|}{6}+\frac{1}{12}|x| \\
& \leqslant \frac{1}{6} \sin 2|x-y|+\frac{1}{12}|x| \tag{4.2}\\
& \leqslant \frac{1}{6}(\sin 2|x-y|+|x|) \\
& =\frac{1}{6} q p_{b}(x, y) .
\end{align*}
$$

In addition,
$q p_{b}(x, y) \leqslant M(x, y)=\max \left\{q p_{b}(x, y), q p_{b}(x, T x), q p_{b}(y, T y), q p_{b}(x, T y), q p_{b}(y, T x)\right\}$, thus

$$
\begin{align*}
q p_{b}(T x, T y) & \leqslant \frac{1}{6} M(x, y) \tag{4.3}\\
& \leqslant \beta M(x, y)
\end{align*}
$$

for $\beta \in\left[\frac{1}{6}, \frac{1}{2}\right)$.
Choosing s and β such that $\beta s<\frac{1}{2}, T$ satisfies the $q p_{b}$-cyclic β-quasi-contraction mapping of Theorem 4.2 and $x=0$ is the unique fixed point of T.

Acknowledgements

Projects supported by China Postdoctoral Science Foundation (Grant No. 2014M551168) and Natural Science Foundation of Heilongjiang Province of China (Grant No. A201410).

References

[1] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), 10 pages. 1
[2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181. 1
[3] M. A. Bukatin, S. Y. Shorina, Partial metrics and co continuous valuations, in Foundations of Software Science and Computation Structure, (Lisbon, 1998) Lecture Notes in Comput. Sci., 1378, Springer, Berlin, (1998), 125139. 1
[4] L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267-273. 1
[5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11. 1
[6] A. Gupta, P. Gautam, Quasi-partial b-metric spaces and some related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 12 pages. 1, 1, 1, $1.4,1.6,1.7$
[7] P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Eng., 51 (2000), 3-7. 111
[8] N. Hussain, J. R. Roshan, V. Parvaneh, M. Abbas, Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications, J. Inequal. Appl., 2013 (2013), 21 pages. 1
[9] R. Kannan, Some results on fixed points - II, Amer. Math. Monthly, 76 (1969), 405-408. 1
[10] E. Karapinar, İ. M. Erhan, A. Öztürk, Fixed point theorems on quasi-partial metric spaces, Math. Comput. Modelling, 57 (2013), 2442-2448. 1, $1.2,1.3$
[11] E. Karapinar, İ. M. Erhan, Best proximity point on different type contractions, Appl. Math. Inf. Sci., 5 (2011), 558-569. 1
[12] W. A. Kirk, P. S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), 79-89. 1
[13] C. Klin-eam, C. Suanoom, Dislocated quasi-b-metric spaces and fixed point theorems for cyclic contractions, Fixed Point Theory Appl., 2015 (2015), 12 pages. 1
[14] S. G. Matthews, Partial Metric Topology, Research Report 212, Department of Computer Science, University of Warwick, (1992). 1
[15] S. G. Matthews, Partial metric topology, General Topology and its Applications, Ann. New York Acad. Sci., 728 (1992), 183-197. 1
[16] A. Roldán-López-de-Hierro, E. Karapinar, M. De la Sen, Coincidence point theorems in quasi-metric spaces without assuming the mixed monotone property and consequences in G-metric spaces, Fixed Point Theory Appl., 2014 (2014), 29 pages. 1
[17] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703-711. 1
[18] C. Zhu, C. Chen, X. Zhang, Some results in quasi-b-metric-like spaces, J. Inequal. Appl., 2014 (2014), 8 pages. 1
[19] W. A. Wilson, On quasi-metric spaces, Amer. J. Math., 53 (1931), 675-684. 1. 1

[^0]: Email address: fanxm093@163.com (Xiaoming Fan)

