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Abstract

In this paper, we introduce the concepts of qpb-cyclic-Banach contraction mapping, qpb-cyclic-Kannan
mapping and qpb-cyclic β-quasi-contraction mapping and establish the existence and uniqueness of fixed
point theorems for these mappings in quasi-partial b-metric spaces. Some examples are presented to validate
our results. c©2016 All rights reserved.
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1. Introduction and preliminaries

The concept of quasi-metric spaces was introduced by Wilson in [19] as a generalization of standard
metric spaces. Roldán-López-de-Hierro et al. [16] gave some coincidence point theorems and obtained some
very recent results in the setting of quasi-metric spaces. Matthews also generalized the standard metric
spaces to partial-metric spaces by replacing the condition d(x, x) = 0 with the condition d(x, x) 6 d(x, y)
for all x, y ([14, 15]). Partial-metric spaces have applications in theoretical computer science [3]. Hitzler and
Seda introduced dislocated metric spaces [7]. Czerwik presented the notion of b-metric space [5]. Many other
generalized metric spaces, such as partial b-metric spaces, metric-like spaces and quasi-b-metric-like, were
introduced (see, e.g., ([1, 8, 17, 18]) and the references therein). Especially, as a further generalization for
the quasi-metric spaces and partial-metric spaces, Karapinar et al.[10] introduced the notion of quasi-partial
metric space and discussed the existence of fixed points of self-mappings T on quasi-partial metric spaces.
Very recently, following ([5, 10, 14]), Gupta and Gautam [6] have generalized quasi-partial metric spaces to

Email address: fanxm093@163.com (Xiaoming Fan)

Received 2015-10-18



X. Fan, J. Nonlinear Sci. Appl. 9 (2016), 2175–2189 2176

the class of quasi-partial b-metric spaces and have focused on the fixed points of some self-mappings which
have a deep relationship with T -orbitally lower semi-continuous functions introduced by Karapinar et al. in
[10]. Some better results of fixed point are claimed in [6].

Corresponding to the development of spaces, many mappings have been presented since Banach con-
traction principle was introduced in [2]. For example, in 1974, Ćirić [4] defined quasi-contraction mappings
and stated some fixed point results in which it has shown that the condition of quasi-contractivity implies
all conclusions of Banach’s contraction principle. We recall the concept as follows:

Let (X, d) be a metric space. A mapping T : X → X is said to be a quasi-contraction mapping if there
exists β ∈ [0, 1) such that

d(Tx, Ty) 6 βM(x, y)

for all x, y ∈ X, where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

We also review the concept of cyclic mapping as follows:
Let A and B be nonempty subsets of a metric space (X, d), T : A ∪ B → A ∪ B is called cyclic if

T (A) ⊂ B and T (B) ⊂ A.
In 1969, Kannan introduced the concept of Kannan mapping in [9]:
Let (X, d) be a metric space. A mapping T : X → X is said to be a Kannan mapping if there exists

λ ∈ [0, 12) such that
d(Tx, Ty) 6 λd(x, Tx) + λd(y, Ty)

for all x, y ∈ X.
In 2003, Kirk et al. [12] introduced cyclic contraction mapping as follows:
Let (X, d) be a metric space. A cyclic mapping T : A ∪ B → A ∪ B is said to be a cyclic contraction

mapping if there exists λ ∈ [0, 1) such that

d(Tx, Ty) 6 λd(x, y)

for any x ∈ A and y ∈ B.
In 2010, Karapinar et al. [11] introduced Kannan type cyclic contraction as follows:
Let (X, d) be a metric space. A cyclic mapping T : A ∪ B → A ∪ B is said to be a Kannan type cyclic

contraction if there exists λ ∈ [0, 12) such that

d(Tx, Ty) 6 λd(x, Tx) + λd(y, Ty)

for any x ∈ A and y ∈ B.
Recently, Klin-eam and Suanoom introduced dislocated quasi-b-metric spaces and investigated the fixed

points of Geraghty type dqb-cyclic-Banach contraction mapping and dqb-cyclic-Kannan mapping [13]. In-
spired and motivated by Karapinar et al. [11], Gupta et al. [6] and Klin-eam et al. [13], we introduce
the notions: qpb-cyclic-Banach contraction mappings, qpb-cyclic-Kannan mappings and qpb-cyclic β-quasi-
contraction mappings. The corresponding fixed point results for these three kinds of mappings in the setting
of quasi-partial b-metric spaces (QPBMS) are provided. Our results complement and enrich the main results
of Gupta et al. in the literature [6]. We also provide some examples to show the generality and effectiveness
of our results.

Throughout this paper, N and R+ denote the set of all positive integers and the set of all nonnegative
real numbers, respectively. We begin with the following definition as a recall from ([7, 19]).

Definition 1.1. Let X be a nonempty set. Suppose that the mapping d : X × X → [0,∞) satisfies the
following conditions:

(d1) d(x, x) = 0 for all x ∈ X;
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(d2) d(x, y) = d(y, x) = 0 implies x = y for all x, y ∈ X;

(d3) d(x, y) = d(y, x) for all x, y ∈ X;

(d4) d(x, y) 6 d(x, z) + d(z, y) for all x, y, z ∈ X.

If d satisfies conditions (d1), (d2) and (d4), then d is called a quasi-metric on X. If d satisfies conditions
(d2), (d3) and (d4), then d is called a dislocated metric on X. If it satisfies conditions (d2) and (d4), it is
called a dislocated quasi-metric. If d satisfies conditions (d1)-(d4), then d is called a (standard) metric on
X.

The concept of a quasi-partial metric space was introduced by Karapinar et al.

Definition 1.2 ([10]). A quasi-partial metric on a nonempty set X is a function q : X×X → R+, satisfying
the following conditions:

(QPM1) If q(x, x) = q(x, y) = q(x, y), then x = y.
(QPM2) q(x, x) 6 q(x, y).
(QPM3) q(x, x) 6 q(y, x).
(QPM4) q(x, y) + q(z, z) 6 q(x, z) + q(z, y) for all x, y, z ∈ X.

A quasi-partial metric space is a pair (X, q) such that X is a nonempty set and q is a quasi-partial metric
on X.

For each metric q : X ×X → R+, the function dq : X ×X → R+ defined by

dq(x, y) = q(x, y) + q(y, x)− q(x, x)− q(y, y)

is a (standard) metric on X.
The next Lemma shows the relationship between the quasi-partial metric and the standard metric.

Lemma 1.3 ([10]). Let (X, q) be a quasi-partial metric space and (X, dq) be the corresponding metric space.
Then (X, q) is complete if and only if (X, dq) is complete.

For each metric q : X ×X → R+, the function dqm : X ×X → R+ defined by

dqm(x, y) = q(x, y)− q(x, x)

is a dislocated quasi-metric.
Gupta et al. [6] introduced the concept of quasi-partial b-metric space and gave some properties on such

spaces in this section.

Definition 1.4 ([6]). A quasi-partial b-metric on a nonempty set X is a function qpb : X ×X → R+ such
that for some real number s > 1 and all x, y, z ∈ X:

(QPb1) If qpb(x, x) = qpb(x, y) = qpb(y, y), then x = y,
(QPb2) qpb(x, x) 6 qpb(x, y),
(QPb3) qpb(x, x) 6 qpb(y, x),
(QPb4) qpb(x, y) 6 s[qpb(x, z) + qpb(z, y)]− qpb(z, z).

A quasi-partial b-metric space (QPBMS) is a pair (X, qpb) such that X is a nonempty set and qpb is a
generalization of quasi-partial metric on X.

Example 1.5. Let X = [0, π8 ]. Define the metric

qpb(x, y) = sin 2|x− y|+ x

for any (x, y) ∈ X ×X.
It can be demonstrated that (X, qpb) is a quasi-partial b-metric space. Actually, if qpb(x, x) = qpb(x, y) =
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qpb(y, y), that is, x = sin 2|x− y|+ x = y, then it is obvious that (QPb1) holds for any (x, y) ∈ X ×X. In
addition, sin 2|x− y| > 0 and sin 2|x− y| > |x− y| when |x− y| ∈ [0, π8 ], then

qpb(x, x) = x 6 sin 2|x− y|+ x = qpb(x, y)

and

qpb(x, x) = x

= |x− y + y|
6 |x− y|+ |y|
6 sin 2|y − x|+ y

= qpb(y, x)

are true, hence (QPb2) and (QPb3) hold for any (x, y) ∈ X×X. Moreover, when 2(|x−z|+ |z−y|) ∈ [0, π2 ],
sin 2(|x− z|+ |z − y|) 6 2(|x− z|+ |z − y|), we get

qpb(x, y) + qpb(z, z) = sin 2|x− y|+ x+ z

6 sin 2(|x− z|+ |z − y|) + x+ z

6 2(|x− z|+ |z − y|) + x+ z

6 2 sin 2|x− z|+ 2 sin 2|z − y|+ x+ z

= 2(sin 2|x− z|+ sin 2|z − y|+ x+ z)

6 s
(
qpb(x, z) + qpb(z, y)

)
for all x, y, z ∈ X and s > 2, (QPb4) holds, hence (X, qpb) is a quasi-partial b-metric space with s > 2.

Lemma 1.6 ([6]). Every quasi-partial metric space is a quasi-partial b-metric, but the converse is not true.

Each quasi-partial b-metric qpb on X induces a topology Tqpb on X whose base is the family of open
qpb-balls {Bqpb(x, δ) : x ∈ X, δ > 0}, where Bqpb(x, δ) = {y ∈ X : |qpb(x, y)− qpb(x, x)| < δ}.

Next we define convergent sequence, Cauchy sequence, completeness of space and continuity in quasi-
partial b-metric spaces.

Definition 1.7 ([6]). Let (X, qpb) be a quasi-partial b-metric. Then:

(i) A sequence {xn}∞n=0 ⊂ X converges to x ∈ X if and only if

qpb(x, x) = lim
n→∞

qpb(x, xn) = lim
n→∞

qpb(xn, x).

(ii) A sequence {xn}∞n=0 ⊂ X is called a Cauchy sequence if and only if lim
n,m→∞

qpb(xm, xn) and

lim
n,m→∞

qpb(xn, xm) exist (and are finite).

(iii) The quasi-partial b-metric space (X, qpb) is said to be complete if every Cauchy sequence {xn}∞n=0 ⊂
X converges with respect to Tqpb to a point x ∈ X such that qpb(x, x) = lim

m,n→∞
qpb(xm, xn) =

lim
m,n→∞

qpb(xn, xm).

(iv) A mapping f : X → X is said to be continuous at x ∈ X if for every ε > 0 there exists δ > 0 such
that f(B(x0, δ)) ⊂ B(f(x0), ε).

We denote simply qpb-converges to x by xn
qpb−−→ x. Under a special case, we state the uniqueness of the

limit of a sequence in a quasi-partial b-metric space, which is very useful in the proof of the main theorems.
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Lemma 1.8. Let (X, qpb) be a quasi-partial b-metric space and {xn}∞n=0 be a sequence in X. If xn
qpb−−→ x,

xn
qpb−−→ y and qpb(x, x) = qpb(y, y) = 0, then x = y.

Proof. Assume that xn
qpb−−→ x and xn

qpb−−→ y in (X, qpb), then

qpb(x, x) = lim
n→∞

qpb(xn, x) = lim
n→∞

qpb(x, xn) = 0

and
qpb(y, y) = lim

n→∞
qpb(xn, y) = lim

n→∞
qpb(y, xn) = 0.

Using (QPb4), we have

qpb(x, y) 6 s[qpb(x, xn) + qpb(xn, y)]− qpb(xn, xn)

6 s[qpb(x, xn) + qpb(xn, y)]

for every n ∈ N. Taking limit as n→∞ in the above inequality, we have

qpb(x, y) 6 s[ lim
n→∞

qpb(x, xn) + lim
n→∞

qpb(xn, y)]

= 0.

Therefore we get qpb(x, x) = qpb(x, y) = qpb(y, y) = 0 which implies from the property (QPb1) that x =
y.

Remark 1.9. Generally, the limit of a sequence in a quasi-partial b-metric space is not unique.

2. qpb-cyclic-Banach contraction mapping in quasi-partial b-metric spaces

In this section, we extend fixed point theorem for Banach contraction mappings in standard metric
spaces to qpb-cyclic-Banach contraction mappings in the setting of quasi-partial b-metric spaces.

Definition 2.1. Let A and B be nonempty subsets of a quasi-partial b-metric space (X, qpb). A cyclic
mapping T : A ∪B → A ∪B is said to be a qpb-cyclic-Banach contraction mapping if there exists k ∈ [0, 1)
such that if s > 1, sk < 1, then

qpb(Tx, Ty) 6 kqpb(x, y) (2.1)

holds both for x ∈ A, y ∈ B and for x ∈ B, y ∈ A.

Theorem 2.2. Let A and B be two nonempty closed subsets of a complete quasi-partial b-metric space
(X, qpb) and T be a cyclic mapping which is a qpb-cyclic-Banach contraction. Then A∩B is nonempty and
T has a unique fixed point in A ∩B.

Proof. Let x ∈ A, noting the contractive condition of the theorem, we have

qpb(T
2x, Tx) = qpb(T (Tx), Tx)

6 kqpb(Tx, x)

and

qpb(Tx, T
2x) = qpb(Tx, T (Tx))

6 kqpb(x, Tx).

Let α = max{qpb(x, Tx), qpb(Tx, x)}, thus

qpb(Tx, T
2x) 6 kα, qpb(T

2x, Tx, ) 6 kα. (2.2)
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Moreover, applying inequality (2.2), we have

qpb(T
2x, T 3x) 6 k2α, qpb(T

3x, T 2x, ) 6 k2α. (2.3)

Hence
qpb(T

nx, Tn+1x) 6 knα, qpb(T
n+1x, Tnx, ) 6 knα (2.4)

for every n ∈ N.
Let m,n ∈ N and m < n, using (QPb4)

qpb(T
mx, Tnx) 6 s[qpb(T

mx, Tm+1x) + qpb(T
m+1x, Tnx)]− qpb(Tm+1x, Tm+1x)

6 s[qpb(T
mx, Tm+1x) + qpb(T

m+1x, Tnx)]

6 sqpb(T
mx, Tm+1x) + s2qpb(T

m+1x, Tm+2x) + s2qpb(T
m+2x, Tnx)

6 sqpb(T
mx, Tm+1x) + s2qpb(T

m+1x, Tm+2x) + . . .+ sn−mqpb(T
n−1x, Tnx).

Noting sk < 1 and applying (2.4),

qpb(T
mx, Tnx) 6 (skm + s2km+1 + . . .+ sn−mkn−1)α

= skm
1− (sk)n−m

1− sk
α

6
skm

1− sk
α.

Taking limit as m,n→∞ in the above inequality, we have

lim
m,n→∞

qpb(T
mx, Tnx) 6 0,

thus
lim

m,n→∞
qpb(T

mx, Tnx) = 0. (2.5)

Similarly, we obtain

qpb(T
nx, Tmx) 6 s[qpb(T

nx, Tm+1x) + qpb(T
m+1x, Tmx)]− qpb(Tm+1x, Tm+1x)

6 s[qpb(T
nx, Tm+1x) + qpb(T

m+1x, Tmx)]

6 s2qpb(T
nx, Tm+2x) + s2qpb(T

m+2x, Tm+1x)

+ sqpb(T
m+1x, Tmx)− sqpb(Tm+2x, Tm+2x)

6 s2qpb(T
nx, Tm+2x) + s2qpb(T

m+2x, Tm+1x) + sqpb(T
m+1x, Tmx)

6 sn−mqpb(T
nx, Tn−1x) + sn−m−1qpb(T

n−1x, Tn−2x) + . . .+ sqpb(T
m+1x, Tmx)

6 (skm + s2km+1 + . . .+ sn−mkn−1)α

= skm
1− (sk)n−m

1− sk
α

6
skm

1− sk
α.

Taking limit as m,n→∞ in the above inequality, we have

lim
m,n→∞

qpb(T
nx, Tmx) 6 0,

thus
lim

m,n→∞
qpb(T

nx, Tmx) = 0. (2.6)
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Eqs. (2.5) and (2.6) indicate that sequence {Tnx}∞n=1 is a Cauchy sequence.
Since (X, qpb) is complete, therefore {Tnx}∞n=1 converges to some ω ∈ X, that is,

qpb(ω, ω) = lim
n→∞

qpb(T
nx, ω) = lim

n→∞
qpb(ω, T

nx)

= lim
m,n→∞

qpb(T
nx, Tmx) = lim

m,n→∞
qpb(T

mx, Tnx) = 0.
(2.7)

Observe that {T 2nx}∞n=0 is a sequence in A and {T 2n−1x}∞n=1 is a sequence in B in a way that both sequences
converge to ω. Also, note that A and B are closed, we have ω ∈ A ∩B. On the other hand,

qpb(T
nx, Tω) 6 kqpb(T

n−1x, ω).

Taking limit as n→∞ in the above inequality, we have

lim
n→∞

qpb(T
nx, Tω) 6 k lim

n→∞
qpb(T

n−1x, ω) = 0,

hence
lim
n→∞

qpb(T
nx, Tω) = 0. (2.8)

Similarly, it can be derived
lim
n→∞

qpb(Tω, T
nx) = 0. (2.9)

In addition, by the contractive condition of theorem and in combination with (2.7), we get

qpb(Tω, Tω) 6 kqpb(ω, ω) = 0

implies
qpb(Tω, Tω) = 0. (2.10)

Equations (2.8), (2.9) and (2.10) show that the sequence {Tnx}∞n=1 is also convergent to Tω. Applying
Lemma 1.8, we obtain Tω = ω.

Assume that there exists another fixed point ω∗ of T in A ∪ B, that is, Tω∗ = ω∗, then from the
contractive condition (2.1),

qpb(ω∗, ω) = qpb(Tω
∗, Tω) 6 kqpb(ω∗, ω).

Since k ∈ [0, 1), we get qpb(ω∗, ω) = 0. In addition, note that

qpb(ω
∗, ω∗) = qpb(Tω

∗, Tω∗) 6 kqpb(ω
∗, ω∗)

implies
qpb(ω

∗, ω∗) = 0. (2.11)

It follows from qpb(ω, ω) = qpb(ω
∗, ω) = qpb(ω

∗, ω∗) = 0 that ω = ω∗.
Analogously, when x ∈ B, the same results can be stated.

Example 2.3. Let X = [−π
4 ,

π
4 ] and T : A ∪ B → A ∪ B defined by Tx = − sinx

4 , where A = [−π
4 , 0] and

B = [0, π4 ]. Define the metric
qpb(x, y) = |x− y|+ |x|

for any (x, y) ∈ X ×X.
First, we will show that (X, qpb) is a quasi-partial b-metric space. If qpb(x, x) = qpb(x, y) = qpb(y, y),

that is, |x| = |x− y|+ |x| = |y|, then it is obvious that (QPb1) holds for any (x, y) ∈ X ×X. And (QPb2)
is true due to

qpb(x, x) = |x| 6 |x− y|+ |x| = qpb(x, y).
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In addition,

qpb(x, x) = |x|
= |x− y + y|
6 |x− y|+ |y|
= qpb(y, x),

(2.12)

which implies that (QPb3) holds for any (x, y) ∈ X ×X. Moreover, we observe that for any x, y, z ∈ X,

qpb(x, y) + qpb(z, z) = |x− y|+ |x|+ |z|
6 |x− z|+ |z − y|+ |x|+ |z|
6 s
(
qpb(x, z) + qpb(z, y)

)
,

where s > 1, (QPb4) holds, hence (X, qpb) is a quasi-partial b-metric space with s > 1.

Next, we verify that the mapping T is a qpb-cyclic-Banach contraction. If x ∈ A, then Tx ∈ [0,
√
2
8 ] ⊂ B.

If x ∈ B, then Tx ∈ [−
√
2
8 , 0] ⊂ A. Hence the map T is cyclic on X because T (A) ⊂ B and T (B) ⊂ A.

Calculating

qpb(Tx, Ty) =
∣∣∣sinx

4
− sin y

4

∣∣∣+ | − sinx

4
|

=
1

4
(| sinx− sin y|+ | sinx|).

(2.13)

Considering function f(u) = sinu, u ∈ [−π
4 ,

π
4 ] and using the differential mean value theorem, there exists

ζ ∈ [−π
4 ,

π
4 ] such that

f ′(ζ) = cos ζ =
sinx− sin y

x− y
for any x, y ∈ [−π

4 ,
π
4 ], hence

| sinx− sin y| 6 |x− y|.

Thus

qpb(Tx, Ty) =
1

4
(| sinx− sin y|+ | sinx|)

6
1

4
|x− y|+ 1

4
|x|

6 kqpb(x, y)

(2.14)

for all x, y ∈ [−π
4 ,

π
4 ] and 1

4 6 k < 1. Choosing s > 1 and 1
4 6 k < 1 such that sk < 1, T satisfies the

qpb-cyclic-Banach contraction of Theorem 2.2 and x = 0 is the unique fixed point of T .

3. qpb-cyclic-Kannan mapping in quasi-partial b-metric spaces

In this section, we extend fixed point theorem for Kannan mappings in the setting of quasi-partial
b-metric spaces.

Definition 3.1. Let A and B be nonempty subsets of a quasi-partial b-metric space (X, qpb). A cyclic
mapping T : A ∪ B → A ∪ B is said to be a qpb-cyclic-Kannan mapping if there exists λ ∈ [0, 12) such that
if s > 1, sλ < 1

2 , then
qpb(Tx, Ty) 6 λqpb(x, Tx) + λqpb(y, Ty) (3.1)

holds both for x ∈ A, y ∈ B and for x ∈ B, y ∈ A.
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Theorem 3.2. Let A and B be two nonempty closed subsets of a complete quasi-partial b-metric space
(X, qpb) and T be a cyclic mapping which is a qpb-cyclic-Kannan mapping. Then A ∩ B is nonempty and
T has a unique fixed point in A ∩B.

Proof. Let x ∈ A, considering condition (3.1), we have

qpb(Tx, T
2x) = qpb(Tx, T (Tx))

6 λqpb(x, Tx) + λqpb(Tx, T
2x),

(3.2)

thus

qpb(Tx, T
2x) 6

λ

1− λ
qpb(x, Tx). (3.3)

Using (3.3), we get

qpb(T
2x, Tx) = qpb(T (Tx), Tx)

6 λqpb(Tx, T
2x) + λqpb(x, Tx)

6
λ2

1− λ
qpb(x, Tx) + λqpb(x, Tx)

6
λ

1− λ
qpb(x, Tx).

Set δ = qpb(x, Tx). Moreover, we have

qpb(T
2x, T 3x) 6

(
λ

1− λ

)2

δ, qpb(T
3x, T 2x, ) 6

(
λ

1− λ

)2

δ. (3.4)

Hence

qpb(T
nx, Tn+1x) 6

(
λ

1− λ

)n
δ, qpb(T

n+1x, Tnx, ) 6

(
λ

1− λ

)n
δ (3.5)

for every n ∈ N.
Let m,n ∈ N and m < n, using (QPb4)

qpb(T
mx, Tnx) 6 s[qpb(T

mx, Tm+1x) + qpb(T
m+1x, Tnx)]− qpb(Tm+1x, Tm+1x)

6 s[qpb(T
mx, Tm+1x) + qpb(T

m+1x, Tnx)]

6 sqpb(T
mx, Tm+1x) + s2qpb(T

m+1x, Tm+2x) + s2qpb(T
m+2x, Tnx)

6 sqpb(T
mx, Tm+1x) + s2qpb(T

m+1x, Tm+2x) + . . .+ sn−mqpb(T
n−1x, Tnx).

Setting γ =
λ

1− λ
and using (3.5),

qpb(T
mx, Tnx) 6 (sγm + s2γm+1 + . . .+ sn−mγn−1)δ

= sγm
1− (sγ)n−m

1− sγ
δ.

Because λ ∈ [0, 12) and sλ < 1
2 , therefore γ, sγ ∈ [0, 1). Furthermore,

qpb(T
mx, Tnx) 6

sγm

1− sγ
δ.

Taking limit as m,n→∞ in the above inequality, we have

lim
m,n→∞

qpb(T
mx, Tnx) 6 0,
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thus
lim

m,n→∞
qpb(T

mx, Tnx) = 0. (3.6)

Also,

qpb(T
nx, Tmx) 6 s[qpb(T

nx, Tm+1x) + qpb(T
m+1x, Tmx)]− qpb(Tm+1x, Tm+1x)

6 s[qpb(T
nx, Tm+1x) + qpb(T

m+1x, Tmx)]

6 s2qpb(T
nx, Tm+2x) + s2qpb(T

m+2x, Tm+1x)

+ sqpb(T
m+1x, Tmx)− sqpb(Tm+2x, Tm+2x)

6 s2qpb(T
nx, Tm+2x) + s2qpb(T

m+2x, Tm+1x) + sqpb(T
m+1x, Tmx)

6 sn−mqpb(T
nx, Tn−1x) + sn−m−1qpb(T

n−1x, Tn−2x) + . . .+ sqpb(T
m+1x, Tmx)

6 (sγm + s2γm+1 + . . .+ sn−mγn−1)δ

= sγm
1− (sγ)n−m

1− sγ
δ

6
sγm

1− sγ
δ.

Taking limit as m,n→∞ in the above inequality, we have

lim
m,n→∞

qpb(T
nx, Tmx) 6 0,

thus
lim

m,n→∞
qpb(T

nx, Tmx) = 0. (3.7)

Eqs. (3.6) and (3.7) indicate that sequence {Tnx}∞n=1 is a Cauchy sequence.
Since (X, qpb) is complete, therefore {Tnx}∞n=1 converges to some ω ∈ X, that is,

qpb(ω, ω) = lim
n→∞

qpb(T
nx, ω) = lim

n→∞
qpb(ω, T

nx)

= lim
m,n→∞

qpb(T
nx, Tmx) = lim

m,n→∞
qpb(T

mx, Tnx) = 0.
(3.8)

Observe that {T 2nx}∞n=0 is a sequence in A and {T 2n−1x}∞n=1 is a sequence in B in a way that both sequences
converge to ω. Note also that A and B are closed, we have ω ∈ A ∩B. On the other hand,

qpb(T
nx, Tω) 6 λqpb(T

n−1x, Tnx) + λqpb(ω, Tω). (3.9)

Taking limit as n→∞ in the above inequality, we have

lim
n→∞

qpb(T
nx, Tω) 6 λqpb(ω, Tω). (3.10)

By (QPb4),

λqpb(ω, Tω) 6 sλ[qpb(ω, T
nx) + qpb(T

nx, Tω)]− λqpb(Tnx, Tnx)

6 sλ[qpb(ω, T
nx) + qpb(T

nx, Tω)]
(3.11)

for every n ∈ N. Taking limit as n→∞ in the above inequality, we get

λqpb(ω, Tω) 6 sλ lim
n→∞

qpb(T
nx, Tω). (3.12)

Thus, applying (3.10) and (3.12), we obtain

lim
n→∞

qpb(T
nx, Tω) 6 λqpb(ω, Tω) 6 sλ lim

n→∞
qpb(T

nx, Tω). (3.13)
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Since sλ ∈ [0, 12), we obtain
lim
n→∞

qpb(T
nx, Tω) = qpb(ω, Tω) = 0. (3.14)

Similarly, it can be derived
lim
n→∞

qpb(Tω, T
nx) = qpb(Tω, ω) = 0. (3.15)

In addition, by the contractive condition of theorem and in combination with (3.14), we get

qpb(Tω, Tω) 6 λqpb(ω, Tω) + λqpb(ω, Tω)

= 2λqpb(ω, Tω)

= 0

(3.16)

implies
qpb(Tω, Tω) = 0. (3.17)

Equations (3.14), (3.15) and (3.17) show that the sequence {Tnx}∞n=1 is also convergent to Tω. Applying
Lemma 1.8, we obtain Tω = ω.

Assume that there exists another fixed point ω∗ of T in A ∪ B, that is, Tω∗ = ω∗, then from the
contractive condition (3.1),

qpb(ω∗, ω) = qpb(Tω
∗, Tω)

6 λqpb(ω
∗, Tω∗) + λqpb(ω, Tω)

6 λqpb(ω
∗, ω∗) + λqpb(ω, ω).

(3.18)

In addition, note that

qpb(ω, ω) = qpb(Tω, Tω)

6 2λqpb(ω, Tω)

= 2λqpb(ω, ω)

(3.19)

and 2λ ∈ [0, 1), we get qpb(ω, ω) = 0. Similarly, we obtain that qpb(ω
∗, ω∗) = 0. Moreover, by (3.18),

qpb(ω
∗, ω) = 0. It follows from qpb(ω, ω) = qpb(ω

∗, ω) = qpb(ω
∗, ω∗) = 0 that ω = ω∗.

Analogously, when x ∈ B, the same results can be stated.

An example of qpb-cyclic-Kannan mapping in quasi-partial b-metric space is provided to illustrate The-
orem 3.2.

Example 3.3. Let X = [−1
2 ,

1
2 ] and T : A ∪ B → A ∪ B defined by Tx = −1

8x, where A = [−1
2 , 0] and

B = [0, 12 ]. Define the metric

qpb(x, y) = |x− y|
1
2 + |x|

for any (x, y) ∈ X ×X.

If qpb(x, x) = qpb(x, y) = qpb(y, y), that is, |x| = |x − y|
1
2 + |x| = |y|, then it is obvious that (QPb1) holds

for any (x, y) ∈ X ×X. In addition, |x− y|
1
2 > 0 and |y − x| 6 |y − x|

1
2 when |x− y| ∈ [0, 1], then

qpb(x, x) = |x| 6 |x− y|
1
2 + |x| = qpb(x, y)

and

qpb(x, x) = |x| = |x− y + y|
6 |y − x|+ |y|

6 |y − x|
1
2 + |y|

= qpb(y, x)
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are true, then (QPb2) and (QPb3) hold for any (x, y) ∈ X ×X. Moreover, we observe that

qpb(x, y) + qpb(z, z) = |x− y|
1
2 + |x|+ |z|

6 (|x− z|+ |z − y|)
1
2 + |x|+ |z|

6 |x− z|
1
2 + |z − y|

1
2 + |x|+ |z|

= qpb(x, z) + qpb(z, y)

6 s[qpb(x, z) + qpb(z, y)]

for any x, y, z ∈ X and s > 1, (QPb4) holds, hence (X, qpb) is a quasi-partial b-metric space with s > 1.
Next, we verify that the mapping T is a qpb-cyclic-Kannan contraction. If x ∈ A, then Tx ∈ [0, 1

16 ] ⊂ B.
If x ∈ B, then Tx ∈ [− 1

16 , 0] ⊂ A. Hence the map T is cyclic on X because T (A) ⊂ B and T (B) ⊂ A. On
the other hand,

qpb(Tx, Ty) =

√
2

4
|x− y|

1
2 + | − 1

8
x|

6

√
2

4
(|x|+ |y|)

1
2 +

1

8
|x|+ 1

8
|y|

6

√
2

4
|x|

1
2 +

√
2

4
|y|

1
2 +

1

8
|x|+ 1

8
|y|

6

√
2

4
|9
8
x|

1
2 +

√
2

4
|9
8
y|

1
2 +

1

8
|x|+ 1

8
|y|

6

√
2

4

(
|9
8
x|

1
2 + |x|+ |9

8
y|

1
2 + |y|

)
6

√
2

4

(
qpb(x, Tx) + qpb(y, Ty)

)
6 λ(qpb(x, Tx) + qpb(y, Ty))

(3.20)

for all x, y ∈ X and λ ∈ [
√
2
4 ,

1
2). Choosing s and λ such that sλ < 1

2 , T satisfies the qpb-cyclic-Kannan
mapping of Theorem 3.2 and x = 0 is the unique fixed point of T .

4. qpb-cyclic β-quasi-contraction mapping in quasi-partial b-metric spaces

In this section, we extend Ćirić’s fixed point theorem for quasi-contraction type mappings in the setting
of quasi-partial b-metric spaces.

Let A and B be nonempty subsets of a quasi-partial b-metric space (X, qpb). And let T : A∪B → A∪B
is a cyclic mapping. We denote

M(x, y) = max{qpb(x, y), qpb(x, Tx), qpb(y, Ty), qpb(x, Ty), qpb(y, Tx)}

for any x, y ∈ X.

Definition 4.1. Let A and B be nonempty subsets of a quasi-partial b-metric space (X, qpb) with s > 1.
A cyclic mapping T : A ∪ B → A ∪ B is said to be a qpb-cyclic β-quasi-contraction mapping if there exists
β ∈ [0, 12) such that if βs ∈ [0, 12), then

qpb(Tx, Ty) 6 βM(x, y) (4.1)

holds both for x ∈ A, y ∈ B and for x ∈ B, y ∈ A.

Next, we give the result for a qpb-cyclic β-quasi-contraction mapping which is an extension of the result
of Ćirić.
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Theorem 4.2. Let A and B be two nonempty closed subsets of a complete quasi-partial b-metric space
(X, qpb) with s > 1 and T be a cyclic mapping which is a qpb-cyclic β-quasi-contraction. Then A ∩ B is
nonempty and T has a unique fixed point in A ∩B.

Proof. Let x ∈ A and denote xn+1 = Txn = Tn+1x, x0 = x. From condition (4.1), we obtain

qpb(xn, xn+1) 6 βM(xn−1, xn)

6 βmax
{
qpb(xn−1, xn), qpb(xn−1, Txn−1), qpb(xn, Txn), qpb(xn−1, Txn), qpb(xn, Txn−1)

}
6 βmax

{
qpb(xn−1, xn), qpb(xn−1, xn), qpb(xn, xn+1), qpb(xn−1, xn+1), qpb(xn, xn)

}
6 βmax

{
qpb(xn−1, xn), qpb(xn, xn+1), qpb(xn−1, xn+1), qpb(xn, xn)

}
for any n ∈ N. Property (QPb2) shows qpb(xn, xn) 6 qpb(xn, xn+1), so

qpb(xn, xn+1) 6 βmax
{
qpb(xn−1, xn), qpb(xn, xn+1), qpb(xn−1, xn+1)

}
.

Furthermore, from (QPb4), we have

qpb(xn−1, xn+1) 6 s[qpb(xn−1, xn) + qpb(xn, xn+1)]− qpb(xn, xn)

6 s[qpb(xn−1, xn) + qpb(xn, xn+1)]

with s > 1, hence

qpb(xn, xn+1) 6 βmax
{
qpb(xn−1, xn), qpb(xn, xn+1), qpb(xn−1, xn+1)

}
6 βmax

{
qpb(xn−1, xn), qpb(xn, xn+1), s[qpb(xn−1, xn) + qpb(xn, xn+1)]

}
= βs[qpb(xn−1, xn) + qpb(xn, xn+1)].

Subsequently,

qpb(xn, xn+1) 6
βs

1− βs
qpb(xn−1, xn).

Set k = βs
1−βs . It can be derived that 0 6 k < 1 because βs ∈ [0, 12). It follows

qpb(xn, xn+1) 6 kqpb(xn−1, xn)

6 . . . 6 knqpb(x, x1)

= knqpb(x, Tx).

Similarly, we get

qpb(xn+1, xn) 6 kqpb(xn, xn−1)

6 . . . 6 knqpb(x1, x)

= knqpb(Tx, x).

Letting α = max{qpb(Tx, x), qpb(x, Tx)}, thus

qpb(xn, xn+1) 6 knα, qpb(xn+1, xn) 6 knα.

The latter process of proof for the theorem is same as Theorem 2.2, thus we omit it. This completes the
proof.
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Example 4.3. Let X = [− π
16 ,

π
16 ] and define qpb : X ×X → R+ as

qpb(x, y) = sin 2|x− y|+ |x|

for any (x, y) ∈ X ×X. (X, qpb) is a quasi-partial b-metric space with s > 2 as claimed in Example 1.5.
Let T : A ∪ B → A ∪ B defined by Tx = − x

12 , where A = [− π
16 , 0] and B = [0, π16 ]. If x ∈ A, then

Tx ∈ [0, π
192 ] ⊂ B. If x ∈ B, then Tx ∈ [− π

192 , 0] ⊂ A. Hence the map T is cyclic on X due to T (A) ⊂ B
and T (B) ⊂ A.
Because |x− y| ∈ [0, π8 ] and when sinu 6 u 6 sin 2u, u ∈ [0, π8 ] holds, then

qpb(Tx, Ty) = sin 2
∣∣ x
12
− y

12

∣∣∣+ | − x

12
|

= sin
|x− y|

6
+

1

12
|x|

6
|x− y|

6
+

1

12
|x|

6
1

6
sin 2|x− y|+ 1

12
|x|

6
1

6
(sin 2|x− y|+ |x|)

=
1

6
qpb(x, y).

(4.2)

In addition,
qpb(x, y) 6M(x, y) = max{qpb(x, y), qpb(x, Tx), qpb(y, Ty), qpb(x, Ty), qpb(y, Tx)}, thus

qpb(Tx, Ty) 6
1

6
M(x, y)

6 βM(x, y)
(4.3)

for β ∈ [16 ,
1
2).

Choosing s and β such that βs < 1
2 , T satisfies the qpb-cyclic β-quasi-contraction mapping of Theorem

4.2 and x = 0 is the unique fixed point of T .
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