A coincident point principle for two weakly compatible mappings in partial S-metric spaces

Nizar Souayah ${ }^{\mathrm{a}, *}$, Nabil Mlaiki ${ }^{\text {b }}$
${ }^{2}$ Department of Natural Sciences, Community College of Riyadh, King Saud University, Riyadh, Saudi Arabia.
${ }^{b}$ Department of General Sciences, Prince Sultan University, Riyadh, Saudi Arabia.

Communicated by W. Shatanawi

Abstract

We show the existence of common fixed point and a coincident point for two weakly compatible selfmappings defined on a complete partial S-metric space X, where the contraction in the assumption of the main result has three control functions, α, ψ, ϕ. © 2016 All rights reserved.

Keywords: Functional analysis, partial S-metric space, common fixed point. 2010 MSC: 54H25, 47H10.

1. Introduction

There are many results on the existence of a fixed point for self mappings on various metric spaces. For example, see [1, 2, 3, 4, 5, 6, 8, 11, 13, 15, 17, 18, 19, 20, 21, However, many researchers prove the existence and uniqueness of a coincident point and common fixed point for two self-mappings on different types of metric spaces. In particular, the S-metric space which was introduced by Sedghi in [16]. The S-metric space is a space with three dimensions. In our paper, we work in partial S-metric space which was introduced in [12] as a generalization of S-metric spaces. Also, most of these results, under different contraction principles, use control functions.

Definition $1.1([12])$. Let X be a nonempty set. A partial S-metric space on X is a function $S_{p}: X^{3} \rightarrow$ $[0, \infty)$ that satisfies the following conditions, for all $x, y, z, t \in X$:
(i) $S_{p}(x, y, z) \geq 0$,

[^0](ii) $x=y$ if and only if $S_{p}(x, x, x)=S_{p}(y, y, y)=S_{p}(x, x, y)$,
(iii) $S_{p}(x, y, z) \leq S_{p}(x, x, t)+S_{p}(y, y, t)+S_{p}(z, z, t)-S_{p}(t, t, t)$,
(iv) $S_{p}(x, x, x) \leq S_{p}(x, y, z)$,
(v) $S_{p}(x, x, y)=S_{p}(y, y, x)$.

The pair $\left(X, S_{p}\right)$ is called a partial S-metric space.
Next, we recall some basic definitions for the convenience of readers.
Definition $1.2([12])$. A sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ of elements in X is called p-Cauchy if $\lim _{n, m} S_{p}\left(x_{n}, x_{n}, x_{m}\right)$ exists and is finite. A partial S-metric space $\left(X, S_{p}\right)$ is called complete if for each p-Cauchy sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ there exists a $z \in X$ such that

$$
S_{p}(z, z, z)=\lim _{n} S_{p}\left(z, z, x_{n}\right)=\lim _{n, m} S_{p}\left(x_{n}, x_{n}, x_{m}\right)
$$

A sequence $\left\{x_{n}\right\}_{n}$ in a partial S-metric space $\left(X, S_{p}\right)$ is called 0-Cauchy if

$$
\lim _{n, m} S_{p}\left(x_{n}, x_{n}, x_{m}\right)=0
$$

We say that $\left(X, S_{p}\right)$ is 0 -complete if every 0 -Cauchy sequence in X converges to a point $x \in X$ such that $S_{p}(x, x, x)=0$.

Definition $1.3([7])$. A function $\psi:[0, \infty)^{2} \rightarrow[0, \infty)$ is said to be a generalized altering distance function of two variables if:

1. ψ is continuous,
2. ψ is monotone increasing in both variables,
3. $\psi(x, y)=0$ only if $x=y=0$.

The class of all such functions is denoted by Ω. We define $\alpha(x)=\psi(x, x)$ for $x \in[0, \infty)$. Clearly, $\alpha(x)=0$ if and only if $x=0$.

Definition 1.4 ([14]). Let X be a nonempty set, n a positive integer and $F: X \rightarrow X$ a mapping. $X=\bigcup_{i=1}^{n} A_{i}$ is said to be a cyclic representation of X with respect to F if:

1. $A_{i}, i=1,2, \ldots, n$ are nonempty sets,
2. $F\left(A_{1}\right) \subset A_{2}, F\left(A_{2}\right) \subset A_{3}, \ldots, F\left(A_{n-1}\right) \subset A_{n}, F\left(A_{n}\right) \subset A_{1}$.

Definition 1.5 ([10]). Let X be a nonempty set, n a positive integer and $f, g: X \rightarrow X$ two mappings. $X=\bigcup_{i=1}^{n} A_{i}$ is said to be a cyclic representation of X with respect to f and g if:

1. $A_{i}, i=1,2, \ldots, n$ are nonempty sets,
2. $g\left(A_{1}\right) \subset f\left(A_{2}\right), g\left(A_{2}\right) \subset f\left(A_{3}\right), \ldots, g\left(A_{n-1}\right) \subset f\left(A_{n}\right), g\left(A_{n}\right) \subset f\left(A_{1}\right)$.

Definition $1.6([9)$. Let f and g be two self-maps on X. If $f w=g w=z$, for some $w \in X$, then w is called a coincidence point of f and g, and z is called a point of coincidence of f and g. If $w=z$, then z is called a common fixed point of f and g.

Definition 1.7 (9$]$). Consider two self-maps f and g defined on a nonempty set X. If $f g x=g f x$, for all $x \in X$, then f and g are said to be commuting maps. If they commute only at their coincidence points, then they are said to be weakly compatible, that is, if $f g x=g f x$, whenever, $f x=g x$.

2. Main result

In this section, we prove our main result with very useful corollary.
Theorem 2.1. Let $\left(X, S_{p}\right)$ be a 0 -complete partial S-metric space and $A_{1}, \ldots, A_{n_{0}}$ a nonempty subset of X, where $X=\bigcup_{i=1}^{n_{0}} A_{i}$. Let $f, g: X \rightarrow X$ be two self-mappings such that $X=\bigcup_{i=1}^{n_{0}} A_{i}$ is a cyclic representation of X with respect to f and g. For any $x \in A_{i}$ and $y \in A_{i+1}$ we have

$$
\alpha\left(S_{p}(g x, g x, g y)\right) \leq \psi\left(S_{p}(f x, f x, f y), S_{p}(f x, f x, g x)\right)-\phi\left(S_{p}(f x, f x, f y), S_{p}(f x, f x, g x)\right)
$$

where $A_{n+1}=A_{1}, \psi, \phi \in \Omega$ and $\alpha(x)=\psi(x, x)$ for $x \in[0, \infty)$. Suppose that $f\left(A_{i}\right)$, for all i are closed subsets of X. If f_{n} is one-to-one, then there exists $a z \in \bigcap_{i=1}^{n_{0}} A_{i}$ such that $f z=g z$. In particular, if f and g are weakly compatible, then they have a unique common fixed point.

Proof. Let $x_{1} \in A_{1}$; then by the cyclic representation of X, we can find an element $x_{2} \in A_{2}$ such that $g x_{1}=f x_{2}$. Also, for x_{2} we can find an $x_{3} \in A_{3}$ such that $g x_{2}=f x_{3}$. Continuing this process, we construct the sequence $\left\{x_{n}\right\}$ defined by $g x_{n}=f x_{n+1}$ for all natural numbers n.

First, assume there exists a natural number k such that $f x_{k}=f x_{k+1}$, hence $f x_{n+1}=g x_{n}$. It follows that x_{k} is a coincidence point of f and g.

Now, suppose that $f x_{n+1} \neq f x_{n}$ for all n. Then by the definition of X, there exists an $i_{m} \in\{1,2, \ldots, n\}$ such that $x_{n} \in A_{i_{m}+1}$ and $x_{n-1} \in A_{i_{m}}$. Thus, we have

$$
\begin{align*}
\alpha\left(S_{p}\left(g x_{n}, g x_{n}, g x_{n-1}\right)\right) \leq & \psi\left(S_{p}\left(f x_{n}, f x_{n}, f x_{n-1}\right), S_{p}\left(f x_{n}, f x_{n}, g x_{n}\right)\right) \\
& -\phi\left(S_{p}\left(f x_{n}, f x_{n}, f x_{n-1}\right), S_{p}\left(f x_{n}, f x_{n}, g x_{n}\right)\right) \\
\alpha\left(S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right)\right) \leq & \psi\left(S_{p}\left(f x_{n}, f x_{n}, f x_{n-1}\right), S_{p}\left(f x_{n}, f x_{n}, f x_{n+1}\right)\right) \\
& -\phi\left(S_{p}\left(f x_{n}, f x_{n}, f x_{n-1}\right), S_{p}\left(f x_{n}, f x_{n}, f x_{n+1}\right)\right) \tag{2.1}\\
\leq & \psi\left(S_{p}\left(f x_{n}, f x_{n}, f x_{n-1}\right), S_{p}\left(f x_{n}, f x_{n}, f x_{n+1}\right)\right)
\end{align*}
$$

Assuming $\alpha(x)=\psi(x, x)$, we deduce that

$$
\psi\left(S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right), S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right)\right) \leq \psi\left(S_{p}\left(f x_{n}, f x_{n}, f x_{n-1}\right), S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right)\right)
$$

If $S_{p}\left(f x_{n}, f x_{n}, f x_{n-1}\right)<S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right)$, then

$$
\begin{aligned}
\alpha\left(S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right)\right) & \leq \psi\left(S_{p}\left(f x_{n}, f x_{n}, f x_{n-1}\right), S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right)\right) \\
& <\psi\left(S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right), S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right)\right) \\
& =\alpha\left(S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right)\right)
\end{aligned}
$$

which leads to a contradiction, because we know that α is monotone increasing and $S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right) \neq$ 0 and hence $\alpha\left(S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right)\right) \neq 0$. Therefore, $S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right) \leq S_{p}\left(f x_{n}, f x_{n}, f x_{n-1}\right)$. Thus $\left\{S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right)\right\}_{n \geq 1}$ is a decreasing sequence of nonnegative real numbers, so there exists an $r \geq 0$, such that

$$
S_{p}\left(f x_{n+1}, f x_{n+1}, f x_{n}\right) \rightarrow r \text { as } n \rightarrow \infty
$$

Taking the limit as $n \rightarrow \infty$ in inequality (2.1), we obtain:

$$
\alpha(r) \leq \psi(r, r)-\phi(r, r)<\psi(r, r)=\alpha(r)
$$

Hence, $\alpha(r)=0$ which implies that $r=0$. Therefore, $\lim _{n \rightarrow \infty} S_{p}\left(f x_{n}, f x_{n}, f x_{n+1}\right)=0$.
To show that $\left\{f x_{n}\right\}_{n \geq 1}$ is a 0 -Cauchy sequence, assume that $\left\{f x_{n}\right\}_{n \geq 1}$ is not. Hence, there would exists an $\varepsilon>0$ for which we can find subsequences $\left\{f x_{n_{k}}\right\}$ and $\left\{f x_{m_{k}}\right\}$ of $\left\{f x_{n}\right\}$ with $n_{k}>m_{k}>k$ such that

$$
S_{p}\left(f x_{m_{k}}, f x_{m_{k}}, f x_{n_{k}}\right) \geq \varepsilon
$$

Choose n_{k} and m_{k} to be the smallest integers satisfying the above inequality. Thus,

$$
S_{p}\left(f x_{m_{k}}, f x_{m_{k}}, f x_{n_{k}}\right) \geq \varepsilon
$$

Notice that

$$
\begin{aligned}
S_{p}\left(f x_{m_{k}}, f x_{m_{k}}, f x_{n_{k}}\right) & \leq S_{p}\left(f x_{m_{k}}, f x_{m_{k}}, f x_{n_{k}-1}\right)+2 S_{p}\left(f x_{n_{k}}, f x_{n_{k}}, f x_{n_{k}-1}\right) \\
& <\varepsilon+2 S_{p}\left(f x_{n_{k}-1}, f x_{n_{k}-1}, f x_{n_{k}}\right)
\end{aligned}
$$

Thus

$$
\varepsilon \leq S_{p}\left(f x_{m_{k}}, f x_{m_{k}}, f x_{n_{k}}\right)<\varepsilon
$$

which leads to a contradiction.
Thus, $\left\{f x_{n}\right\}$ is a 0 -Cauchy sequence. Since $\left(X, S_{p}\right)$ is 0 -complete, there exists a $z \in X$ such that $\lim _{n \rightarrow \infty} S_{p}\left(f x_{n}, f x_{n}, z\right)=0$. Hence,

$$
S_{p}(z, z, z)=\lim _{n \rightarrow \infty} S_{p}\left(f x_{n}, f x_{n}, z\right)=\lim _{n \rightarrow \infty} S_{p}\left(f x_{n}, f x_{n}, f x_{m}\right)=0
$$

Therefore, $f x_{n} \rightarrow z$ as $n \rightarrow \infty$ in the partial S-metric space $\left(X, S_{p}\right)$. Since all of $f\left(A_{i}\right)$ are closed in X, so $z \in f\left(A_{i}\right)$ for all i.

Thus, $z \in \bigcap_{i=1}^{n} f\left(A_{i}\right)$ and there exists a $z_{i} \in A_{i}$ such that $f z_{i}=z$. Also, we know that f is a one-to-one map, so we have $f z_{1}=f z_{2}=\cdots=f z_{n}=z$ which implies that $z_{1}=z_{2}=\cdots=z_{n}=z^{\prime}$. Therefore, $f z^{\prime}=z$ for $z^{\prime} \in \bigcap_{i=1}^{n} A_{i}$ and $\lim _{n \rightarrow \infty} f x_{n}=z=f z^{\prime}$.

Now, fix $i \in\{1, \ldots, n\}$ such that $z \in A_{i}$ and $g z \in A_{i+1}$. Take a subsequence $\left\{f x_{n_{k}}\right\}$ of $\left\{f x_{n}\right\}$ with $f x_{n_{k}} \in$ $f\left(A_{i-1}\right)$ where $x_{n_{k}} \in A_{i-1}$ and also converge to z. Thus,

$$
\begin{aligned}
& S_{p}(z, z, z)=\lim _{n \rightarrow \infty} S_{p}\left(f x_{n}, f x_{n}, z\right)=\lim _{n \rightarrow \infty} S_{p}\left(f x_{n_{k}}, f x_{n_{k}}, z\right)=0 \\
& \begin{aligned}
\alpha\left(S_{p}\left(g z^{\prime}, g z^{\prime}, g x_{n_{k}}\right)\right)= & \alpha\left(S_{p}\left(g z^{\prime}, g z^{\prime}, f x_{n_{k+1}}\right)\right) \\
\leq & \psi\left(S_{p}\left(f z^{\prime}, f z^{\prime}, f x_{n_{k}}\right), S_{p}\left(f z^{\prime}, f z^{\prime}, g z^{\prime}\right)\right) \\
& -\phi\left(S_{p}\left(f z^{\prime}, f z^{\prime}, f x_{n_{k}}\right), S_{p}\left(f z^{\prime}, f z^{\prime}, g z^{\prime}\right)\right)
\end{aligned}
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ and using the properties of ψ and ϕ, we have

$$
\begin{aligned}
\psi\left(S_{p}\left(g z^{\prime}, g z^{\prime}, f z^{\prime}\right), S_{p}\left(g z^{\prime}, g z^{\prime}, f z^{\prime}\right)\right)= & \alpha\left(S_{p}\left(g z^{\prime}, g z^{\prime}, f z^{\prime}\right)\right) \\
\leq & \psi\left(S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right), S_{p}\left(f z^{\prime}, f z^{\prime}, g z^{\prime}\right)\right) \\
& -\phi\left(S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right), S_{p}\left(f z^{\prime}, f z^{\prime}, g z^{\prime}\right)\right) \\
\leq & \psi\left(S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right), S_{p}\left(f z^{\prime}, f z^{\prime}, g z^{\prime}\right)\right)
\end{aligned}
$$

Since ψ is monotone increasing, we get

$$
S_{p}\left(g z^{\prime}, g z^{\prime}, f z^{\prime}\right) \leq S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right)
$$

But, by the property of partial S-metric spaces, we have

$$
S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right) \leq S_{p}\left(g z^{\prime}, g z^{\prime}, f z^{\prime}\right)
$$

Thus

$$
S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right)=S_{p}\left(g z^{\prime}, g z^{\prime}, f z^{\prime}\right)
$$

If $S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right) \neq 0$, then $S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right)>0$ and

$$
\begin{aligned}
\psi\left(S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right), S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right)\right)= & \alpha\left(S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right)\right) \\
\leq & \psi\left(S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right), S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right)\right) \\
& -\phi\left(S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right), S_{p}\left(f z^{\prime}, f z^{\prime}, g z^{\prime}\right)\right) \\
\leq & \psi\left(S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right), S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right)\right)
\end{aligned}
$$

Given the fact that $\psi, \phi \in \Omega$, this leads to a contradiction. Thus

$$
S_{p}\left(f z^{\prime}, f z^{\prime}, f z^{\prime}\right)=S_{p}\left(g z^{\prime}, g z^{\prime}, f z^{\prime}\right)=S_{p}\left(g z^{\prime}, g z^{\prime}, g z^{\prime}\right)=0
$$

and $g z^{\prime}=f z^{\prime}=z$.
Since f and g are weakly compatible, we have $g g z^{\prime}=g f z^{\prime}=f f z^{\prime}$, that is $f z=g z$.
Now, we show that $f z=z$. Since $g z^{\prime} \in X$, we have $g z^{\prime} \in A_{i}$ for some $i \in\{1, \ldots, n\}$. We know that $z^{\prime} \in \bigcap_{i=1}^{n} A_{i}$, so we have $z^{\prime} \in A_{i-1}$ and

$$
\begin{aligned}
\alpha\left(S_{p}\left(g z^{\prime}, g z^{\prime}, g g z^{\prime}\right)\right) \leq & \psi\left(S_{p}\left(f z^{\prime}, f z^{\prime}, f g z^{\prime}\right), S_{p}\left(g z^{\prime}, g z^{\prime}, g z^{\prime}\right)\right) \\
& -\phi\left(S_{p}\left(f z^{\prime}, f z^{\prime}, f g z^{\prime}\right), S_{p}\left(f z^{\prime}, f z^{\prime}, g z^{\prime}\right)\right) \\
\leq & \psi\left(S_{p}\left(f z^{\prime}, f z^{\prime}, f g z^{\prime}\right), S_{p}\left(f z^{\prime}, f z^{\prime}, g z^{\prime}\right)\right) .
\end{aligned}
$$

Since $f z^{\prime}=g z^{\prime}$, we deduce

$$
\begin{aligned}
\alpha\left(S_{p}\left(g z^{\prime}, g z^{\prime}, g g z^{\prime}\right)\right) \leq & \psi\left(S_{p}\left(g z^{\prime}, g z^{\prime}, g g z^{\prime}\right), S_{p}\left(g z^{\prime}, g z^{\prime}, g z^{\prime}\right)\right) \\
& -\phi\left(S_{p}\left(g z^{\prime}, g z^{\prime}, g g z^{\prime}\right), S_{p}\left(g z^{\prime}, g z^{\prime}, g z^{\prime}\right)\right) \\
\leq & \psi\left(S_{p}\left(g z^{\prime}, g z^{\prime}, g g z^{\prime}\right), S_{p}\left(g z^{\prime}, g z^{\prime}, g z^{\prime}\right)\right) \\
\leq & \psi\left(S_{p}\left(g z^{\prime}, g z^{\prime}, g g z^{\prime}\right), S_{p}\left(g z^{\prime}, g z^{\prime}, g g z^{\prime}\right)\right) .
\end{aligned}
$$

Since $\psi \in \Omega$ and $S_{p}\left(g z^{\prime}, g z^{\prime}, g z^{\prime}\right) \leq S_{p}\left(g z^{\prime}, g z^{\prime}, g g z^{\prime}\right)$, we have

$$
S_{p}\left(g z^{\prime}, g z^{\prime}, g g z^{\prime}\right)=0
$$

and hence, $g z=g z^{\prime}=g g z^{\prime}=g z=f z$. Thus $f z=g z=z$.
Now, assume that there exists another common fixed point $z^{*} \in X$ of f and g. Hence,

$$
\begin{aligned}
\alpha\left(S_{p}\left(z, z, z^{*}\right)\right)= & \alpha\left(S_{p}\left(g z, g z, g z^{*}\right)\right) \\
\leq & \psi\left(S_{p}\left(f z, f z, f z^{*}\right), S_{p}(f z, f z, g z)\right) \\
& -\phi\left(S_{p}\left(f z, f z, f z^{*}\right), S_{p}(f z, f z, g z)\right) \\
\leq & \psi\left(S_{p}\left(f z, f z, f z^{*}\right), S_{p}(f z, f z, g z)\right) \\
= & \psi\left(S_{p}\left(z, z, z^{*}\right), S_{p}(z, z, z)\right) .
\end{aligned}
$$

Since $\psi \in \Omega$ and $S_{p}(z, z, z) \leq S_{p}\left(z, z, z^{*}\right)$, therefore $S_{p}\left(z, z, z^{*}\right)=0$ and hence $z=z^{*}$, as desired.
Now, we state the following immediate corollary.
Corollary 2.2. Let $\left(X, S_{p}\right)$ be a complete partial S-metric space, n a positive integer, and A_{1}, \cdots, A_{n} nonempty closed subsets of X such that $X=\bigcup_{1}^{n} A_{i}$ is a cyclic representation of X with respect to the self-mapping g on X. Assume that there exist $\psi, \phi \in \Omega$ such that

$$
\alpha\left(S_{p}(g x, g x, g y)\right) \leq \psi\left(S_{p}(x, x, y), S_{p}(x, x, g x)\right)-\phi\left(S_{p}(x, x, y), S_{p}(x, x, g x)\right)
$$

is satisfied for any $x \in A_{i}$ and $y \in A_{i+1}$ for $i \in\{1, \cdots, n\}$, where $A_{n+1}=A_{1}$, and for $x \in[0, \infty)$, $\alpha(x)=\psi(x, x)$. Then g has a unique fixed point $z \in \bigcap_{1}^{n} A_{i}$.
Proof. Just take $f x=x$ in Theorem 2.1.

Example 2.3. Let $X=[0,1]$ and define the function $S_{p}: X \times X \times X \rightarrow R^{+}$by $S_{p}(x, y, z)=\max (x, y, z)$. Then $\left(X, S_{p}\right)$ is a complete partial S-metric space. Let $f, g: X \rightarrow X$ be such that $f x=\frac{x}{4}$ and $g x=\frac{x^{2}}{16}$ for all $x \in X$. Let $\psi, \phi \in \Omega$ be defined by $\psi(x, y)=x+y$ and $\phi(x, y)=\max (x, y)$ for all $x, y, z \in[0, \infty)$. Let $A_{i}=[0,1]$ for $i=1,2, \ldots, n$.

Note that all the conditions of Theorem 2.1 are satisfied and we obtain $0 \in \bigcap_{i=1}^{n} A_{i}$ as coincident and common fixed point of f and g.

3. Conclusion

In closing, the authors invite the readers to try to prove our main result, weakening or eliminating the assumption that f and g are weakly compatible. Also, it is possible to prove a similar result if we change the contraction to

$$
\alpha(x, y) S_{p}(g x, g x, g y) \leq \psi\left(S_{p}(f x, f x, f y), S_{p}(f x, f x, g x)\right)
$$

where ψ as defined in our main theorem and $\alpha: X \times X \rightarrow(0, \infty)$.

Acknowledgement

The authors express their appreciation to the Deanship of Scientific Research at King Saud University, Saudi Arabia, for supporting this research work.

References

[1] M. Abbas, W. Shatanawi, T. Nazir, Common coupled coincidence and coupled fixed point of c-contractive mappings in generalized metric spaces, Thai J. Math., 13 (2015), 337-351.1
[2] T. Abdeljawad, Fixed points for generalized weakly contractive mappings in partial metric spaces, Math. Comput. Modelling, 54 (2011), 2923-2927.1]
[3] T. Abdeljawad, Meir-Keeler alpha-contractive fixed and common fixed point theorems, Fixed Point Theory Appl., 2013 (2013), 10 pages. 1
[4] T. Abdeljawad, J. O. Alzabut, E. Mukheimer, Y. Zaidan, Best proximity points for cyclical contraction mappings with 0-boundedly compact decompositions, J. Comput. Anal. Appl., 15 (2013), 678-685.1
[5] T. Abdeljawad, K. Dayeh, N. Mlaiki, On fixed point generalizations to partial b-metric spaces, J. Comput. Anal. Appl., 19 (2015), 883-891. 1
[6] T. Abdeljawad, E. Karapinar, K. Taş, A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., 63 (2012), 716-719. 1
[7] B. S. Choudhury, P. N. Dutta, A unified fixed point result in metric spaces involving a two variable function, Filomat, 14 (2000), 43-48.1.3
[8] L. Gholizadeh, A fixed point theorem in generalized ordered metric spaces with application, J. Nonlinear Sci. Appl., 6 (2013), 244-251. 1
[9] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), 771-779.1.6 1.7
[10] E. Karapinar, N. Shobkolaei, S. Sedghi, S. M. Vaezpour, A common fixed point theorem for cyclic operators on partial metric spaces, Filomat, 26 (2012), 407-414.1.5
[11] H. P. Masiha, F. Sabetghadam, N. Shahzad, Fixed point theorems in partial metric spaces with an application, Filomat, 27 (2013), 617-624. 1
[12] N. Mlaiki, A contraction principle in partial S-metric space, Univ. J. Math. Math. Sci., 5 (2014), 109-119.1. 1.1 1.2
[13] S. Oltra, O. Valero, Banach's fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste, 36 (2004), 17-26. 1
[14] I. A. Rus, Cyclic representations and fixed point, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 3 (2005), 171-178.1.4
[15] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$-contactive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. 1
[16] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesn., 64 (2012), 258-266. 1
[17] W. Shatanawi, E. Karapinar, H. Aydi, Coupled coincidence points in partially ordered cone metric spaces with a c-distance, J. Appl. Math., 2012 (2012), 15 pages. 1
[18] W. Shatanawi, A. Pitea, Some coupled fixed point theorems in quasi-partial metric spaces, Fixed Point Theory Appl., 2013 (2013), 15 pages. 1
[19] W. Shatanawi, M. Postolache, Some fixed-point results for a G-weak contraction in G-metric spaces, Abstr. Appl. Anal., 2012 (2012), 19 pages. 1
[20] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., 6 (2005), 229-240. 1
[21] C.Vetro, S. Chauhan, E. Karapinar, W. Shatanawi, Fixed points of weakly compatible mappings satisfying generalized φ-weak contractions, Bull. Malays. Math. Sci. Soc., 38 (2015), 1085-1105. 1

[^0]: *Corresponding author
 Email addresses: nizar.souayah@yahoo.fr (Nizar Souayah), nmlaiki2012@gmail.com (Nabil Mlaiki)

