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Abstract

We show the existence of common fixed point and a coincident point for two weakly compatible self-
mappings defined on a complete partial S-metric space X, where the contraction in the assumption of the
main result has three control functions, α,ψ, φ. c©2016 All rights reserved.
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1. Introduction

There are many results on the existence of a fixed point for self mappings on various metric spaces. For
example, see [1, 2, 3, 4, 5, 6, 8, 11, 13, 15, 17, 18, 19, 20, 21]. However, many researchers prove the existence
and uniqueness of a coincident point and common fixed point for two self-mappings on different types of
metric spaces. In particular, the S-metric space which was introduced by Sedghi in [16]. The S-metric space
is a space with three dimensions. In our paper, we work in partial S-metric space which was introduced in
[12] as a generalization of S-metric spaces. Also, most of these results, under different contraction principles,
use control functions.

Definition 1.1 ([12]). Let X be a nonempty set. A partial S-metric space on X is a function Sp : X3 →
[0,∞) that satisfies the following conditions, for all x, y, z, t ∈ X:

(i) Sp(x, y, z) ≥ 0,
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(ii) x = y if and only if Sp(x, x, x) = Sp(y, y, y) = Sp(x, x, y),

(iii) Sp(x, y, z) ≤ Sp(x, x, t) + Sp(y, y, t) + Sp(z, z, t)− Sp(t, t, t),

(iv) Sp(x, x, x) ≤ Sp(x, y, z),

(v) Sp(x, x, y) = Sp(y, y, x).

The pair (X,Sp) is called a partial S-metric space.

Next, we recall some basic definitions for the convenience of readers.

Definition 1.2 ([12]). A sequence {xn}∞n=0 of elements in X is called p-Cauchy if limn,m Sp(xn, xn, xm) exists
and is finite. A partial S-metric space (X,Sp) is called complete if for each p-Cauchy sequence {xn}∞n=0 there
exists a z ∈ X such that

Sp(z, z, z) = lim
n
Sp(z, z, xn) = lim

n,m
Sp(xn, xn, xm).

A sequence {xn}n in a partial S-metric space (X,Sp) is called 0-Cauchy if

limn,m Sp(xn, xn, xm) = 0.

We say that (X,Sp) is 0-complete if every 0-Cauchy sequence in X converges to a point x ∈ X such that
Sp(x, x, x) = 0.

Definition 1.3 ([7]). A function ψ : [0,∞)2 → [0,∞) is said to be a generalized altering distance function
of two variables if:

1. ψ is continuous,

2. ψ is monotone increasing in both variables,

3. ψ(x, y) = 0 only if x = y = 0.

The class of all such functions is denoted by Ω. We define α(x) = ψ(x, x) for x ∈ [0,∞). Clearly,
α(x) = 0 if and only if x = 0.

Definition 1.4 ([14]). Let X be a nonempty set, n a positive integer and F : X → X a mapping.
X =

⋃n
i=1Ai is said to be a cyclic representation of X with respect to F if:

1. Ai, i = 1, 2, . . . , n are nonempty sets,

2. F (A1) ⊂ A2, F (A2) ⊂ A3, . . . , F (An−1) ⊂ An, F (An) ⊂ A1.

Definition 1.5 ([10]). Let X be a nonempty set, n a positive integer and f, g : X → X two mappings.
X =

⋃n
i=1Ai is said to be a cyclic representation of X with respect to f and g if:

1. Ai, i = 1, 2, . . . , n are nonempty sets,

2. g(A1) ⊂ f(A2), g(A2) ⊂ f(A3), . . . , g(An−1) ⊂ f(An), g(An) ⊂ f(A1).

Definition 1.6 ([9]). Let f and g be two self-maps on X. If fw = gw = z, for some w ∈ X, then w is
called a coincidence point of f and g, and z is called a point of coincidence of f and g. If w = z, then z is
called a common fixed point of f and g.

Definition 1.7 ([9]). Consider two self-maps f and g defined on a nonempty set X. If fgx = gfx, for all
x ∈ X, then f and g are said to be commuting maps. If they commute only at their coincidence points,
then they are said to be weakly compatible, that is, if fgx = gfx, whenever, fx = gx.
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2. Main result

In this section, we prove our main result with very useful corollary.

Theorem 2.1. Let (X,Sp) be a 0-complete partial S-metric space and A1, . . . , An0 a nonempty subset of X,
where X =

⋃n0
i=1Ai. Let f, g : X → X be two self-mappings such that X =

⋃n0
i=1Ai is a cyclic representation

of X with respect to f and g. For any x ∈ Ai and y ∈ Ai+1 we have

α(Sp(gx, gx, gy)) ≤ ψ(Sp(fx, fx, fy), Sp(fx, fx, gx))− φ(Sp(fx, fx, fy), Sp(fx, fx, gx)),

where An+1 = A1, ψ, φ ∈ Ω and α(x) = ψ(x, x) for x ∈ [0,∞). Suppose that f(Ai), for all i are closed
subsets of X. If fn is one-to-one, then there exists a z ∈

⋂n0
i=1Ai such that fz = gz. In particular, if f and

g are weakly compatible, then they have a unique common fixed point.

Proof. Let x1 ∈ A1; then by the cyclic representation of X, we can find an element x2 ∈ A2 such that
gx1 = fx2. Also, for x2 we can find an x3 ∈ A3 such that gx2 = fx3. Continuing this process, we construct
the sequence {xn} defined by gxn = fxn+1 for all natural numbers n.

First, assume there exists a natural number k such that fxk = fxk+1, hence fxn+1 = gxn. It follows
that xk is a coincidence point of f and g.

Now, suppose that fxn+1 6= fxn for all n. Then by the definition of X, there exists an im ∈ {1, 2, . . . , n}
such that xn ∈ Aim+1 and xn−1 ∈ Aim . Thus, we have

α(Sp(gxn, gxn, gxn−1)) ≤ ψ(Sp(fxn, fxn, fxn−1), Sp(fxn, fxn, gxn))

− φ(Sp(fxn, fxn, fxn−1), Sp(fxn, fxn, gxn)),

α(Sp(fxn+1, fxn+1, fxn)) ≤ ψ(Sp(fxn, fxn, fxn−1), Sp(fxn, fxn, fxn+1))

− φ(Sp(fxn, fxn, fxn−1), Sp(fxn, fxn, fxn+1)) (2.1)

≤ ψ(Sp(fxn, fxn, fxn−1), Sp(fxn, fxn, fxn+1)).

Assuming α(x) = ψ(x, x), we deduce that

ψ(Sp(fxn+1, fxn+1, fxn), Sp(fxn+1, fxn+1, fxn)) ≤ ψ(Sp(fxn, fxn, fxn−1), Sp(fxn+1, fxn+1, fxn)).

If Sp(fxn, fxn, fxn−1) < Sp(fxn+1, fxn+1, fxn), then

α(Sp(fxn+1, fxn+1, fxn)) ≤ ψ(Sp(fxn, fxn, fxn−1), Sp(fxn+1, fxn+1, fxn))

< ψ(Sp(fxn+1, fxn+1, fxn), Sp(fxn+1, fxn+1, fxn))

= α(Sp(fxn+1, fxn+1, fxn)),

which leads to a contradiction, because we know that α is monotone increasing and Sp(fxn+1, fxn+1, fxn) 6=
0 and hence α(Sp(fxn+1, fxn+1, fxn)) 6= 0. Therefore, Sp(fxn+1, fxn+1, fxn) ≤ Sp(fxn, fxn, fxn−1). Thus
{Sp(fxn+1, fxn+1, fxn)}n≥1 is a decreasing sequence of nonnegative real numbers, so there exists an r ≥ 0,
such that

Sp(fxn+1, fxn+1, fxn)→ r as n→∞.

Taking the limit as n→∞ in inequality (2.1), we obtain:

α(r) ≤ ψ(r, r)− φ(r, r) < ψ(r, r) = α(r).

Hence, α(r) = 0 which implies that r = 0. Therefore, limn→∞ Sp(fxn, fxn, fxn+1) = 0.
To show that {fxn}n≥1 is a 0-Cauchy sequence, assume that {fxn}n≥1 is not. Hence, there would exists

an ε > 0 for which we can find subsequences {fxnk
} and {fxmk

} of {fxn} with nk > mk > k such that

Sp(fxmk
, fxmk

, fxnk
) ≥ ε.
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Choose nk and mk to be the smallest integers satisfying the above inequality. Thus,

Sp(fxmk
, fxmk

, fxnk
) ≥ ε.

Notice that

Sp(fxmk
, fxmk

, fxnk
) ≤ Sp(fxmk

, fxmk
, fxnk−1) + 2Sp(fxnk

, fxnk
, fxnk−1)

< ε+ 2Sp(fxnk−1, fxnk−1, fxnk
).

Thus
ε ≤ Sp(fxmk

, fxmk
, fxnk

) < ε,

which leads to a contradiction.
Thus, {fxn} is a 0-Cauchy sequence. Since (X,Sp) is 0-complete, there exists a z ∈ X such that

limn→∞ Sp(fxn, fxn, z) = 0. Hence,

Sp(z, z, z) = lim
n→∞

Sp(fxn, fxn, z) = lim
n→∞

Sp(fxn, fxn, fxm) = 0.

Therefore, fxn → z as n → ∞ in the partial S-metric space (X,Sp). Since all of f(Ai) are closed in X, so
z ∈ f(Ai) for all i.

Thus, z ∈
⋂n

i=1 f(Ai) and there exists a zi ∈ Ai such that fzi = z. Also, we know that f is a one-to-one
map, so we have fz1 = fz2 = · · · = fzn = z which implies that z1 = z2 = · · · = zn = z′. Therefore, fz′ = z
for z′ ∈

⋂n
i=1Ai and limn→∞ fxn = z = fz′.

Now, fix i ∈ {1, . . . , n} such that z ∈ Ai and gz ∈ Ai+1. Take a subsequence {fxnk
} of {fxn} withfxnk

∈
f(Ai−1) where xnk

∈ Ai−1 and also converge to z. Thus,

Sp(z, z, z) = lim
n→∞

Sp(fxn, fxn, z) = lim
n→∞

Sp(fxnk
, fxnk

, z) = 0,

α(Sp(gz
′, gz′, gxnk

)) = α(Sp(gz
′, gz′, fxnk+1

))

≤ ψ(Sp(fz
′, fz′, fxnk

), Sp(fz
′, fz′, gz′))

− φ(Sp(fz
′, fz′, fxnk

), Sp(fz
′, fz′, gz′)).

Taking the limit as n→∞ and using the properties of ψ and φ, we have

ψ(Sp(gz
′, gz′, fz′), Sp(gz

′, gz′, fz′)) = α(Sp(gz
′, gz′, fz′))

≤ ψ(Sp(fz
′, fz′, fz′), Sp(fz

′, fz′, gz′))

− φ(Sp(fz
′, fz′, fz′), Sp(fz

′, fz′, gz′))

≤ ψ(Sp(fz
′, fz′, fz′), Sp(fz

′, fz′, gz′)).

Since ψ is monotone increasing, we get

Sp(gz
′, gz′, fz′) ≤ Sp(fz′, fz′, fz′).

But, by the property of partial S-metric spaces, we have

Sp(fz
′, fz′, fz′) ≤ Sp(gz′, gz′, fz′).

Thus
Sp(fz

′, fz′, fz′) = Sp(gz
′, gz′, fz′).

If Sp(fz
′, fz′, fz′) 6= 0, then Sp(fz

′, fz′, fz′) > 0 and
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ψ(Sp(fz
′, fz′, fz′), Sp(fz

′, fz′, fz′)) = α(Sp(fz
′, fz′, fz′))

≤ ψ(Sp(fz
′, fz′, fz′), Sp(fz

′, fz′, fz′))

− φ(Sp(fz
′, fz′, fz′), Sp(fz

′, fz′, gz′))

≤ ψ(Sp(fz
′, fz′, fz′), Sp(fz

′, fz′, fz′)).

Given the fact that ψ, φ ∈ Ω, this leads to a contradiction. Thus

Sp(fz
′, fz′, fz′) = Sp(gz

′, gz′, fz′) = Sp(gz
′, gz′, gz′) = 0

and gz′ = fz′ = z.
Since f and g are weakly compatible, we have ggz′ = gfz′ = ffz′, that is fz = gz.
Now, we show that fz = z. Since gz′ ∈ X, we have gz′ ∈ Ai for some i ∈ {1, . . . , n}. We know that

z′ ∈
⋂n

i=1Ai, so we have z′ ∈ Ai−1 and

α(Sp(gz
′, gz′, ggz′)) ≤ ψ(Sp(fz

′, fz′, fgz′), Sp(gz
′, gz′, gz′))

− φ(Sp(fz
′, fz′, fgz′), Sp(fz

′, fz′, gz′))

≤ ψ(Sp(fz
′, fz′, fgz′), Sp(fz

′, fz′, gz′)).

Since fz′ = gz′, we deduce

α(Sp(gz
′, gz′, ggz′)) ≤ ψ(Sp(gz

′, gz′, ggz′), Sp(gz
′, gz′, gz′))

− φ(Sp(gz
′, gz′, ggz′), Sp(gz

′, gz′, gz′))

≤ ψ(Sp(gz
′, gz′, ggz′), Sp(gz

′, gz′, gz′))

≤ ψ(Sp(gz
′, gz′, ggz′), Sp(gz

′, gz′, ggz′)).

Since ψ ∈ Ω and Sp(gz
′, gz′, gz′) ≤ Sp(gz′, gz′, ggz′), we have

Sp(gz
′, gz′, ggz′) = 0,

and hence, gz = gz′ = ggz′ = gz = fz. Thus fz = gz = z.
Now, assume that there exists another common fixed point z∗ ∈ X of f and g. Hence,

α(Sp(z, z, z
∗)) = α(Sp(gz, gz, gz

∗))

≤ ψ(Sp(fz, fz, fz
∗), Sp(fz, fz, gz))

− φ(Sp(fz, fz, fz
∗), Sp(fz, fz, gz))

≤ ψ(Sp(fz, fz, fz
∗), Sp(fz, fz, gz))

= ψ(Sp(z, z, z
∗), Sp(z, z, z)).

Since ψ ∈ Ω and Sp(z, z, z) ≤ Sp(z, z, z∗), therefore Sp(z, z, z
∗) = 0 and hence z = z∗, as desired.

Now, we state the following immediate corollary.

Corollary 2.2. Let (X,Sp) be a complete partial S-metric space, n a positive integer, and A1, · · · , An

nonempty closed subsets of X such that X =
⋃n

1 Ai is a cyclic representation of X with respect to the
self-mapping g on X. Assume that there exist ψ, φ ∈ Ω such that

α(Sp(gx, gx, gy)) ≤ ψ(Sp(x, x, y), Sp(x, x, gx))− φ(Sp(x, x, y), Sp(x, x, gx))

is satisfied for any x ∈ Ai and y ∈ Ai+1 for i ∈ {1, · · · , n}, where An+1 = A1, and for x ∈ [0,∞),
α(x) = ψ(x, x). Then g has a unique fixed point z ∈

⋂n
1 Ai.

Proof. Just take fx = x in Theorem 2.1.
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Example 2.3. Let X = [0, 1] and define the function Sp : X ×X ×X → R+ by Sp(x, y, z) = max(x, y, z).

Then (X,Sp) is a complete partial S-metric space. Let f, g : X → X be such that fx = x
4 and gx = x2

16 for
all x ∈ X. Let ψ, φ ∈ Ω be defined by ψ(x, y) = x + y and φ(x, y) = max(x, y) for all x, y, z ∈ [0,∞). Let
Ai = [0, 1] for i = 1, 2, . . . , n.

Note that all the conditions of Theorem 2.1 are satisfied and we obtain 0 ∈
⋂n

i=1Ai as coincident and
common fixed point of f and g.

3. Conclusion

In closing, the authors invite the readers to try to prove our main result, weakening or eliminating the
assumption that f and g are weakly compatible. Also, it is possible to prove a similar result if we change
the contraction to

α(x, y)Sp(gx, gx, gy) ≤ ψ(Sp(fx, fx, fy), Sp(fx, fx, gx)),

where ψ as defined in our main theorem and α : X ×X → (0,∞).

Acknowledgement

The authors express their appreciation to the Deanship of Scientific Research at King Saud University,
Saudi Arabia, for supporting this research work.

References

[1] M. Abbas, W. Shatanawi, T. Nazir, Common coupled coincidence and coupled fixed point of c-contractive mappings
in generalized metric spaces, Thai J. Math., 13 (2015), 337–351.1

[2] T. Abdeljawad, Fixed points for generalized weakly contractive mappings in partial metric spaces, Math. Comput.
Modelling, 54 (2011), 2923–2927.1

[3] T. Abdeljawad, Meir-Keeler alpha-contractive fixed and common fixed point theorems, Fixed Point Theory Appl.,
2013 (2013), 10 pages.1

[4] T. Abdeljawad, J. O. Alzabut, E. Mukheimer, Y. Zaidan, Best proximity points for cyclical contraction mappings
with 0-boundedly compact decompositions, J. Comput. Anal. Appl., 15 (2013), 678–685.1

[5] T. Abdeljawad, K. Dayeh, N. Mlaiki, On fixed point generalizations to partial b-metric spaces, J. Comput. Anal.
Appl., 19 (2015), 883–891.1
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