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Abstract

In this paper, we prove some common fixed point theorems for two pairs of weakly compatible self-
maps satisfying a new ψ-contractive condition in the framework of a partial metric space. We also provide
illustrative examples in support of our new results. The results obtained in this paper differ from the recent
relative results in literature. c©2016 All rights reserved.
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1. Introduction and Preliminaries

In 1994, Matthews [20] introduced the notion of partial metric spaces. In this spaces, the distance of a
point to its self may not be zero. In [20], Matthews extended the well known Banach contraction principle
from metric spaces to partial metric spaces. Later in [1]–[19] and [21]–[28], several authors obtained some
fixed point results for mappings satisfying different contractive conditions.

The purpose of this paper is to use the concept of weakly compatible mappings to discuss some common
fixed point problem for four self-maps satisfying a new ψ-contractive condition in the framework of a partial
metric space. Our results differ from the recent relative results in literature. In fact, as far as now, no
author has investigated this problems.
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Definition 1.1 ([20]). A partial metric on a nonempty set X is a function p : X ×X −→ R+ such that for
all x, y, z ∈ X:

(p1) p(x, x) = p(x, y) = p(y, y)⇔ x = y;

(p2) p(x, x) ≤ p(x, y);

(p3) p(x, y) = p(y, x);

(p4) p(x, y) + p(z, z) ≤ p(x, z) + p(z, y).

A partial metric space(PMS for short) is a pair (X, p) such that X is a nonempty set and p is a partial
metric on X.

Suppose that (X, p) be a PMS, the function ps : X ×X −→ R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a (usual) metric on X. Each partial metric p on X generates a T0 topology τp on X with a base of the
family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}

for all x ∈ X and ε > 0.

Definition 1.2 ([20, 23]). Assume that (X, p) be a PMS,

(1) A sequence {xn} in (X, p) converges to x ∈ X if and only if p(x, x) = limn→∞ p(x, xn).

(2) A sequence {xn} in (X, p) is called a Cauchy if and only if limn,m→∞ p(xn, xm) exists (and finite).

(3) A (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with respect to τp, to
a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

(4) A mapping f : X → X is said to be continuous at x0 ∈ X,if for every ε > 0, there exists δ > 0 such
that f(Bp(x0, δ)) ⊂ Bp(f(x0), ε).

Example 1.3 ([20]). Suppose that X = {[a, b] : a, b ∈ R, a ≤ b} and define p([a, b], [c, d]) = max{b, d} −
min{a, c}. Then (X, p) is a PMS.

Example 1.4 ([20]). Assume that X = [0,+∞] and define p(x, y) = max {x, y}, for all x, y ∈ X. Then
(X, p) is a complete PMS. It is clear that p is not a (usual) metric.

Lemma 1.5 ([2, 17]). Suppose that (X, p) be a complete PMS. Then

(1) If p(x, y) = 0 then x = y.

(2) If x 6= y then p(x, y) > 0.

Lemma 1.6 ([20, 23]). Assume that (X, p) be a PMS.

(1) The sequence {xn} is Cauchy in (X, p) if and only if {xn} is a Cauchy sequence in (X, ps).

(2) (X, p) is complete if and only if the metric space (X, ps) is complete. Moreover,

lim
n→∞

ps(x, xn) = 0⇔ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm).

Lemma 1.7 ([23, 2]). Assume the xn → z as n → ∞ in a PMS (X, p) such that p(z, z) = 0. Then
limn→∞ p(xn, y) = p(z, y) for every y ∈ X.

Recall that a pair of self-mappings {F ,G} in a nonempty set X are said to be weakly compatible if

{t ∈ X : Ft = Gt} ⊂ {t ∈ X : FGt = GFt}.
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2. Main Results

In this section, we obtain some unique common fixed point results for four mappings satisfying a new
ψ-contractive condition in the framework of a partial metric space.

Theorem 2.1. Let F ,G,S and T be four self-maps of a complete PMS (X, p) such that

(i) FX ⊆ T X and GX ⊆ SX;

(ii) one of the ranges SX and T X is a closed subset of (X, p);

(iii) the pairs {F ,S} and {G, T } are weakly compatible and

p2(Fx,Gy) ≤ ψ(M(x, y)), ∀x, y ∈ X, (2.1)

where ψ : R+ → R+ is continuous non-decreasing function such that ψ(t) < t and the series

Σn≥1 [ψn(t)]
1
2 converges for all t > 0, and

M(x, y) = max


p2(Sx, T y), p2(Fx,Sx), p2(Gy, T y),

p(Sx, T y)p(Fx, T y), p(Fx,Sx)p(Fx, T y),
p(Gy, T y)p(Fx, T y), 14 [p(Sx,Gy) + p(Fx, T y)]2


for all x, y ∈ X. Then F ,G,S and T have a unique common fixed point in X.

Proof. Consider an arbitrary point x0 ∈ X. It follows from FX ⊆ T X and GX ⊆ SX that, there exist two
sequences {xn} and {yn} in X satisfying

y2n = Fx2n = T x2n+1 and y2n+1 = Gx2n+1 = Sx2n+2 (2.2)

for all n ∈ N .
Next we shall prove that {yn} is a Cauchy sequence in the PMS (X, p).
It follows from (p2) and (p4) that

M(x2n, x2n+1) = max


p2(Sx2n, T x2n+1), p

2(Fx2n,Sx2n), p2(Gx2n+1, T x2n+1),
p(Sx2n, T x2n+1)p(Fx2n, T x2n+1), p(Fx2n,Sx2n)p(Fx2n, T x2n+1),

p(Gx2n+1, T x2n+1)p(Fx2n, T x2n+1),
1
4 [p(Sx2n,Gx2n+1) + p(Fx2n, T x2n+1)]

2}


= max


p2(y2n−1, y2n), p2(y2n, y2n−1), p

2(y2n+1, y2n),
p(y2n−1, y2n)p(y2n, y2n), p(y2n, y2n−1)p(y2n, y2n),

p(y2n+1, y2n)p(y2n, y2n), 14 [p(y2n−1, y2n+1) + p(y2n, y2n)]2}}


≤max

{
p2(y2n−1, y2n), p2(y2n, y2n+1),

1
4 [p(y2n−1, y2n) + p(y2n, y2n+1)]

2}

}
= max{p2(y2n−1, y2n), p2(y2n, y2n+1)}

for all n ∈ N. By virtue of the property of ψ, we get that

ψ(M(x2n, x2n+1)) ≤ ψ(max{p2(y2n−1, y2n), p2(y2n, y2n+1)}). (2.3)

By using (2.1) with x = x2n, y = y2n+1 and (2.3) we obtain

p2(y2n, y2n+1) = p2(Fx2n,Gx2n+1)

≤ ψ(M(x2n, x2n+1))

≤ ψ(max{p2(y2n−1, y2n), p2(y2n, y2n+1)}).
(2.4)

Analogously we can show that

p2(y2n+1, y2n+2) ≤ ψ(max{p2(y2n, y2n+1), p
2(y2n+1, y2n+2)}). (2.5)

Note that (2.4) and (2.5) implies that
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p2(yn, yn+1) ≤ ψ(max{p2(yn−1, yn), p2(yn, yn+1)}) ∀n ≥ 1. (2.6)

If ∃n ∈ N such that p2(y2n−1, y2n) = 0. Then we have y2n−1 = y2n. It follows from (2.4) that

p2(y2n, y2n+1) ≤ ψ(p2(y2n, y2n+1)).

Since ψ(t) < t for each t > 0, with the above inequality we conclude that p2(y2n, y2n+1) = 0 and so
y2n = y2n+1. Therefore, by (2.5) we get that

p2(y2n+1, y2n+2) ≤ ψ(p2(y2n+1, y2n+2)),

which implies that y2n+1 = y2n+2. Hence, we deduce that y2n−1 = y2n = y2n+1 = y2n+2 = · · · . Then {yn}
is a Cauchy sequence in (X, p). The same conclusion holds if we suppose that there exists n ∈ N such that
p2(y2n, y2n+1) = 0 and then y2n = y2n+1.

Without loss of generality, we may assume that p2(yn, yn+1) > 0, ∀ n ∈ N. Then from (2.5), using the
fact that ψ(t) < t for all t > 0, we have

p2(yn, yn+1) < max{p2(yn−1, yn), p2(yn, yn+1)}.

Which implies that p2(yn, yn+1) < p2(yn−1, yn) and so

max{p2(yn−1, yn), p2(yn, yn+1)} = p2(yn−1, yn).

Hence, from (2.6) we deduce that

p2(yn, yn+1) ≤ ψ(p2(yn−1, yn)) ∀ n ≥ 1. (2.7)

Repeating this inequality n times we get

p2(yn, yn+1) ≤ ψn(p2(y0, y1)). (2.8)

It follows from the properties (p2) and (p3) that

max{p2(yn, yn), p2(yn+1, yn+1)} ≤ p2(yn, yn+1).

Hence from (2.8) we have

max{p2(yn, yn), p2(yn+1, yn+1)} ≤ ψn(p2(y0, y1)). (2.9)

Therefore, from (p2), (p4), (2.8) and (2.9) we obtain

[ps(yn, yn+1)]
2 =[2p(yn, yn+1)− p(yn, yn)− p(yn+1, yn+1)]

2

≤4p2(yn, yn+1) + p2(yn, yn) + p2(yn+1, yn+1)

+ 2p(yn, yn)p(yn+1, yn+1)

≤4p2(yn, yn+1) + p2(yn, yn) + p2(yn+1, yn+1)

+ 2 max{p2(yn, yn), p2(yn+1, yn+1)}
≤8ψn(p2(y0, y1)).

Hence, we have

ps(yn, yn+1) ≤
[
8ψn(p2(y0, y1))

] 1
2 . (2.10)

Now by the triangle inequality for the metric ps and (2.10), for any k, n ∈ N, we can get
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ps(yn, yn+k) ≤ps(yn, yn+1) + ps(yn+1, yn+2) + · · ·+ ps(yn+k−1, yn+k)

≤
[
8ψn(p2(y0, y1))

] 1
2 +

[
8ψn+1(p2(y0, y1))

] 1
2 + · · ·+

[
8ψn+k−1(p2(y0, y1))

] 1
2

=2
√

2
n+k−1∑
i=n

[
ψi(p2(y0, y1))

] 1
2

≤2
√

2
∞∑
i=n

[
ψi(p2(y0, y1))

] 1
2 .

By virtue of the property of ψ we conclude that for an arbitrary ε > 0 there is a positive integer n0 satisfying
ps(yn, yn+k) < ε, for every n ≥ n0 and all k ∈ N . Therefore {yn} is a Cauchy sequence in the metric space
(X, ps).

Since (X, p) is complete PMS, then (X, ps) is a complete metric space. Therefore, the sequence {yn}
converges to some y ∈ X, that is, limn→∞ p

s(yn, y) = 0.

Now, we claim that limn→∞ p
2(yn, y) = 0. In fact, from Lemma 1.6 (2), we have

p(y, y) = lim
n→∞

p(yn, y) = lim
n,m→∞

p(yn, ym). (2.11)

Moreover, since {yn} is a Cauchy sequence in (X, ps), then limn,m→∞ p
s(yn, ym) = 0, and so from (2.8),

(2.9) and the property of ψ, we have

lim
n→∞

p2(yn, yn) = 0 and lim
n→∞

p2(yn, yn+1) = 0. (2.12)

Thus from the definition of ps and (2.12), we have limn,m→∞ p(yn, ym) = 0. So limn,m→∞ p
2(yn, ym) = 0.

Hence, from (2.11) we have

p2(y, y) = lim
n→∞

p2(yn, y) = lim
n,m→∞

p2(yn, ym) = 0. (2.13)

This implies that
lim
n→∞

p2(y2n, y) = lim
n→∞

p2(y2n+1, y) = 0. (2.14)

It follows from (2.2) and (2.14) that

lim
n→∞

p2(Fx2n, y) = lim
n→∞

p2(T x2n+1, y) = 0 (2.15)

and
lim
n→∞

p2(Gx2n+1, y) = lim
n→∞

p2(Sx2n+2, y) = 0. (2.16)

Assume that S(X) is a closed subset of the PMS (X, p). From (2.16), there exists u ∈ X such that
y = Su. We claim that p2(Fu, y) = 0. Otherwise, p2(Fu, y) > 0. By (p2), (p4) and (2.1) we infer that

p2(y,Fu) ≤ [p(y,Gx2n+1) + p(Fu,Gx2n+1)− p(Gx2n+1,Gx2n+1)]
2

≤ p2(y,Gx2n+1) + p2(Fu,Gx2n+1) + p2(Gx2n+1,Gx2n+1)

+ 2p(y,Gx2n+1)p(Fu,Gx2n+1)

≤ p2(y,Gx2n+1) + p2(Fu,Gx2n+1) + p2(y,Gx2n+1)

+
[
p2(y,Gx2n+1) + p2(Fu,Gx2n+1)

]
≤ 3p2(y,Gx2n+1) + 2p(Fu,Gx2n+1))

≤ 3p2(y, y2n+1) + 2ψ(M(u, x2n+1)).

(2.17)
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On the other hand, it follows from (2.2), (p4), (2.13) and (2.14) that

M(u, x2n+1) = max


p2(Su, T x2n+1), p

2(Fu,Su), p2(Gx2n+1, T x2n+1),
p(Su, T x2n+1)p(Fu, T x2n+1), p(Fu,Su)p(Fu, T x2n+1),

p(Gx2n+1, T x2n+1)p(Fu, T x2n+1),
1
4 [p(Su,Gx2n+1) + p(Fu, T x2n+1)]

2


= max


p2(y, y2n), p2(Fu, y), p2(y2n+1, y2n),

p(y, y2n)p(Fu, y2n), p(Fu, y)p(Fu, y2n),
p(y2n+1, y2n)p(Fu, y2n), 14 [p(y, y2n+1) + p(Fu, y2n)]2



≤ max


p2(y, y2n), p2(Fu, y), p2(y2n+1, y2n),

p(y, y2n)[p(Fu, y) + p(y, y2n)− p(y, y)],
p(Fu, y)[p(Fu, y) + p(y, y2n)− p(y, y)],

p(y2n+1, y2n)[p(Fu, y) + p(y, y2n)− p(y, y)],
1
4 [p(y, y2n+1) + p(Fu, y) + p(y, y2n)− p(y, y)]2



= max


p2(y, y2n), p2(Fu, y), p2(y2n+1, y2n),
p(y, y2n)[p(Fu, y) + p(y, y2n)],
p(Fu, y)[p(Fu, y) + p(y, y2n)],

p(y2n+1, y2n)[p(Fu, y) + p(y, y2n)],
1
4 [p(y, y2n+1) + p(Fu, y) + p(y, y2n)]2

 .

(2.18)

Taking the limit as n→∞ in (2.18), we deduce that

lim
n→∞

M(u, x2n+1) = p2(Fu, y). (2.19)

Since ψ is continuous, from (2.17), (2.19), (2.14), and taking the limit as n→∞ we obtain

p2(y,Fu) ≤ lim
n→∞

[3p2(y, y2n+1) + 2ψ(M(u, x2n+1))]

= 3 lim
n→∞

p2(y, y2n+1) + 2ψ( lim
n→∞

M(u, x2n+1))

= 2ψ(p2(Fu, y)).

Hence, as we supposed that p2(Fu, y) > 0 and as ψ(t) < t for t > 0, we have p2(y,Fu) < 2p2(y,Fu), which
is impossible. Consequently, p2(Fu, y) = 0, so that

Fu = y = Su. (2.20)

That is, u is a coincidence point of F and S.
In view of y = Fu ∈ FX ⊆ T X, we deduce that there exists v ∈ X such that y = T v.
Now we show that p2(Gv, y) = 0. Otherwise p2(Gv, y) > 0. Using (2.1) we infer that

p2(y,Gv) = p2(Fu,Gv) ≤ ψ(M(u, v)). (2.21)

In light of y = Su = Fu = T v, we get that

M(u, v) = max


p2(Su, T v), p2(Fu,Su), p2(Gv, T v),

p(Su, T v)p(Fu, T v), p(Fu,Su)p(Fu, T v),
p(Gv, T v)p(Fu, T v), 14 [p(Su,Gv) + p(Fu, T v)]2


= max

{
p2(y, y), p2(y, y), p2(Gv, y), p2(y, y),

p2(y, y), p(Gv, y)p(y, y), 14 [p(y,Gv) + p(y, y)]2}

}
= p2(Gv, y).

(2.22)

Making use of (2.21), (2.22) and the property of ψ, we deduce that

p2(Gv, y) ≤ ψ(p2(Gv, y)) < p2(Gv, y),

which is a contradiction. Hence p2(Gv, y) = 0, and so
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Gv = y = T v. (2.23)

That is, v is a coincidence point of G and T .
Since the pair {F ,S} is weakly compatible, it follows from (2.20) that

Fy = FSu = SFu = Sy.

Now we show that p2(Fy, y) = 0. We suppose on the contrary that p2(Fy, y) > 0, we have

p2(Fy, y) ≤ [p(Fy, y2n+1) + p(y2n+1, y)− p(y2n+1, y2n+1)]
2

≤ p2(Fy, y2n+1) + p2(y2n+1, y) + p2(y2n+1, y2n+1) + 2p(Ay, y2n+1)p(y2n+1, y)

= p2(Fy,Gx2n+1) + p2(y2n+1, y) + p2(y2n+1, y2n+1) + 2p(Fy,Gx2n+1)p(y2n+1, y)

≤ p2(Fy,Gx2n+1) + p2(y2n+1, y) + p2(y2n+1, y2n+1)

+
[
p2(Fy,G2n+1) + p2(y2n+1, y)

]
= 2p2(Fy,Gx2n+1) + 2p2(y2n+1, y) + p2(y2n+1, y2n+1)

≤ 2ψ(M(y, x2n+1)) + 2p2(y2n+1, y) + p2(y2n+1, y2n+1).

(2.24)

On the other hand, we have

M(y, x2n+1) = max


p2(Sy, T x2n+1), p

2(Fy,Sy), p2(Gx2n+1, T x2n+1),
p(Sy, T x2n+1)p(Fy, T x2n+1), p(Fy,Sy)p(Fy, T x2n+1),

p(Gx2n+1, T x2n+1)p(Fy, T x2n+1),
1
4 [p(Sy,Gx2n+1) + p(Fy, T x2n+1)]

2


= max


p2(Fy, y2n), p2(Fy,Fy), p2(y2n+1, y2n), p2(Fy, y2n),

p(Fy,Fy)p(Fy, y2n), p(y2n+1, y2n)p(Fy, y2n),
1
4 [p(Fy, y2n+1) + p(Fy, y2n)]2

 .

(2.25)

Letting n→∞ in the above inequality (2.25), and using Lemma 1.7 and (2.12), we get that

lim
n→∞

M(y, x2n+1) = p2(Fy, y). (2.26)

Taking the limit as n→∞ in (2.24), and in view of (2.26), (2.12), (2.14) and the property of ψ, we obtain

p2(Fy, y) ≤ 2ψ(p2(Fy, y)) < 2p2(Fy, y),

which is a contradiction. Hence p2(Fy, y) = 0, and so

Fy = y = Sy. (2.27)

Since the pair {G, T } is weakly compatible, it follows from (2.23) that

Gy = GT v = T Gv = T y.

We claim that p2(y,Gy) = 0. Otherwise p2(y,Gy) > 0. By virtue of (2.1) and (2.27), we obtain

p2(y,Gy) = p2(Fy,Gy) ≤ ψ(M(y, y)).

On they other hand, in terms of (2.27), Gy = T y, (2.13) and (p2), we know that

M(y, y) = max


p2(Sy, T y), p2(Fy,Sy), p2(Gy, T y),

p(Sy, T y)p(Fy, T y), p(Fy,Sy)p(Fy, T y),
p(Gy, T y)p(Fy, T y), 14 [p(Sy,Gy) + p(Fy, T y)]2
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= max


p2(y,Gy), p2(y, y), p2(Gy,Gy), p2(y,Gy),

p(y, y)p(y,Gy), p(Gy,Gy)p(y,Gy),
1
4 [p(y,Gy) + p(y,Gy)]2


≤ max


p2(y,Gy), p2(y, y), p2(y,Gy), p2(y,Gy),

p(y, y)p(y,Gy), p(y,Gy)p(y,Gy),
1
4 [p(y,Gy) + p(y,Gy)]2


= p2(y,Gy).

Therefore, in view of the property of ψ, we infer that

p2(y,Gy) = p2(Fy,Gy) ≤ ψ(M(y, y)) ≤ ψ(p2(y,Gy)) < p2(y,Gy).

This is impossible. Hence p2(Gy, y) = 0, and so

Gy = y = T y. (2.28)

Now, combining (2.27) and (2.28), we obtain

y = Fy = Gy = Sy = T y.

That is, y is a common fixed point of F ,G,S and T .
To prove the uniqueness, suppose that z is another common fixed points of F ,G,S and T and z 6= y,

then using the contractive condition (2.1), (p2) and (p3), we have

p2(y, z) = p2(Ay,Gz)

≤ ψ

max


p2(Sy, T z), p2(Fy,Sy), p2(Gz, T z),

p(Sy, T z)p(Fy, T z), p(Fy,Sy)p(Fy, T z),
p(Gz, T z)p(Fy, T z), 14 [p(Sy,Gz) + p(Fy, T z)]2




= ψ

(
max

{
p2(y, z), p2(y, y), p2(z, z), p2(y, z),
p(y, y)p(y, z), p(z, z)p(y, z), p2(y, z)

})
≤ ψ

(
max

{
p2(y, z), p2(y, z), p2(y, z), p2(y, z),
p(y, z)p(y, z), p(y, z)p(y, z), p2(y, z)

})
= ψ

(
p2(y, z)

)
< p2(y, z).

Which is a contradiction and so must be z = y. Consequently, F ,G,S and T have a unique common fixed
point.

Assume that T (X) is a closed subset of the PMS (X, p), then proof is similarly.
This completes the proof.

Remark 2.2. The contractive conditions of Theorem 2.1 is new. As far as now, no author has investigated
the problems.

In Theorem 2.1, if S = T , we deduce the following result of common fixed point for three self-mappings.

Corollary 2.3. Let F ,G and S be three self-maps of a complete PMS (X, p) such that

(i) FX ⊆ SX and GX ⊆ SX;

(ii) the ranges SX is a closed subset of (X, p);

(iii) the pairs {F ,S} and {G,S} are weakly compatible and

p2(Fx,Gy) ≤ ψ(M(x, y)), ∀x, y ∈ X, (2.29)

where ψ : R+ → R+ is continuous non-decreasing function such that ψ(t) < t and the series



H. H. Zheng, F. Gu, J. Nonlinear Sci. Appl. 9 (2016), 2258–2272 2266

Σn≥1 [ψn(t)]
1
2 converges for all t > 0, and

M(x, y) = max


p2(Sx,Sy), p2(Fx,Sx), p2(Gy,Sy),

p(Sx,Sy)p(Fx,Sy), p(Fx,Sx)p(Fx,Sy),
p(Gy,Sy)p(Fx,Sy), 14 [p(Sx,Gy) + p(Fx,Sy)]2


for all x, y ∈ X. Then F ,G and S have a unique common fixed point in X.

In Theorem 2.1, if F = G and S = T , we deduce the following result of common fixed point for two
self-mappings.

Corollary 2.4. Let F and S be two self-maps of a complete PMS (X, p) such that

(i) FX ⊆ SX;

(ii) the ranges SX is a closed subset of (X, p);

(iii) the pairs {F ,S} are weakly compatible and

p2(Fx,Fy) ≤ ψ(M(x, y)), ∀x, y ∈ X, (2.30)

where ψ : R+ → R+ is continuous non-decreasing function such that ψ(t) < t and the series

Σn≥1 [ψn(t)]
1
2 converges for all t > 0, and

M(x, y) = max


p2(Sx,Sy), p2(Fx,Sx), p2(Fy,Sy),

p(Sx,Sy)p(Fx,Sy), p(Fx,Sx)p(Fx,Sy),
p(Fy,Sy)p(Fx,Sy), 14 [p(Sx,Fy) + p(Fx,Sy)]2


for all x, y ∈ X. Then F and S have a unique common fixed point in X.

In Theorem 2.1, if we take S = T = I (I is identity mapping, the same below), we deduce the following
result of common fixed point for two self-mappings.

Corollary 2.5. Let F and G be two self-maps of a complete PMS (X, p) such that

p2(Fx,Gy) ≤ ψ(M(x, y)), ∀x, y ∈ X, (2.31)

where ψ : R+ → R+ is continuous non-decreasing function such that ψ(t) < t and the series Σn≥1 [ψn(t)]
1
2

converges for all t > 0, and

M(x, y) = max


p2(x, y), p2(Fx, x), p2(Gy, y),

p(x, y)p(Fx, y), p(Fx, x)p(Fx, y),
p(Gy, y)p(Fx, y), 14 [p(x,Gy) + p(Fx, y)]2

 .

for all x, y ∈ X. Then F and G have a unique common fixed point in X.

In Theorem 2.1, if F = G and S = T = I, we deduce the following result of fixed point for one
self-mapping.

Corollary 2.6. Let F be a self-maps of a complete PMS (X, p) such that

p2(Fx,Fy) ≤ ψ(M(x, y)), ∀x, y ∈ X, (2.32)

where ψ : R+ → R+ is continuous non-decreasing function such that ψ(t) < t and the series Σn≥1 [ψn(t)]
1
2

converges for all t > 0, and

M(x, y) = max


p2(x, y), p2(Fx, x), p2(Fy, y),

p(x, y)p(Fx, y), p(Fx, x)p(Fx, y),
p(Fy, y)p(Fx, y), 14 [p(x,Fy) + p(Fx, y)]2


for all x, y ∈ X. Then F have a unique fixed point in X.
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In Theorem 2.1, if we take ψ(t) = kt and k ∈ (0, 1), then we get the following corollary.

Corollary 2.7. Let F ,G,S and T be four self-maps of a complete PMS (X, p) such that

(i) FX ⊆ T X and GX ⊆ SX;

(ii) one of the ranges SX and T X is a closed subset of (X, p);

(ii) the pairs {F ,S} and {G, T } are weakly compatible and

p2(Fx,Gy) ≤ kmax


p2(Sx, T y), p2(Fx,Sx), p2(Gy, T y),

p(Sx, T y)p(Fx, T y), p(Fx,Sx)p(Fx, T y),
p(Gy, T y)p(Fx, T y), 14 [p(Sx,Gy) + p(Fx, T y)]2

 (2.33)

for all x, y ∈ X, where k ∈ (0, 1) is a constant. Then F ,G,S and T have a unique common fixed point
in X.

In Corollary 2.7, if S = T , we deduce the following result of common fixed point for three self-mappings.

Corollary 2.8. Let F ,G and S be three self-maps of a complete PMS (X, p) such that

(i) FX ⊆ SX and GX ⊆ SX;

(ii) the ranges SX is a closed subset of (X, p);

(iii) the pairs {F ,S} and {G,S} are weakly compatible and

p2(Fx,Gy) ≤ kmax


p2(Sx,Sy), p2(Fx,Sx), p2(Gy,Sy),

p(Sx,Sy)p(Fx,Sy), p(Fx,Sx)p(Fx,Sy),
p(Gy,Sy)p(Fx,Sy), 14 [p(Sx,Gy) + p(Fx,Sy)]2

 (2.34)

for all x, y ∈ X, where k ∈ (0, 1) is a constant. Then F ,G and S have a unique common fixed point
in X.

In Corollary 2.7, if F = G and S = T , we deduce the following result of common fixed point for two
self-mappings.

Corollary 2.9. Let F and S be two self-maps of a complete PMS (X, p) such that

(i) FX ⊆ SX;

(ii) the ranges SX is a closed subset of (X, p);

(iii) the pairs {F ,S} are weakly compatible and

p2(Fx,Fy) ≤ kmax


p2(Sx,Sy), p2(Fx,Sx), p2(Fy,Sy),

p(Sx,Sy)p(Fx,Sy), p(Fx,Sx)p(Fx,Sy),
p(Fy,Sy)p(Fx,Sy), 14 [p(Sx,Fy) + p(Fx,Sy)]2

 (2.35)

for all x, y ∈ X, where k ∈ (0, 1) is a constant. Then F and S have a unique common fixed point in
X.

In Corollary 2.7, if S = T = I, we deduce the following result of common fixed point for two self-
mappings.
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Corollary 2.10. Let F and G be two self-maps of a complete PMS (X, p) such that

p2(Fx,Gy) ≤ kmax


p2(x, y), p2(Fx, x), p2(Gy, y),

p(x, y)p(Fx, y), p(Fx, x)p(Fx, y),
p(Gy, y)p(Fx, y), 14 [p(x,Gy) + p(Fx, y)]2

 (2.36)

for all x, y ∈ X, where k ∈ (0, 1) is a constant. Then F and G have a unique common fixed point in X.

In Corollary 2.7, if F = G and S = T = I, we deduce the following result of fixed point for one
self-mappings.

Corollary 2.11. Let F be a self-maps of a complete PMS (X, p) such that

p2(Fx,Fy) ≤ kmax


p2(x, y), p2(Fx, x), p2(Fy, y),

p(x, y)p(Fx, y), p(Fx, x)p(Fx, y),
p(Fy, y)p(Fx, y), 14 [p(x,Fy) + p(Fx, y)]2

 (2.37)

for all x, y ∈ X, where k ∈ (0, 1) is a constant. Then F has a unique fixed point in X.

Corollary 2.12. Let F ,G,S and T be four self-maps of a complete PMS (X, p) such that

(i) FX ⊆ T X and GX ⊆ SX;

(ii) one of the ranges SX and T X is a closed subset of (X, p);

(iii) the pairs {F ,S} and {G, T } are weakly compatible and

p2(Fx,Gy) ≤a1p2(Sx, T y) + a2p
2(Fx,Sx) + a3p

2(Gy, T y)

+ a4p(Sx, T y)p(Fx, T y) + a5p(Fx,Sx)p(Fx, T y)

+ a6p(Gy, T y)p(Fx, T y) + a7[p(Sx,Gy) + p(Fx, T y)]2
(2.38)

holds for all x, y ∈ X, where ai ≥ 0 (i = 1, 2, 3, · · · , 7) with a1 + a2 + a3 + a4 + a5 + a6 + 4a7 < 1.

Then F ,G,S and T have a unique common fixed point in X.

Proof. Let

M(x, y) = max


p2(Sx, T y), p2(Fx,Sx), p2(Gy, T y),

p(Sx, T y)p(Fx, T y), p(Fx,Sx)p(Fx, T y),
p(Gy, T y)p(Fx, T y), 14 [p(Sx,Gy) + p(Fx, T y)]2


for all x, y ∈ X. Then we have

a1p
2(Sx, T y) + a2p

2(Fx,Sx) + a3p
2(Gy, T y) + a4p(Sx, T y)p(Fx, T y)

+ a5p(Fx,Sx)p(Fx, T y) + a6p(Gy, T y)p(Fx, T y) + 4a7 ·
1

4
[p(Sx,Gy) + p(Fx, T y)]2

≤ (a1 + a2 + a3 + a4 + a5 + a6 + 4a7)M(x, y).

So, if the condition (2.38) hold, then

p2(Fx,Gy) ≤ (a1 + a2 + a3 + a4 + a5 + a6 + 4a7)M(x, y).

Taking k = a1+a2+a3+a4+a5+a6+4a7 in Corollary 2.7, the conclusion of Corollary 2.12 can be obtained
from Corollary 2.5 immediately.

Remark 2.13. In Corollary 2.12, if we take: (1) S = T ; (2) F = G; (3) F = G and S = T ; (4) S = T = I;
(5) F = G and S = T = I, then several new results can be obtained and omit its.
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Now, we give two examples to support Theorem 2.1.

Example 2.14. Let X = [0, 1], and (X, d) be a PMS defined by p(x, y) = max{x, y} for all x, y ∈ X. Let
F ,G,S and T be four self mappings defined by

Fx =
x2

4
, Gx =

x2

8
, Sx = x2, T x =

x2

2
, ∀x ∈ [0, 1].

Clearly, the subspace SX = X is closed, FX ⊂ SX and GX ⊂ T X. Also, it is easy to show that the pairs
{F ,S} and {G, T } being weakly compatible. In order to check condition (2.1) for all x, y ∈ X and ψ(t) = 1

4 t
for all t ∈ R+, we consider the following two cases:

Case 1. If x ≥ y, then

p2(Fx,Gy) = p2
(
x2

4
,
y2

8

)
=
x4

16

and

p2(Fx,Sx) = p2
(
x2

4
, x2
)

= x4.

Hence we deduce that

p2(Fx,Gy) =
x4

16
≤ x4

4
=

1

4
p2(Fx,Sx) ≤ 1

4
M(x, y) = ψ (M(x, y)) .

Case 2. If x < y, then

p2(Fx,Gy) = p2
(
x2

4
,
y2

8

)
=

(
max

{
x2

4
,
y2

8

})2

≤
(

max

{
y2

4
,
y2

8

})2

=
y4

16

and

p2(Gy, T y) = p2
(
y2

8
,
y2

2

)
=
y4

4
.

Therefore we infer that

p2(Fx,Gy) ≤ y4

16
=

1

4
p2(Gy, T y) ≤ 1

4
M(x, y) = ψ (M(x, y)) .

Then in all the above cases, the mappings F ,G,S and T are satisfying the condition (2.1) of the Theorem
2.1 with ψ(t) = 1

4 t. So that all the conditions of Theorem 2.1 are fulfilled. Moreover, 0 is the unique common
fixed point of F ,G,S and T .

Example 2.15. Let X = {0, 2, 3} and let a partial metric p : X×X → R+ be defined by p(x, y) = max{x, y}
for all x, y ∈ X. Clear, (X, p) is a complete PMS. Let the mappings F ,G,S, T : X → X be defined by

Table 1: The definition of maps F ,G,S and T on X

x F G S T
0 0 0 0 0
2 2 0 3 2
3 0 2 2 3

Clearly, the subspace T X = X is closed, FX ⊂ SX and GX ⊂ T X.
Also, it is easy to show that the pairs {F ,S} and {G, T } being weakly compatible.
In order to verify (2.1) with ψ(t) = 5

9 t for all t ∈ R+, we have to consider six possible cases as follows.
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Case (1) (x, y) ∈ {(0, 0), (0, 2), (3, 0), (3, 2)}, we have p2(Fx,Gy) = p2(0, 0) = 0, and hence (2.1) is
obviously satisfied.

Case (2) (x, y) = (0, 3), then we have p2(Fx,Gy) = p2(0, 2) = 4 and

M(0, 3) = max


p2(S0, T 3), p2(F0,S0), p2(G3, T 3),

p(S0, T 3)p(F0, T 3), p(F0,S0)p(F0, T 3),
p(G3, T 3)p(F0, T 3), 14 [p(S0,G3) + p(F0, T 3)]2


= max

{
9, 0, 9, 9, 0, 9, 254

}
= 9.

Thus we conclude that

p2(F0,G3) = 4 < 5 =
5

9
· 9 = ψ(M(0, 3)).

Case (3) (x, y) = (2, 0), then we have p2(Fx,Gy) = p2(2, 0) = 4 and

M(2, 0) = max


p2(S2, T 0), p2(F2,S2), p2(G0, T 0),

p(S2, T 0)p(F2, T 0), p(F2,S2)p(F2, T 0),
p(G0, T 0)p(F2, T 0), 14 [p(S2,G0) + p(F2, T 0)]2


= max

{
9, 9, 0, 6, 6, 0, 254

}
= 9.

Hence we infer that

p2(F2,G0) = 4 < 5 =
5

9
· 9 = ψ(M(2, 0)).

Case (4) (x, y) = (2, 2), then we have p2(Fx,Gy) = p2(2, 0) = 4 and

M(2, 2) = max


p2(S2, T 2), p2(F2,S2), p2(G2, T 2),

p(S2, T 2)p(F2, T 2), p(F2,S2)p(F2, T 2),
p(G2, T 2)p(F2, T 2), 14 [p(S2,G2) + p(F2, T 2)]2


= max

{
9, 9, 4, 6, 6, 4, 254

}
= 9.

Therefore we deduce that

p2(F2,G2) = 4 < 5 =
5

9
· 9 = ψ(M(2, 2)).

Case (5) (x, y) = (2, 3), then we have p2(Fx,Gy) = p2(2, 2) = 4 and

M(2, 3) = max


p2(S2, T 3), p2(F2,S2), p2(G3, T 3),

p(S2, T 3)p(F2, T 3), p(F2,S2)p(F2, T 3),
p(G3, T 3)p(F2, T 3), 14 [p(S2,G3) + p(F2, T 3)]2


= max

{
9, 9, 9, 9, 9, 9, 9

}
= 9.

Consequently we know that

p2(F2,G3) = 4 < 5 =
5

9
· 9 = ψ(M(2, 3)).

Case (6) (x, y) = (3, 3), then we have p2(Fx,Gy) = p2(0, 2) = 4 and

M(3, 3) = max


p2(S3, T 3), p2(F3,S3), p2(G3, T 3),

p(S3, T 3)p(F3, T 3), p(F3,S3)p(F3, T 3),
p(G3, T 3)p(F3, T 3), 14 [p(S3,G3) + p(F3, T 3)]2
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= max
{

9, 4, 9, 9, 6, 9, 254
}

= 9.

Hence we get that

p2(F3,G3) = 4 < 5 =
5

9
· 9 = ψ(M(3, 3)).

Thus, the contractive condition (2.1) is satisfied. And so, all conditions of Theorem 2.1 are satisfied.
Moreover, 0 is the unique common fixed point of F ,G,S and T .
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[14] D. Ilić, V. Pavlović, V. Rakočević, Some new extensions of Banach’s contraction principle to partial metric space,

Appl. Math. Lett., 24 (2011), 1326–1330.
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[17] E. Karapinar, Ćirić types nonunique fixed point theorems on partial metric spaces, J. Nonlinear Sci. Appl., 5

(2012), 74–83.1.5
[18] E. Karapinar, I. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett., 24 (2011),

1894–1899.
[19] E. Karapinar, I. M. Erhan, A. Y. Ulus, Fixed point theorem for cyclic maps on partial metric spaces, Appl. Math.

Inf. Sci., 6 (2012), 239–244.1
[20] S. G. Matthews, Partial metric topology. In General Topology and Its Applications, Proc. 8th Summer Conf.,

Queen’s College (1992). Annals New York Acad. Sci., 728 (1994), 183–197.1, 1.1, 1.2, 1.3, 1.4, 1.6
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