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1. Introduction

There are many mathematicians who are interested in studying geometric properties of Banach spaces,
because the geometric properties were identified as important characteristics and properties of the Banach
spaces. For example, if Banach spaces have some geometric properties such as uniform rotund, P - convexity,
Q- convexity, Banach-Saks property then they are reflexive spaces. The investigations of metric geometry of
Banach spaces, date back to 1913, when Radon [17] introduced Kadec-Klee property (sometimes called the
Radon-Riesz property, or property (H)) and, later Riesz [18, 19] who showed that the classical Lp-spaces,
1 < p < ∞, have the Kadec-Klee property. Although the space L1[0, 1] (with Lebesgue measure) fails to
have the Kadec-Klee property. In 1936, Clarkson [2] introduced the notion of the uniform convexity property
(UC) or the uniform rotun property (UR) of Banach spaces, and it was shown that Lp with 1 < p <∞ are
examples of such space. In 1967, Opial [14] introduced a new property which is called Opial property and
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proved that the sequence space lp(1 < p < ∞) have this property but Lp[0, π](p 6= 2, 1 < p < ∞) do not
have it. In 1980, Huff [6] introduced the nearly uniform convexity for Banach spaces and he also proved that
every nearly uniformly convex Banach space is reflexive and it has the uniform Kadec-Klee property(UKK).
In 1991, Kutzarova [8] defined and studied k-nearly uniformly Banach spaces. In 1992, Prus [16] introduced
the notion of uniform Opial property. Recently, many mathematicians are also interested of geometric
properties in sequence spaces. Some example of the geometry of sequence spaces and their generalizations
have been extensively studied in [1, 4, 7, 15, 20, 22, 23, 24, 25].

The main purpose of this paper is to define generalized Cesàro sequence spaces for a bounded sequence
of positive real numbers p = pk ≥ 1 with a sequence (qn) of positive real numbers by using the Zweier
operator. Also, we investigate the property (H) and Uniform Opial property equipped with the Luxemburg
norm.

2. Preliminaries and Notation

Let l0 be the space of all real sequences. For 1 ≤ p <∞, the Cesàro sequence space (cesp, for short) of
Shue[22] is defined by

cesp = {x ∈ l0 :
∞∑
n=1

(
1

n

n∑
i=0

|x(i)|

)p
<∞}.

It is very useful in the theory of matrix operators and others(see [9, 12]).
In 1997, Bilgin [1] defined the sequences spaces C(s, p) when s ≥ 0 as follow:

ces(p, s) =

{
x ∈ l0 :

∞∑
r=0

(
1

2r

∑
r

k−s|x(i)|
)pr

<∞

}
, (2.1)

where
∑

r denotes a sum over the range 2r ≤ k < 2r+1. If s = 0, then the spaces become to the spaces

ces(p) =

{
x ∈ l0 :

∞∑
r=0

(
1

2r

∑
r

|x(i)|
)pr

<∞

}
, (2.2)

which has been investigated by Lim [10, 11]. In 2005, Mursaleen [13] defined the Cesàro sequence space
ces[(p), (q)] with (qn) is a sequence of positive real numbers and real bounded sequence (pn) with inf pr > 0
by

ces[(p), (q)] = {x ∈ l0 :

∞∑
r=0

(
1

Q2r

∑
r

qk|x(i)|

)pr
<∞},

where Q2r = q2r + q2r+1 + q2r+2 + · · ·+ q2r+1−1. If qn = 1 for all n ≥ 1, then ces[(p), (q)] reduces to ces(p).
The Z-transform of a sequence x = xk is defined by (Zx)n = yn = γxn+(1−γ)xn−1 by using the Zweier

operator

Z = (znk) =


γ ; k = n,
1− γ ; k = n− 1,
0 ; otherwise

for all n, k ≥ 1 and scalar γ ∈ F \ {0}, where F is the field of all complex or real numbers. The Zweier
operator was studied by Şengönül and Kayaduman [21]. In 2013, Et et al. [5] used the Zweier operator
define the new modular sequence spaces Zσ(s, p) as follow:

Zσ(s, p) =

{
x ∈ l0 : σ(λx) <∞ for some λ > 0

}
,
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where

σ(x) =
∞∑
r=0

(
1

2r

∑
r

k−s|αxk + (1− α)xk−1|

)pr
and s ≥ 0. This spaces is equipped with the Luxemburg norm

‖x‖ = inf{λ > 0 : σ(xλ) ≤ 1}.
Now, we define the generalized modular sequence space C(Z; p, q) for p = (pk) bounded sequence of

positive real numbers with pk ≥ 1 for all k ∈ N and a sequence (qn) of positive real numbers by

C(Z; p, q) =

{
x ∈ l0 : %(λx) <∞ for some λ > 0

}
, (2.3)

where

%(x) =

∞∑
r=0

(
1

Q2r

∑
r

qk|γxk + (1− γ)xk−1|

)pr
and the spaces is equipped with the Luxemburg norm

‖x‖ = inf{τ > 0 : %(xτ ) ≤ 1},
where Q2r = q2r + q2r+1 + q2r+2 + · · · + q2r+1−1 and

∑
r denotes a sum over the range 2r ≤ k < 2r+1. If

we take γ = 1, then the spaces C(Z; p, q) become to ces[(p), (q)]. Also, If we take γ = 1 and qk = 1 for all
k ≥ 1, then the spaces C(Z; p, q) become to ces(p) studied by Lim [10, 11].

Let (X, ‖ · ‖) be a real Banach space and let B(X)(resp., S(X)) be the closed unit ball (resp., the unit
sphere) of X. A point x ∈ S(X) is an H − point of B(X) if for any sequence (xn) in X such that ‖xn‖ → 1
as n→∞, the week convergence of (xn) to x implies that ‖xn − x‖ → 0 as n→∞. If every point of S(X)
is an H − point of B(X), then X is said to have the property (H). A Banach space X is said to have the
Opial property (see [14]) if every sequence {xn} weakly convergent to x0 satisfies

lim inf
n→∞

‖ xn − x0 ‖≤ lim inf
n→∞

‖ xn − x ‖

for every x ∈ X. A Banach space X is said to have the uniform Opial property (see [16]), if for each ε > 0
there exists τ > 0 such that for any weakly null sequence (xn) in S(X) and x ∈ X with ‖ x ‖> ε there holds

1 + τ ≤ lim inf
n→∞

‖ xn − x ‖.

For example, the space in [4, 15] have the uniform Opial property.

Throughout this paper, for x ∈ l0, i ∈ N, we denote

ei = (

i−1︷ ︸︸ ︷
0, 0, ..., 0, 1, 0, 0, 0, ...),

x |i= (x(1), x(2), x(3), ..., x(i), 0, 0, 0, ...),
x |N−i= (0, 0, 0, ..., x(i+ 1), x(i+ 2), ...).

In addition, we recall the following inequalities:

|ak + bk|pk ≤ C(|ak|pk + |bk|pk) (2.4)

and
|ak + bk|tk ≤ |ak|tk + |bk|tk , (2.5)

where tk = pk
M , C = max{1, 2M−1}, M = supk pk for all k ≥ 1.

Next, we start with a brief recollection of basic concepts and facts in modular spaces. For a real vector
space X, a function ρ : X → [0,∞] is called a modular if it satisfies the following conditions:
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(i) ρ(x) = 0 if and only if x = 0;
(ii) ρ(αx) = ρ(x) for all scalar α with |α| = 1;
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y), for all x, y ∈ X and all α, β ≥ 0 with α+ β = 1.

The modular ρ is called convex if
(iv) ρ(αx+ βy) ≤ αρ(x) + βρ(y), for all x, y ∈ X and all α, β ≥ 0 with α+ β = 1.

For a modular ρ on X, the space

Xρ = {x ∈ X : ρ(λx)→ 0 as λ→ 0+}
is called the modular space.

A sequence (xn) in Xρ is called modular convergent to x ∈ Xρ if there exists a λ > 0 such that
ρ(λ(xn − x))→ 0 as n→∞.

A modular ρ is said to satisfy the ∆2 − condition (ρ ∈ ∆2) if for any ε > 0 there exist constants K ≥ 2
and a > 0 such that

ρ(2u) ≤ Kρ(u) + ε

for all u ∈ Xρ with ρ(u) ≤ a.
If ρ satisfies the ∆2 − condition for any a > 0 with K ≥ 2 dependent on a, we say that ρ satisfies the

strong ∆2 − condition (ρ ∈ ∆s
2).

Lemma 2.1 ([3] Lemma 2.1). If ρ ∈ ∆s
2, then for any L > 0 and ε > 0, there exists δ = δ(L, ε) > 0 such

that

|ρ(u+ v)− ρ(u)| < ε,

whenever u, v ∈ Xρ with ρ(u) ≤ L, and ρ(v) ≤ δ.
Lemma 2.2 ([3] Lemma 2.3). The convergences in norm and in modular are equivalent in Xρ if ρ ∈ ∆2.

Lemma 2.3 ([3] Lemma 2.4). If ρ ∈ ∆s
2, then for any ε > 0 there exists δ = δ(ε) > 0 such that

‖ x ‖≥ 1 + δ whenever ρ(x) ≥ 1 + ε.

3. Main result

In this section, we prove the property H and the uniform Opial property in generalized modular sequence
spaces C(Z; p, q). First we shall give some results which are very important for our consideration.

Proposition 3.1. The functional % is a convex modular on C(Z; p, q).

Proof. Let x, y ∈ C(Z; p, q). It is obvious that %(x) = 0 if and only if x = 0 and %(αx) = %(x) for scalar α
with |α| = 1. Let α ≥ 0, β ≥ 0 with α+ β = 1. By the convexity of the function t 7→ |t|pr , for all r ∈ N, we
have

%(αx+ βy) =
∞∑
r=0

(
1

Q2r

∑
r

|αqi(γx(i) + (1− γ)x(i− 1)) + βqi(γy(i) + (1− γ)y(i− 1))|

)pr

≤
∞∑
r=0

(
α

1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|+ β
1

Q2r

∑
r

qi|γy(i) + (1− γ)y(i− 1)|

)pr

≤ α
∞∑
r=0

(
1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|

)pr

+ β
∞∑
r=0

(
1

Q2r

∑
r

qi|γy(i) + (1− γ)y(i− 1)|

)pr
= α%(x) + β%(y).
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Proposition 3.2. For x ∈ C(Z; p, q), the modular % on C(Z; p, q) satisfies the following properties:

(i) if 0 < a < 1, then aM%(xa ) ≤ %(x) and %(ax) ≤ a%(x);

(ii) if a > 1, then %(x) ≤ aM%(xa );

(iii) if a ≥ 1, then %(x) ≤ a%(x) ≤ %(ax).

Proof. (i) Let 0 < a < 1. Then we have

%(x) =
∞∑
r=0

(
1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|

)pr

=
∞∑
r=0

(
a

Q2r

∑
r

qi

∣∣∣∣γx(i) + (1− γ)x(i− 1)

a

∣∣∣∣
)pr

=

∞∑
r=0

apr

(
1

Q2r

∑
r

qi

∣∣∣∣γx(i) + (1− γ)x(i− 1

a

∣∣∣∣
)pr

≥
∞∑
r=0

aM

(
1

Q2r

∑
r

qi

∣∣∣∣γx(i) + (1− γ)x(i− 1

a

∣∣∣∣
)pr

= aM
∞∑
r=0

(
1

Q2r

∑
r

qi

∣∣∣∣γx(i) + (1− γ)x(i− 1)

a

∣∣∣∣
)pr

= aM%
(x
a

)
.

By convexity of modular %, we have %(ax) ≤ a%(x), so property (i) is proved.
(ii) Let a > 1. Then

%(x) =

∞∑
r=0

(
1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|

)pr

=
∞∑
r=0

apr

(
1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|

)pr

≤ aM
∞∑
r=0

(
1

Q2r

∑
r

qi

∣∣∣∣γx(i) + (1− γ)x(i− 1)

a

∣∣∣∣
)pr

= aM%
(x
a

)
.

Hence property (ii) is satisfied. (iii) follows from the convexity of %.

By a similar proof of these presented in ([7, 24, 25]), we get the following Proposition.

Proposition 3.3. For any x ∈ C(Z; p, q), we have

(i) if ‖x‖ < 1, then %(x) ≤ ‖x‖;
(ii) if ‖x‖ > 1, then %(x) ≥ ‖x‖;
(iii) ‖x‖ = 1 if and only if %(x) = 1;

(iv) ‖x‖ < 1 if and only if %(x) < 1;

(v) ‖x‖ > 1 if and only if %(x) > 1.

Proposition 3.4. For any x ∈ C(Z; p, q), we have

(i) if 0 < a < 1 and ‖x‖ > a, then %(x) > aM ;

(ii) if a ≥ 1 and ‖x‖ < a, then %(x) < aM .
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Proposition 3.5. Let {xn} be a sequence in C(Z; p, q).

(i) If ‖xn‖ → 1 as n→∞, then %(xn)→ 1 as n→∞.

(ii) If %(xn)→ 0 as n→∞, then ‖xn‖ → 0 as n→∞.

Lemma 3.6. Let x ∈ C(Z; p, q) and (xn) ⊆ C(Z; p, q). If %(xn)→ %(x) as n→∞ and xn(i)→ x(i) as
n→∞ for all i ∈ N, then xn → x as n→∞.

Proof. Let ε > 0 be given. We put that,

%0(x) =

r0∑
r=0

(
1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|

)pr
and

%1(x) =
∞∑

r=r0+1

(
1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|

)pr
.

Since %(x) <∞, there exists r0 ∈ N such that

%1(x) <
ε

3 · 2M+1
. (3.1)

Since, %(xn)− %0(xn)→ %(x)− %0(x) and xn(i)→ x(i) as n→∞ for all i ∈ N there exists n0 ∈ N such that

%1(xn − x) = %(xn)− %0(xn) < %(x)− %0(x) +
ε

3 · 2M
(3.2)

and

%0(xn − x) ≤
ε

3
(3.3)

for all n ≥ n0. It follows from (3.1), (3.2), and (3.3) that for all n ≥ n0 we have

%(xn − x) = %0(xn − x) + %1(xn − x)

≤
ε

3
+

∞∑
r=r0+1

(
1

Q2r

∑
r

qi|γ(xn(i)− x(i)) + (1− γ)(xn(i− 1)− x(i))|

)pr

≤
ε

3
+ 2M

∞∑
r=r0+1

(
1

Q2r

∑
r

qi|γxn(i) + (1− γ)xn(i− 1)|

)pr

+ 2M
∞∑

r=r0+1

(
1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|

)pr

=
ε

3
+ 2M

(
%(xn)−

r0∑
r=0

(
1

Q2r

∑
r

qi|γxn(i) + (1− γ)xn(i− 1)|

)pr)

+ 2M
∞∑

r=r0+1

(
1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|

)pr

≤
ε

3
+ 2M

(
%(x)−

r0∑
r=0

(
1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|

)pr
+

ε

3 · 2M

)

+ 2M
∞∑

r=r0+1

(
1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|

)pr
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=
ε

3
+ 2M

( ∞∑
r=r0+1

(
1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|

)pr
+

ε

3 · 2M

)

+ 2M
∞∑

r=r0+1

(
1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|

)pr

=
ε

3
+
ε

3
+ 2M+1

∞∑
r=r0+1

(
1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|

)pr

≤
ε

3
+
ε

3
+ 2M+1

(
ε

3 · 2M+1

)
=
ε

3
+
ε

3
+
ε

3
= ε.

This show that %(xn − x)→ 0 as n→∞. Hence, by Proposition 3.5(ii), we have

‖xn − x‖ → 0 as →∞.

Theorem 3.7. The space C(Z; p, q) has the property (H).

Proof. Let x ∈ S(C(Z; p, q)) and (xn) ⊆ C(Z; p, q) be such that ‖xn‖ → 1 and xn
w→ x as n → ∞. By

Proposition 3.3(iii), we have %(x) = 1, so it follows form Proposition 3.5(i) that %(xn) → %(x) as n → ∞.
Since the mapping πi : C(Z; p, q)→ R defined by πi(y) = y(i), is a continuous linear functional on C(Z; p, q),
it follows that xn(i)→ x(i) as n→∞ for all i ∈ N. Thus by Lemma 3.6, we obtain that xn → x as n→∞,
and hence the space C(Z; p, q) has the property (H).

Corollary 3.8. For any 1 < p <∞, the space ces[(p), (q)] has the property (H).

Corollary 3.9 ([20]). The space ces(p) has the property (H).

Next, we will prove that the spaces C(Z; p, q) has the uniform Opial property.

Theorem 3.10. The space C(Z; p, q) has the uniform Opial property.

Proof. Take any ε > 0 and x ∈ C(Z; p, q) with ‖x‖ ≥ ε. Let (xn) be a weakly null sequence in S(C(Z; p, q)).
By supk pk < ∞ we have that % ∈ ∆s

2, hence by Lemma 2.2 there exists δ ∈ (0, 1) independent of x such
that %(x) > δ. Also, by % ∈ ∆s

2 and Lemma 2.1 asserts that there exists δ1 ∈ (0, δ) such that

|%(y + z)− %(y)| <
δ

4
, (3.4)

whenever, %(y) ≤ 1 and %(z) ≤ δ1. Choose r0 ∈ N such that

∞∑
r=r0+1

(
1

Q2r

∑
r

qi|γx(i) + (1− γ)x(i− 1)|

)pr
<
δ1
4
. (3.5)

Then, we have

δ <
r0∑
r=0

(
1

Q2r

∑
r
qi|γx(i) + (1− γ)x(i− 1)|

)pr
+

∞∑
r=r0+1

(
1

Q2r

∑
r
qi|γx(i) + (1− γ)x(i− 1)|

)pr
≤

r0∑
r=0

(
1

Q2r

∑
r
qi|γx(i) + (1− γ)x(i− 1)|

)pr
+
δ1
4
,

(3.6)
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which implies that
r0∑
r=0

(
1

Q2r

∑
r
qi|γx(i) + (1− γ)x(i− 1)|

)pr
> δ −

δ1

4

> δ −
δ

4

=
3δ

4
.

(3.7)

Since xn
w→ 0 and the weak convergence implies the coordinatewise convergence, there exists n0 ∈ N such

that
3δ

4
≤

r0∑
r=0

(
1

Q2r

∑
r

qi|γ(xn(i) + x(i)) + (1− γ)(xn(i− 1) + x(i− 1))|

)pr
(3.8)

for all n > n0. Again, by xn
w→ 0, there exists n1 ∈ N such that

‖ xn|ro ‖< 1−
(

1−
δ

4

) 1
M

(3.9)

for all n ≥ n1, where pr ≤M for all r ∈ N. Hence, by the triangle inequality of the norm, we get

‖ xn|N−ro
‖>
(

1−
δ

4

) 1
M

. (3.10)

It follows from Proposition 3.3(ii) that

1 ≤ %

 xn|N−ro(
1− δ

4

) 1
M



=
∞∑

r=r0+1


1

Q2r

∑
r
qi|γxn(i) + (1− γ)xn(i− 1))|(

1− δ

4

) 1
M


pr

≤

 1(
1− δ

4

) 1
M


M

∞∑
r=r0+1

(
1

Q2r

∑
r
|γxn(i) + (1− γ)xn(i− 1))|

)pr
(3.11)

implies that
∞∑

r=r0+1

(
1

Q2r

∑
r
||γxn(i) + (1− γ)xn(i− 1))|

)pk
≥ 1−

δ

4
(3.12)

for all n > n1. By inequality (3.4), (3.5), (3.8), and (3.12), we get for any n > n1 that

%(xn + x) =

r0∑
r=0

(
1

Q2r

∑
r

|γ(xn(i) + x(i)) + (1− γ)(xn(i− 1) + x(i− 1))|

)pr

+
∞∑

r=r0+1

(
1

Q2r

∑
r

|γ(xn(i) + x(i)) + (1− γ)(xn(i− 1) + x(i− 1))|

)pk

≥
3δ

4
+

∞∑
r=r0+1

(
1

Q2r

∑
r

qi|γxn(i) + (1− γ)xn(i− 1)|

)pk
−
δ

4
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≥3δ

4
+

(
1− δ

4

)
−
δ

4

≥1 +
δ

4
.

Since % ∈ ∆s
2, by Lemma 2.3 there exists τ depending only on δ such that ‖ xn + x ‖≥ 1 + τ, which implies

that lim
n→∞

inf ‖ xn + x ‖≥ 1 + τ . This completes the proof.

Corollary 3.11. For any 1 < p <∞, the space ces[(p), (q)] has the uniform Opial property.

Corollary 3.12. The space ces(p) has the uniform Opial property.
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