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Abstract

By using some new analytical techniques, modified inequalities and Mawhin’s continuation theorem of
coincidence degree theory, some sufficient conditions for the existence of at least one positive almost periodic
solution of a kind of two-species model of facultative mutualism with time delays are obtained. Further, the
global asymptotic stability of the positive almost periodic solution of this model is also considered. Some
examples and numerical simulations are provided to illustrate the main results of this paper. Finally, a
conclusion is also given to discuss how the parameters of the system influence the existence and globally
asymptotic stability of positive almost periodic oscillations. c©2016 All rights reserved.
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1. Introduction

Mutualism is a common occurrence in nature, and is found in many types of communities. Such inter-
actions are well documented in this field. Obvious examples include the algal-fungal associations of lichens
[8], plant-pollinator interactions [12], seed dispersal systems that rely on animal vectors [19], the legume
nitrogen-fixing bacteria interactions [1, 13], and damselfish-sea anemone interactions [23]. Mutualism may
be obligate or facultative, but models of obligate mutualism have qualitatively different stability properties
from those of facultative ones (see [24]). An obligate mutualist is a species which requires the presence
of another species for its survival, e.g., some species of Acacia require the ant Pseudomyrmex in order
to survive (see [11]). A facultative mutualist is one which benefits in some way from the association with
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another species but will survive in its absence, e.g., blue-green algae can grow and reproduce in the absence
of zooplankton grazers, but growth and reproduction are enhanced by the presence of the zooplankton (see
[22]). Despite the fact that mutualisms are common in nature, attempts to model such interactions mathe-
matically are somewhat scant in the literature, in other words, in theoretical population biology mutualism
has received very little attention compared to that given to predator-prey interactions or competition among
species (see [2, 17, 18, 25, 26]).

Inspired by a delayed single-species population growth model with so-called hereditary effect (see [3, 6,
21]) as follows:

y′(t) = y(t)
[
r(t)− a(t)y(t) + b(t)y(t− µ(t))

]
,

where the net birth rate r(t), the self-inhibition rate a(t), the reproduction rate b(t), and the delay µ(t) are
nonnegative continuous functions. Clearly, such a system involves a positive feedback term b(t)y(t− µ(t)),
which is due to gestation (see [5, 16]).

Suppose further that the dynamics of two species with respective densities y1 and y2 governed by the
uncoupled system of delayed differential equations and when these two species are allowed to cohabit a
common habitat, then each species enhances the average growth rate of the other, Liu et al. [18] proposed
a delayed two-species system modelling “facultative mutualism” as follows:{

y′1(t) = y1(t)
[
r1(t)− a1(t)y1(t) + b1(t)y1(t− µ1(t)) + c1(t)y2(t− ν1(t))

]
,

y′2(t) = y2(t)
[
r2(t)− a2(t)y2(t) + b2(t)y2(t− µ2(t)) + c2(t)y1(t− ν2(t))

]
,

(1.1)

where ri, ai, bi, ci, µi and νi are continuous periodic functions, i = 1, 2. There are situations in which
the interaction of two species is mutually beneficial, for example, plant-pollinator systems. The interaction
may be facultative, meaning that the two species could survive separately, or obligatory, meaning that
each species will become extinct without the assistance of the other. In [18], some sufficient conditions are
derived for the existence and global asymptotic stability of positive periodic solutions of system (1.1) by
using Mawhin’s continuation theorem of coincidence degree theory and constructing a suitable Lyapunov
functional.

It is well known that the non-autonomous case of ecosystem is more suitable, since all species are suffering
to the fluctuation of the environment. In real world phenomenon, the environment varies due to the factors
such as seasonal effects of weather, food supplies, mating habits and harvesting, etc. So it is usual to assume
the periodicity of parameters in the systems. However, in applications, if the various constituent components
of the temporally nonuniform environment is with incommensurable (nonintegral multiples, see Example
1.1) periods, then one has to consider the environment to be almost periodic since there is no a priori reason
to expect the existence of periodic solutions. Hence, if we consider the effects of the environmental factors,
almost periodicity is sometimes more realistic and more general than periodicity. Recently, there are many
scholars concerning the almost periodic oscillations of the ecosystems, see [4, 9, 10, 14, 15, 20, 27, 29, 30,
31, 32, 33] and the references cited therein.

Example 1.1. Let us consider the following simple fishing model:{
y′1(t) = y1(t)

[
| sin(

√
2t)|+ 1− y1(t)

]
,

y′2(t) = y2(t)
[
| sin(

√
3t)|+ 1− y2(t)

]
.

(1.2)

In system (1.2), | sin(
√

2t)| is
√
2π
2 -periodic function and | sin(

√
3t)| is

√
3π
3 -periodic function, which imply

that system (1.2) is with incommensurable periods. Then there is no a priori reason to expect the existence
of positive periodic solutions of system (1.2). Thus, it is significant to study the existence of positive almost
periodic solutions of system (1.2).

In recent years, on the basis of permanence result, many scholars studied the existence, uniqueness and
global asymptotic stability of the positive almost periodic solution for some kinds of non-linear ecosystems
by using almost periodic theory [4, 9]. For more details, we refer to [10, 14, 15, 20, 27, 29, 30, 31, 32, 33].
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However, by today’s literature, there are few people obtaining the permanence of system (1.1),
i.e., it is difficult to find two certain positive constants α and β such that α ≤ lim inft→+∞ yi(t) ≤
lim supt→+∞ yi(t) ≤ β, i = 1, 2. Therefore, to the best of the author’s knowledge, so far, there are
scarcely any papers concerning the existence of positive almost periodic solutions of system
(1.1). Motivated by the above reason, the main purpose of this paper is to establish some new sufficient con-
ditions on the existence of positive almost periodic solutions of system (1.1) by using Mawhin’s continuation
theorem of coincidence degree theory.

Let R, Z and N+ denote the sets of real numbers, integers and positive integers, respectively, C(X,Y)
and C1(X,Y) be the space of continuous functions and continuously differential functions which map X into
Y, respectively. Especially, C(X) := C(X,X), C1(X) := C1(X,X). Related to a continuous bounded function
f , we use the following notations:

f l = inf
s∈R

f(s), fu = sup
s∈R

f(s), |f |∞ = sup
s∈R
|f(s)|, f̄ = lim

T→∞

1

T

∫ T

0
f(s) ds.

Throughout this paper, we always make the following assumption for system (1.1):

(H0) ri, ai, bi, ci, µi and νi are continuous nonnegative almost periodic functions, i = 1, 2.

The paper is organized as follows. In Section 2, we give some basic definitions and necessary lemmas
which will be used in later sections. In Section 3, we obtain sufficient condition for the existence of at least
one positive almost periodic solution of system (1.1) by way of Mawhin’s continuation theorem of coincidence
degree theory. In Section 4, we consider the global asymptotic stability of a unique positive almost periodic
solution to system (1.1) by means of Lyapunov functional. Some examples are also given to illustrate our
main results.

2. Definitions and lemmas

Definition 2.1 ([4, 9]). Let x ∈ C(R) = C(R,R). x is said to be almost periodic on R, if for every ε > 0,
the set

T (x, ε) = {τ : |x(t+ τ)− x(t)| < ε,∀t ∈ R}

is relatively dense, i.e., for every ε > 0, it is possible to find a real number l = l(ε) > 0, for any interval
length l, there exists a number τ = τ(ε) ∈ T (x, ε) in this interval such that

|x(t+ τ)− x(t)| < ε, ∀t ∈ R.

τ is called to the ε-almost period of x, T (x, ε) denotes the set of ε-almost periods for x and l(ε) is called to
the length of the inclusion interval for T (x, ε).

Let AP (R) denote the set of all real valued almost periodic functions on R and

AP (R,Rn) =

{
(x1, x2, . . . , xn)T : xi ∈ AP (R), i = 1, 2, . . . , n, n ∈ N+

}
.

Lemma 2.2 ([4, 9]). If x ∈ AP (R), then x is bounded and uniformly continuous on R.

Lemma 2.3 ([31]). Assume that x ∈ AP (R)∩C1(R) with x′ ∈ C(R), for every ε > 0, we have the following
conclusions:

(1) there is a point ξε ∈ [0,+∞) such that x(ξε) ∈ [x∗ − ε, x∗] and x′(ξε) = 0;

(2) there is a point ηε ∈ [0,+∞) such that x(ηε) ∈ [x∗, x∗ + ε] and x′(ηε) = 0.
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Lemma 2.4 ([32]). Assume that x ∈ AP (R). Then for arbitrary interval [a, b] with b − a = ω > 0, there
exist ξ0 ∈ [a, b], ξ1 ∈ (−∞, a] and ξ2 ∈ [ξ1 + ω,+∞) such that

x(ξ1) = x(ξ2) and x(ξ0) ≤ x(s), ∀s ∈ [ξ1, ξ2].

Lemma 2.5 ([32]). Assume that x ∈ AP (R). Then for arbitrary interval [a, b] with b − a = ω > 0, there
exist η0 ∈ [a, b], η1 ∈ (−∞, a] and η2 ∈ [η1 + ω,+∞) such that

x(η1) = x(η2) and x(η0) ≥ x(s), ∀s ∈ [η1, η2].

Lemma 2.6 ([9]). Assume that f ∈ AP (R) and f̄ = m(f) > 0. Then for all a ∈ R, there exists a positive
constant T0 independent of a such that

1

T

∫ a+T

a
f(s) ds ∈

[
f̄

2
,
3f̄

2

]
, ∀T ≥ T0.

3. Almost periodic solution

The method to be used in this paper involves the applications of the continuation theorem of coincidence
degree. This requires us to introduce a few concepts and results from Gaines and Mawhin [7].

Let X and Y be real Banach spaces, L : DomL ⊆ X → Y be a linear mapping and N : X → Y be
a continuous mapping. The mapping L is called a Fredholm mapping of index zero if ImL is closed in Y
and dimKerL = codimImL < +∞. If L is a Fredholm mapping of index zero and there exist continuous
projectors P : X → X and Q : Y → Y such that ImP = KerL, KerQ = ImL = Im(I − Q). It follows that
L|DomL∩KerP : (I − P )X → ImL is invertible and its inverse is denoted by KP . If Ω is an open bounded
subset of X, the mapping N will be called L-compact on Ω̄ if QN(Ω̄) is bounded and KP (I −Q)N : Ω̄→ X
is compact. Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ→ KerL.

Lemma 3.1 ([7]). Let Ω ⊆ X be an open bounded set, L be a Fredholm mapping of index zero and N be
L-compact on Ω̄. If all the following conditions hold:

(a) Lx 6= λNx, ∀x ∈ ∂Ω ∩DomL, λ ∈ (0, 1);

(b) QNx 6= 0, ∀x ∈ ∂Ω ∩KerL;

(c) deg{JQN,Ω ∩KerL, 0} 6= 0, where J : ImQ→ KerL is an isomorphism.

Then Lx = Nx has a solution on Ω̄ ∩DomL.

For f ∈ AP (R), we denote by

Λ(f) =

{
$ ∈ R : lim

T→∞

1

T

∫ T

0
f(s)e−i$sds 6= 0

}
,

mod(f) =

{ m∑
j=1

nj$j : nj ∈ Z,m ∈ N, $j ∈ Λ(f), j = 1, 2 . . . ,m

}
,

the set of Fourier exponents and the module of f , respectively.
Now we are in the position to present and prove our result on the existence of at least one positive almost

periodic solution for system (1.1).

Theorem 3.2. Assume that (H0) and the following conditions hold:

(H1) rli > 0, i = 1, 2,

(H2) ali > bui , i = 1, 2,
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(H3) (al1 − bu1)(al2 − bu2) > cu1c
u
2 ,

then system (1.1) admits at least one positive almost periodic solution.

Proof. Under the invariant transformation (y1, y2)
T = (ex1 , ex2)T , system (1.1) reduces to{

x′1(t) = r1(t)− a1(t)ex1(t) + b1(t)e
x1(t−µ1(t)) + c1(t)e

x2(t−ν1(t)) := F1(t),

x′2(t) = r2(t)− a2(t)ex2(t) + b2(t)e
x2(t−µ2(t)) + c2(t)e

x1(t−ν2(t)) := F2(t).
(3.1)

It is easy to see that if system (3.1) has one almost periodic solution (x1, x2)
T , then (y1, y2)

T = (ex1 , ex2)T

is a positive almost periodic solution of system (1.1). Therefore, to complete the proof it suffices to show
that system (3.1) has one almost periodic solution.

Take X = Y = V1
⊕

V2, where

V1 =

{
z = (x1, x2)

T ∈ AP (R,R2) : mod(xi) ⊆ mod(Li), ∀$ ∈ Λ(x1) ∪ Λ(x2), |$| ≥ θ0
}
,

V2 =
{
z = (x1, x2)

T ≡ (k1, k2)
T , k1, k2 ∈ R

}
,

where
L1 = L1(t, ϕ) = r1(t)− a1(t)eϕ1(0) + b1(t)e

ϕ1(−µ1(0)) + c1(t)e
ϕ2(−ν1(0)),

L2 = L2(t, ϕ) = r2(t)− a2(t)eϕ2(0) + b2(t)e
ϕ2(−µ2(0)) + c2(t)e

ϕ1(−ν2(0)),

ϕ = (ϕ1, ϕ2)
T ∈ C([−τ, 0],R2), τ = maxi=1,2{µui , νui }, θ0 is a given positive constant. Define the norm

‖z‖ = max

{
sup
s∈R
|x1(s)|, sup

s∈R
|x2(s)|

}
, ∀z = (x1, x2)

T ∈ X = Y,

then X and Y are Banach spaces with the norm ‖ · ‖. Set

L : DomL ⊆ X→ Y, Lz = L(x1, x2)
T = (x′1, x

′
2)
T ,

where DomL = {z = (x1, x2)
T ∈ X : x1, x2 ∈ C1(R), x′1, x

′
2 ∈ C(R)} and

N : X→ Y, Nz = N

[
x1(t)
x2(t)

]
=

[
F1(t)
F2(t)

]
.

With these notations system (3.1) can be written in the form

Lz = Nz, ∀z ∈ X.

It is not difficult to verify that KerL = V2, ImL = V1 is closed in Y and dim KerL = 2 = codim ImL.
Therefore, L is a Fredholm mapping of index zero (see [28]). Now define two projectors P : X → X and
Q : Y→ Y as

Pz = P

[
x1
x2

]
=

[
m(x1)
m(x2)

]
= Qz, ∀z =

[
x1
x2

]
∈ X = Y.

Then P andQ are continuous projectors such that ImP = KerL and ImL = KerQ = Im(I−Q). Furthermore,
through an easy computation we find that the inverse KP : ImL→ KerP ∩DomL of LP has the form

KP z = KP

[
x1
x2

]
=

 ∫ t0 x1(s) ds−m
[∫ t

0 x1(s) ds
]

∫ t
0 x2(s) ds−m

[∫ t
0 x2(s) ds

]  , ∀z =

[
x1
x2

]
∈ ImL.

Then QN : X→ Y and KP (I −Q)N : X→ X read
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QNz = QN

[
x1
x2

]
=

[
m(F1)
m(F2)

]
,

KP (I −Q)Nz = KP (I −Q)N

[
x1
x2

]
=

[
f [x1(t)]−Qf [x1(t)]
f [x2(t)]−Qf [x2(t)]

]
, ∀z ∈ ImL,

where f(x) is defined by f [x(t)] =
∫ t
0

[
Nx(s)−QNx(s)

]
ds. Then N is L-compact on Ω̄ (see [28]).

In order to apply Lemma 3.1, we need to search for an appropriate open-bounded subset Ω.
Corollaryresponding to the operator equation Lz = λz, λ ∈ (0, 1), we have{

x′1(t) = λ
[
r1(t)− a1(t)ex1(t) + b1(t)e

x1(t−µ1(t)) + c1(t)e
x2(t−ν1(t))

]
,

x′2(t) = λ
[
r2(t)− a2(t)ex2(t) + b2(t)e

x2(t−µ2(t)) + c2(t)e
x1(t−ν2(t))

]
.

(3.2)

Suppose that (x1, x2)
T ∈ DomL ⊆ X is a solution of system (3.2) for some λ ∈ (0, 1). By Lemma 2.3, for

every ε ∈ (0, 1), there are two points ξ
(1)
ε , ξ

(2)
ε ∈ [0,+∞) such that

x′1(ξ
(1)
ε ) = 0, x1(ξ

(1)
ε ) ∈ [x∗1 − ε, x∗1]; x′2(ξ

(2)
ε ) = 0, x2(ξ

(2)
ε ) ∈ [x∗2 − ε, x∗2], (3.3)

where x∗1 = sups∈R x1(s) and x∗2 = sups∈R x2(s).
Further, in view of (H2)-(H3), we may assume the above ε is small enough so that

al2 > eεbu2 and (al1 − eεbu1)(al2 − eεbu2) > e2εcu1c
u
2 .

It follows from (3.2) and (3.3) that

0 = r1(ξ
(1)
ε )− a1(ξ(1)ε )ex1(ξ

(1)
ε ) + b1(ξ

(1)
ε )ex1(ξ

(1)
ε −µ1(ξ

(1)
ε )) + c1(ξ

(1)
ε )ex2(ξ

(1)
ε −ν1(ξ

(1)
ε )), (3.4)

0 = r2(ξ
(2)
ε )− a2(ξ(2)ε )ex2(ξ

(2)
ε ) + b2(ξ

(2)
ε )ex2(ξ

(2)
ε −µ2(ξ

(2)
ε )) + c2(ξ

(2)
ε )ex1(ξ

(2)
ε −ν2(ξ

(2)
ε )). (3.5)

In view of (3.4), we have from (3.3) that

al1e
x∗1−ε ≤ a1(ξ(1)ε )ex1(ξ

(1)
ε )

≤ r1(ξ(1)ε ) + b1(ξ
(1)
ε )ex1(ξ

(1)
ε −µ1(ξ

(1)
ε )) + c1(ξ

(1)
ε )ex2(ξ

(1)
ε −ν1(ξ

(1)
ε ))

≤ ru1 + bu1e
x∗1 + cu1e

x∗2 .

That is,
(al1 − eεbu1)ex

∗
1 ≤ eεru1 + eεcu1e

x∗2 . (3.6)

Similarly, we obtain from (3.5) that

(al2 − eεbu2)ex
∗
2 ≤ eεru2 + eεcu2e

x∗1 . (3.7)

Substituting (3.7) into (3.6) leads to

(al1 − eεbu1)(al2 − eεbu2)ex
∗
1 ≤ eεru1 (al2 − eεbu2) + eεcu1 [eεru2 + eεcu2e

x∗1 ],

which implies that [
(al1 − eεbu1)(al2 − eεbu2)− e2εcu1cu2

]
ex

∗
1 ≤ eεru1 (al2 − eεbu2) + e2εcu1r

u
2

is equivalent to

x∗1 ≤ ln

[
eεru1 (al2 − eεbu2) + e2εcu1r

u
2

(al1 − eεbu1)(al2 − eεbu2)− e2εcu1cu2

]
.
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Letting ε→ 0 in the above inequality, we obtain

x∗1 ≤ ln

[
ru1 (al2 − bu2) + cu1r

u
2

(al1 − bu1)(al2 − bu2)− cu1cu2

]
:= ρ1. (3.8)

Substituting (3.8) into (3.7) leads to

(al2 − eεbu2)ex
∗
2 ≤ eεru2 + eεcu2e

ρ1 .

Letting ε→ 0 in the above inequality, we obtain

x∗2 ≤ ln

[
ru2 + cu2e

ρ1

al2 − bu2

]
:= ρ2. (3.9)

Also, by Lemma 2.3, for every ε ∈ (0, 1), there are two points η
(1)
ε , η

(2)
ε ∈ [0,+∞) such that

x′1(η
(1)
ε ) = 0, x1(η

(1)
ε ) ∈ [x1∗, x1∗ + ε]; x′2(η

(2)
ε ) = 0, x2(η

(2)
ε ) ∈ [x2∗, x2∗ + ε], (3.10)

where x1∗ = infs∈R x1(s) and x2∗ = infs∈R x2(s). From system (3.2), it follows from (3.10) that

0 = r1(η
(1)
ε )− a1(η(1)ε )ex1(η

(1)
ε ) + b1(η

(1)
ε )ex1(η

(1)
ε −µ1(η

(1)
ε )) + c1(η

(1)
ε )ex2(η

(1)
ε −ν1(η

(1)
ε )), (3.11)

0 = r2(η
(2)
ε )− a2(η(2)ε )ex2(η

(2)
ε ) + b2(η

(2)
ε )ex2(η

(2)
ε −µ2(η

(2)
ε )) + c2(η

(2)
ε )ex1(η

(2)
ε −ν2(η

(2)
ε )). (3.12)

In view of (3.11), we have from (3.10) that

rl1 ≤ r1(η(1)ε ) < a1(η
(1)
ε )ex1(η

(1)
ε ) ≤ au1ex1∗+ε,

which yields that

x1∗ ≥ ln
rl1
au1e

ε
.

Letting ε→ 0 in the above inequality, we obtain

x1∗ ≥ ln
rl1
au1

:= ρ3. (3.13)

Similarly, we can easily obtain from the second equation of system (3.2) that

x2∗ ≥ ln
rl2
au2

:= ρ4. (3.14)

Set C = |ρ1| + |ρ2| + |ρ3| + |ρ4| + 1. Clearly, C is independent of λ ∈ (0, 1). Consider the algebraic
equations QNz0 = 0 for z0 = (x01, x

0
2)
T ∈ R2 as follows:{

0 = m(r1)−m(a1)e
x01 +m(b1)e

x01 +m(c1)e
x02 ,

0 = m(r2)−m(a2)e
x02 +m(b2)e

x02 +m(c2)e
x01 .

Similar to the arguments as that in (3.8)-(3.9) and (3.13)-(3.14), we can easily obtain that

ρ3 ≤ x01 ≤ ρ1, ρ4 ≤ x02 ≤ ρ2.

Then ‖z0‖ = |x01|+ |x02| < C. Let Ω = {z ∈ X : ‖z‖ < C}, then Ω satisfies conditions (a) and (b) of Lemma
3.1.
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Finally, we will show that condition (c) of Lemma 3.1 is satisfied. Let us consider the homotopy

H(ι, w) = ιQNw + (1− ι)Fw, (ι, w) ∈ [0, 1]×R2,

where

Fw = F

(
x1
x2

)
=

(
r̄1 − ā1ex1 + b̄1e

x1

r̄2 − ā2ex2 + b̄2e
x2

)
.

From the above discussion it is easy to verify that H(ι, w) 6= 0 on ∂Ω ∩ KerL. By the invariance property
of homotopy, we have

deg
(
JQN,Ω ∩KerL, 0

)
= deg

(
QN,Ω ∩KerL, 0

)
= deg

(
F,Ω ∩KerL, 0

)
,

where deg(·, ·, ·) is the Brouwer degree and J is the identity mapping since ImQ = KerL.
Note that the equations of the following system{

r̄1 − ā1ex1 + b̄1e
x1 = 0,

r̄2 − ā2ex2 + b̄2e
x2 = 0

has a solution:

(u, v) =

(
ln

[
r̄1

b̄1 − ā1

]
, ln

[
r̄2

b̄2 − ā2

])
∈ Ω.

It follows from (H3) that

deg
(
JQN,Ω ∩KerL, 0

)
= deg

(
F,Ω ∩KerL, 0

)
= sign

∣∣∣∣ (b̄1 − ā1)ex1 0
0 (b̄2 − ā2)ex2

∣∣∣∣
(x1,x2)=(u,v)

= sign[(b̄1 − ā1)(b̄2 − ā2)]
= 1.

Obviously, all the conditions of Lemma 3.1 are satisfied. Therefore, system (3.1) has one almost periodic
solution, that is, system (1.1) has at least one positive almost periodic solution. This completes the proof.

Example 3.3. Consider the following model with different periodic coefficients:{
y′1(t) = y1(t)

[
| sin(

√
2t)|+ 1− y1(t) + 0.1| sin(

√
5t)|y1(t− 2) + 0.2y2(t− 1)

]
,

y′2(t) = y2(t)
[
| sin(

√
3t)|+ 1− y2(t) + 0.1| cos(

√
2t)|y2(t− 1) + 0.3y1(t− 3)

]
.

(3.15)

Obviously, rl1 = rl2 = 1, ru1 = ru2 = 2, al1 = au1 = al2 = au2 = 1, cl1 = cu1 = 0.2, cl2 = cu2 = 0.3, bl1 = bl2 = 0,
bu1 = bu2 = 0.1. It is easy to see that

al1 = 1 > 0.1 = bu1 , (al1 − bu1)(al2 − bu2) = 0.81 > 0.06 = cu1c
u
2 .

So (H0)-(H3) hold. Therefore, all the conditions in Theorem 3.2 are satisfied. By Theorem 3.2, system
(3.15) admits at least one positive almost periodic solution.

In order to broaden condition (H1) in Theorem 3.2, we give the following result:

Theorem 3.4. Assume that (H0), (H2)-(H3) and the following condition hold:

(H4) r̄i > 0, i = 1, 2,

then system (1.1) admits at least one positive almost periodic solution.
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Proof. By the same arguments as that in Theorem 3.2, we have (3.8)-(3.9). From (H4) and Lemma 2.6,
∀k ∈ R, there exists a constant π0 ∈ (0,+∞) independent of k such that

1

T

∫ k+T

k
ri(s) ds ∈

[
r̄i
2
,
3r̄i
2

]
, ∀T ≥ π0, i = 1, 2. (3.16)

∀n0 ∈ Z, by lemma 2.5, we can conclude that there exist ηn0
x1 ∈ [n0π0, n0π0 + π0], η

n0
1 ∈ (−∞, n0π0] and

ηn0
2 ∈ [n0π0 + π0,+∞) such that

x1(η
n0
1 ) = x1(η

n0
2 ) and x1(η

n0
x1 ) ≥ x1(s), ∀s ∈ [ηn0

1 , ηn0
2 ]. (3.17)

Integrating the first equation of system (3.2) from ηn0
1 to ηn0

2 leads to∫ η
n0
2

η
n0
1

[
r1(s)− a1(s)ex1(s) + b1(s)e

x1(s−µ1(s)) + c1(s)e
x2(s−ν1(s))

]
ds = 0,

which yields from (3.16)-(3.17) that

r̄1
2
≤ 1

ηn0
2 − η

n0
1

∫ η
n0
2

η
n0
1

r1(s) ds ≤ 1

ηn0
2 − η

n0
1

∫ η
n0
2

η
n0
1

a1(s)e
x1(s) ds ≤ au1ex1(η

n0
x1

),

which yields that

x1(η
n0
x1 ) ≥ ln

r̄1
2au1

. (3.18)

Further, we obtain from system (3.2) that∫ n0π0+π0

n0π0

|x′1(s)| ds =

∫ n0π0+π0

n0π0

∣∣∣∣r1(s)− a1(s)ex1(s) + b1(s)e
x1(s−µ1(s)) + c1(s)e

x2(s−ν1(s))
∣∣∣∣ds (3.19)

≤
[
ru1 + au1e

ρ1 + bu1e
ρ1 + cu1e

ρ2
]
π0 := Θ1.

It follows from (3.18)-(3.19) that

x1(t) ≥ x1(ηn0
x1 )−

∫ n0π0+π0

n0π0

|x′1(s)|ds

≥ ln
r̄1

2au1
−Θ1 := ~ρ3, ∀t ∈ [n0π0, n0π0 + π0]. (3.20)

Obviously, ~ρ3 is a constant independent of n0. So it follows from (3.20) that

x1∗ = inf
s∈R

x1(s) = inf
n0∈Z

{
min

s∈[n0π0,n0π0+π0]
x1(s)

}
≥ inf

n0∈Z
{~ρ3} = ~ρ3. (3.21)

Similar to the argument as that in (3.21), there must exist a constant ~ρ4 so that

x2∗ ≥ ~ρ4.

The remaining proof is similar to Theorem 3.2, so we omit it. This completes the proof.

Example 3.5. Consider the following model:{
y′1(t) = y1(t)

[
| sin(

√
2t)| − y1(t) + 0.1| sin(

√
5t)|y1(t− 2) + 0.2y2(t− 1)

]
,

y′2(t) = y2(t)
[
| sin(

√
3t)| − y2(t) + 0.1| cos(

√
2t)|y2(t− 1) + 0.3y1(t− 3)

]
.

(3.22)
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Obviously, rl1 = rl2 = 0, ru1 = ru2 = 1, r̄1 = r̄2 = 2
π , al1 = au1 = al2 = au2 = 1, cl1 = cu1 = 0.2, cl2 = cu2 = 0.3,

bl1 = bl2 = 0, bu1 = bu2 = 0.1. It is easy to see that

al1 = 1 > 0.1 = bu1 , (al1 − bu1)(al2 − bu2) = 0.81 > 0.06 = cu1c
u
2 .

So (H2)-(H4) hold. Therefore, all the conditions in Theorem 3.4 are satisfied. By Theorem 3.4, system
(3.22) admits at least one positive almost periodic solution.

Remark 3.6. Since rl1 = rl2 = 0 in system (3.22), it is impossible to obtain the existence of positive almost
periodic solutions to this system by Theorem 3.2.

From the proofs of Theorems 3.2-3.4, we can show that,

Corollary 3.7. Assume that (H1)-(H3) hold. Suppose further that ri, ai, bi, ci, µi and νi of system (1.1)
are continuous nonnegative periodic functions with periods αi, βi, γi, σi, ψi and ωi, respectively, i = 1, 2,
then system (1.1) admits at least one positive almost periodic solution.

Corollary 3.8. Assume that (H2)-(H4) hold. Suppose further that ri, ai, bi, ci, µi and νi of system (1.1)
are continuous nonnegative periodic functions with periods αi, βi, γi, σi, ψi and ωi, respectively, i = 1, 2,
then system (1.1) admits at least one positive almost periodic solution.

Remark 3.9. In system (3.15) or (3.22), corresponding to Corollaries 3.7-3.8, α1 = π√
2
, α2 = π√

3
, βi, σi,

ψi and ωi are arbitrary constants, i = 1, 2, γ1 = π√
5
, γ2 = π√

2
. To the best of our knowledge, through all

coefficients of system (3.15) or (3.22) are periodic functions, it is impossible to sure the existence of positive
periodic solutions of system (3.15) or (3.22) by today’s literature. However, by Corollaries 3.7-3.8, we obtain
the existence of positive almost periodic solutions of system (3.15) or (3.22).

In Corollaries 3.10-3.11, let αi = βi = γi = σi = ψi = ωi = ω, i = 1, 2, then we obtain that,

Corollary 3.10. Assume that (H1)-(H3) hold. Suppose further that ri, ai, bi, ci, µi and νi of system (1.1)
are continuous nonnegative ω-periodic functions, i = 1, 2, then system (1.1) admits at least one positive
ω-periodic solution.

Corollary 3.11. Assume that (H2)-(H4) hold. Suppose further that ri, ai, bi, ci, µi and νi of system (1.1)
are continuous nonnegative ω-periodic functions, i = 1, 2, then system (1.1) admits at least one positive
ω-periodic solution.

Remark 3.12. In [18], Liu et al. obtained Corollaries 3.10, but they couldn’t obtain Corollaries 3.8. Therefore,
our main result extends their work.

4. Global asymptotic stability

Theorem 4.1. Assume that (H0)-(H3) hold. Suppose further that

(H5) µi, νi ∈ C1(R) and sups∈R{µ′i(s), ν ′i(s)} < 1, i = 1, 2.

(H6) there exist two positive constants λ1 and λ2 such that

Θ1 = inf
s∈R

{
λ1a1(t)− λ1

b1(ϕ1(t))

1− µ′1(ϕ1(t))
− λ2

c2(φ2(t))

1− ν ′2(φ2(t))

}
> 0,

Θ2 = inf
s∈R

{
λ2a2(t)− λ1

c1(φ1(t))

1− ν ′1(φ1(t))
− λ2

b2(ϕ2(t))

1− µ′2(ϕ2(t))

}
> 0,

where ϕ1, ϕ2, φ1 and φ2 are the inverse functions of t − µ1(t), t − µ2(t), t − ν1(t) and t − ν2(t),
respectively.

Then the almost periodic solution of system (1.1) is globally asymptotically stable.
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Proof. From Theorem 3.2, we know that system (1.1) has at least one positive almost periodic solution
(y1, y2)

T . Suppose that (ȳ1, ȳ2)
T is another solution of system (1.1).

Let (x1, x2)
T = (ln y1, ln y2)

T and (x̄1, x̄2)
T = (ln ȳ1, ln ȳ2)

T , then system (1.1) is transformed into
x′1(t) = r1(t)− a1(t)y1(t) + b1(t)y1(t− µ1(t)) + c1(t)y2(t− ν1(t)),
x′2(t) = r2(t)− a2(t)y2(t) + b2(t)y2(t− µ2(t)) + c2(t)y1(t− ν2(t)),
x̄′1(t) = r1(t)− a1(t)ȳ1(t) + b1(t)ȳ1(t− µ1(t)) + c1(t)ȳ2(t− ν1(t)),
x̄′2(t) = r2(t)− a2(t)ȳ2(t) + b2(t)ȳ2(t− µ2(t)) + c2(t)ȳ1(t− ν2(t)).

(4.1)

Define
V (t) = V0(t) + V1(t) + V2(t) + V3(t) + V4(t),

where
V0(t) = λ1|x1(t)− x̄1(t)|+ λ2|x2(t)− x̄2(t)|,

V1(t) = λ1

∫ t

t−µ1(t)

b1(ϕ1(s))

1− µ′1(ϕ1(s))
|y1(s)− ȳ1(s)| ds,

V2(t) = λ1

∫ t

t−ν1(t)

c1(φ1(s))

1− ν ′1(φ1(s))
|y2(s)− ȳ2(s)|ds,

V3(t) = λ2

∫ t

t−µ2(t)

b2(ϕ2(s))

1− µ′2(ϕ2(s))
|y2(s)− ȳ2(s)| ds,

V4(t) = λ2

∫ t

t−ν2(t)

c2(φ2(s))

1− ν ′2(φ2(s))
|y1(s)− ȳ1(s)|ds.

By calculating the upper right derivative of V1 along system (4.1), it follows from the mean value theorem
for multivariate function and the monotone property of the function f(t) = t

d1t+d2
(d1, d2 ∈ R) that

D+V0(t) =λ1sgn[x1(t)− x̄1(t)][x′1(t)− x̄′1(t)] + λ2sgn[x2(t)− x̄2(t)][x′2(t)− x̄′2(t)]
≤− λ1a1(t)|y1(t)− ȳ1(t)| − λ2a2(t)|y2(t)− ȳ2(t)|

+ λ1b1(t)|y1(t− µ1(t))− ȳ1(t− µ1(t))|
+ λ1c1(t)|y2(t− ν1(t))− ȳ2(t− ν1(t))| (4.2)

+ λ2b2(t)|y2(t− µ2(t))− ȳ2(t− µ2(t))|
+ λ2c2(t)|y1(t− ν2(t))− ȳ1(t− ν2(t))|.

Further, by calculating the upper right derivative of V1, V2 and V3 along system (4.1), it follows that

D+V1(t) = λ1
b1(ϕ1(t))

1− µ′1(ϕ1(t))
|y1(t)− ȳ1(t)| − λ1b1(t)

∣∣y1(t− µ1(t))− ȳ1(t− µ1(t))∣∣, (4.3)

D+V2(t) = λ1
c1(φ1(t))

1− ν ′1(φ1(t))
|y2(t)− ȳ2(t)| − λ1c1(t)|y2(t− ν1(t))− ȳ2(t− ν1(t))|, (4.4)

D+V3(t) = λ2
b2(ϕ2(t))

1− µ′2(ϕ2(t))
|y2(t)− ȳ2(t)| − λ2b2(t)|y2(t− µ2(t))− ȳ2(t− µ2(t))|, (4.5)

D+V4(t) = λ2
c2(φ2(t))

1− ν ′2(φ2(t))
|y1(t)− ȳ1(t)| − λ2c2(t)|y1(t− ν2(t))− ȳ1(t− ν2(t))|. (4.6)

Together with (4.2)-(4.6), it follows that

D+V (t) ≤ −
{
λ1a1(t)− λ1

b1(ϕ1(t))

1− µ′1(ϕ1(t))
− λ2

c2(φ2(t))

1− ν ′2(φ2(t))

}
|y1(t)− ȳ1(t)|
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−
{
λ2a2(t)− λ1

c1(φ1(t))

1− ν ′1(φ1(t))
− λ2

b2(ϕ2(t))

1− µ′2(ϕ2(t))

}
|y2(t)− ȳ2(t)|

≤ −Γ1|y1(t)− ȳ1(t)| − Γ2|y2(t)− ȳ2(t)|, ∀t ∈ R.

Therefore, V is non-increasing. Integrating of the last inequality from 0 to t leads to

V (t) + Γ1

∫ t

0
|y1(s)− ȳ1(s)| ds+ Γ2

∫ t

0
|y2(s)− ȳ2(s)|ds ≤ V (0) < +∞, ∀t ≥ 0,

that is, ∫ +∞

0
|y1(s)− ȳ1(s)|ds < +∞,

∫ +∞

0
|y2(s)− ȳ2(s)| ds < +∞,

which implies that
lim

s→+∞
|y1(s)− ȳ1(s)| = lim

s→+∞
|y2(s)− ȳ2(s)| = 0.

This completes the proof.

Remark 4.2. Under the conditions of Theorem 3.2, if system (1.1) is globally asymptotically stable, then it
has only one positive almost periodic solution.

Corollary 4.3. Assume that (H0)-(H3), (H5)-(H6) hold, then system (1.1) admits a unique globally asymp-
totically stable positive almost periodic solution.

From Theorem 3.4 and Theorem 4.1, one has,

Corollary 4.4. Assume that (H0), (H2)-(H6) hold, then system (1.1) admits a unique globally asymptotically
stable positive almost periodic solution.

From Theorem 4.1 and Corollaries 3.7-3.8, we obtain that,

Corollary 4.5. Assume that (H1)-(H3), (H5)-(H6) hold. Suppose further that ri, ai, bi, ci, µi and νi of
system (1.1) are continuous nonnegative periodic functions with periods αi, βi, γi, σi, ψi and ωi, respectively,
i = 1, 2, then system (1.1) admits a unique globally asymptotically stable positive almost periodic solution.

Corollary 4.6. Assume that (H2)-(H6) hold. Suppose further that ri, ai, bi, ci, µi and νi of system (1.1)
are continuous nonnegative periodic functions with periods αi, βi, γi, σi, ψi and ωi, respectively, i = 1, 2,
then system (1.1) admits a unique globally asymptotically stable positive almost periodic solution.

In Corollaries 4.5-4.6, let αi = βi = γi = σi = ψi = ωi = ω, i = 1, 2, then we obtain that,

Corollary 4.7. Assume that (H1)-(H3), (H5)-(H6) hold. Suppose further that ri, ai, bi, ci, µi and νi of
system (1.1) are continuous nonnegative ω-periodic functions, i = 1, 2, then system (1.1) admits a unique
globally asymptotically stable positive ω-periodic solution.

Corollary 4.8. Assume that (H2)-(H6) hold. Suppose further that ri, ai, bi, ci, µi and νi of system
(1.1) are continuous nonnegative ω-periodic functions, i = 1, 2, then system (1.1) admits a unique globally
asymptotically stable positive ω-periodic solution.

Example 4.9. Consider the following model:{
y′1(t) = y1(t)

[
| sin(

√
2t)| − y1(t) + 0.01| sin(

√
5t)|y1(t− 0.1 cos2 t) + 0.2y2(t− 1)

]
,

y′2(t) = y2(t)
[
| sin(

√
3t)| − y2(t) + 0.2| cos(

√
2t)|y2(t− 1) + 0.03y1(t− 0.3 sin2 t)

]
.

(4.7)

In (H6), let λ1 = λ2 = 1, it is clear that all of the conditions in Corollary 4.5 are satisfied. By Corollary 4.5,
system (4.7) admits a unique globally asymptotically stable positive almost periodic solution (see Figures
1-3).
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Figure 1 Almost periodic oscillations of system (4.7)

Figure 2 Global asymptotical stability of state variable y1 of system (4.7)

Figure 3 Global asymptotical stability of state variable y2 of system (4.7)
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5. Conclusions

Mutualism is the interaction of two species of organisms that benefits both. In general, mutualism may
be obligate or facultative. Obligate mutualist may survive only by association; facultative mutualist, while
benefiting from the presence of each other, may also survive in the absence of each other. Despite the fact
that mutualism are not uncommon in nature, attempts to model such interactions mathematically are some-
what scant in the literature. In this paper we study an almost periodic nonautonomous delayed two-species
system modeling “facultative mutualism”, and this motivation comes from a nonautonomous delayed single-
species population growth model (see [5]). We obtain easily verifiable sufficient criteria for the existence
and globally asymptotic stability of positive almost periodic solutions of the above system. By compar-
ing Theorem 4.1 with the corollaryresponding results in [5, 18], we can see that the existence and globally
asymptotic stability of “positive almost periodic solution” of almost periodic nonautonomous delayed system
(1.1) corollaryrespond to the existence, globally asymptotic stability of “positive periodic solution” of corol-
laryrespond periodic nonautonomous delayed system [18] and the existence, globally asymptotic stability of
“positive equilibrium” of corollaryresponding autonomous undelayed system [5].

The conditions in Theorem 3.2 indicate that the positive almost periodic solution of system (1.1) is
existence if system (1.1) satisfies

• the birth rate of species exceeds zero;

• the undelayed intra-specific competition dominates the delayed intra-specific reproduction, and the
intra-specific competition is more significant than the inter-specific cooperation;

• the reproduction rate of species is small enough.

The condition (H4) in Theorem 3.4 implies that when the birth rate of species is not strictly positive, the
consumer-resource system (1.1) may also have a positive almost periodic oscillation. In view of Theorems
3.2-3.4, the time delays of system (1.1) have no effect on the existence of positive (almost) periodic solutions,
which is different from the periodic case as that in [18].

In order to ensuring the global asymptotic stability of system (1.1), Theorem 4.1 gives us some implica-
tions as follows:

• the changing rate of the gestation or maturation period (i.e., the time delays) is important to ensure
the global asymptotic stability of the system;

• the self-inhibition rate of species is more significant than the reproduction rate of all species;

• the birth rate of species has no effect on the global asymptotic stability of the system.

In order to obtain a more accurate description of the ecological system perturbed by human exploitation
activities such as planting and harvesting and so on, we need to consider the impulsive differential equations.
In this paper, we only studied system (1.1) without impulses, whether system (1.1) with impulses can be
discussed in the same methods or not are still open problems. We will continue to study these problems in
the future.

Acknowledgements

This work is supported by the Project of High School Educational Reform in Shanxi Province under
Grant J2015118 and the Program for the (Reserved) Discipline Leaders of Taiyuan Institute of Technology.
The authors thank the referee for his/her careful reading of the original manuscript and valuable comments
and suggestions that greatly improved the presentation of this work.



Z. Guo, C. Li, J. Nonlinear Sci. Appl. 9 (2016), 2316–2330 2330

References

[1] R. C. Burns, R. W. Hardy, Nitrogen fixation in bacteria and higher plants, Springer-Verlag, New York (1975).1
[2] F. D. Chen, J. H. Yang, L. J. Chen, X. D. Xie, On a mutualism model with feedback controls, Appl. Math.

Comput., 214 (2009), 581–587.1
[3] M. Fan, K. Wang, Periodic solutions of single population model with hereditary effect, Math. Appl., 13 (2000),

58–61.1
[4] A. M. Fink, Almost Periodic Differential Equations, Springer, Berlin, (1974).1, 1, 2.1, 2.2
[5] H. I. Freedman, J. H. Wu, Periodic solution of single species models with periodic delay, SIAM J. Math. Anal.,

23 (1992), 689–701.1, 5
[6] H. Fujimoto, Dynamical behaviours for population growth equations with delays, Nonlinear Anal. TMA, 31 (1998),

549–558.1
[7] R. E. Gaines, J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer, Berlin, (1977).

3, 3.1
[8] M. E. Hale, The biology of lichens, second ed., Arnold, London, (1974).1
[9] C. Y. He, Almost Periodic Differential Equations, Higher Education Publishing House, Beijing, (1992).1, 1, 2.1,

2.2, 2.6
[10] X. Z. He, Almost periodic solutions of a competition system with dominated infinite delays, Tóhoku Math. J., 50
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