Research Article

Journal of Nonlinear Science and Applications Print: ISSN 2008-1898 Online: ISSN 2008-1901

Strong convergence of an iterative algorithm for accretive operators and nonexpansive mappings

Jong Soo Jung

Department of Mathematics, Dong-A University, Busan 49315, Korea.

Communicated by Y. J. Cho

Abstract

In this paper, an iterative algorithm for finding a common point of the set of zeros of an accretive operator and the set of fixed points of a nonexpansive mapping is considered in a uniformly convex Banach space having a weakly continuous duality mapping. Under suitable control conditions, strong convergence of the sequence generated by proposed algorithm to a common point of two sets is established. The main theorems develop and complement the recent results announced by researchers in this area. ©2016 All rights reserved.

Keywords: Iterative algorithm, accretive operator, resolvent, zeros, nonexpansive mappings, fixed points, variational inequality, weakly continuous duality mapping, uniformly convex, contractive mapping, weakly contractive mapping.

2010 MSC: 47H06, 47H09, 47H10, 47J25, 49M05, 65J15.

1. Introduction

Let E be a real Banach space with the norm $\|\cdot\|$ and the dual space E^* . The value of $x^* \in E^*$ at $y \in E$ is denoted by $\langle y, x^* \rangle$ and the normalized duality mapping \mathcal{J} from E into 2^{E^*} is defined by

 $\mathcal{J}(x) = \{x^* \in E^* : \langle x, x^* \rangle = \|x\| \|x^*\|, \|x\| = \|x^*\|\}, \quad \forall x \in E.$

Recall that a (possibly multivalued) operator $A \subset E \times E$ with the domain D(A) and the range R(A)in E is accretive if, for each $x_i \in D(A)$ and $y_i \in Ax_i$ (i = 1, 2), there exists a $j \in \mathcal{J}(x_1 - x_2)$ such that

Email address: jungjs@dau.ac.kr (Jong Soo Jung)

 $\langle y_1 - y_2, j \rangle \ge 0$. (Here \mathcal{J} is the normalized duality mapping.) In a Hilbert space, an accretive operator is also called monotone operator. The set of zero of A is denoted by $A^{-1}0$, that is,

$$A^{-1}0 := \{ z \in D(A) : 0 \in Az \}.$$

If $A^{-1}0 \neq \emptyset$, then the inclusion $0 \in Ax$ is solvable.

Iterative methods has extensively been studied over the last forty years for constructions of zeros of accretive operators (see, for instance, [4, 5, 6, 12, 13, 15, 17] and the references therein). In particular, in order to find a zero of an accretive operator, Rockafellar [17] introduced a powerful and successful algorithm which is recognized as Rockafellar proximal point algorithm: for any initial point $x_0 \in E$, a sequence $\{x_n\}$ is generated by

$$x_{n+1} = J_{r_n}(x_n + e_n), \quad \forall n \ge 0,$$

where $J_r = (I + rA)^{-1}$ for all r > 0, is the resolvent of A and $\{e_n\}$ is an error sequence in a Hilbert space E. Bruck [6] proposed the following iterative algorithm in a Hilbert space E: for any fixed point $u \in E$,

$$x_{n+1} = J_{r_n}(u). \quad \forall n \ge 0$$

Xu [23] in 2006 and Song and Yang [20] in 2009 obtained the strong convergence of the following regularization method for Rockafellar's proximal point algorithm in a Hilbert space E: for any initial point $x_0 \in E$

$$x_{n+1} = J_{r_n}(\alpha_n u + (1 - \alpha_n)x_n + e_n), \quad \forall n \ge 0,$$
(1.1)

where $\{\alpha_n\} \subset (0,1), \{e_n\} \subset E$ and $\{r_n\} \subset (0,\infty)$. In 2009, Song [18] introduced an iterative algorithm for finding a zero of an accretive operator A in a reflexive Banach space E with a uniformly Gâteaux differentiable norm satisfying that every weakly compact convex subset of E has the fixed point property for nonexpansive mappings: for any initial point $x_0 \in E$,

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) J_{r_n}(\alpha_n u + (1 - \alpha_n) x_n), \quad \forall n \ge 0,$$
(1.2)

where $\{\alpha_n\}, \{\beta_n\} \subset (0, 1)$ and $\{r_n\} \subset (0, \infty)$. Zhang and Song [24] considered the iterative method (1.1) for finding a zero of an accretive operator A in a uniformly convex Banach space E with a uniformly Gâteaux differentiable norm (or with a weakly sequentially continuous normalized duality mapping \mathcal{J}). In order to obtain strong convergence of the sequence generated by algorithm (1.1) to a zero of an accretive operator A together with weaker conditions on $\{\beta_n\}$ and $\{r_n\}$ than ones in [18], they used the well-known inequality in uniformly convex Banach spaces (see Xu [21]). In 2013, Jung [10] extended the results of [18, 24] to viscosity iterative algorithms along with different conditions on $\{\alpha_n\}, \{\beta_n\}$ and $\{r_n\}$. Very recently, Jung [11] introduced the following iterative algorithm for finding a common point of the set of zeros of accretive operator A and the set of fixed points of a nonexpansive mapping S in a uniformly convex Banach space Ewith a uniformly Gâteaux differentiable norm:

$$x_{n+1} = J_{r_n}(\alpha_n f x_n + (1 - \alpha_n) S x_n), \quad \forall n \ge 0,$$

$$(1.3)$$

where $x_0 \in C$, which is a closed convex subset of E; $f : C \to C$ is a contractive mapping; and $\{\alpha_n\} \subset (0,1)$; $\{r_n\} \subset (0,\infty)$.

In this paper, as a continuation of study in this direction, we consider the iterative algorithm (1.3) for finding a common point in $A^{-1}0 \cap Fix(S)$ in a uniformly convex Banach space E having a weakly continuous duality mapping \mathcal{J}_{φ} with gauge function φ , where $A^{-1}0$ is the set of zeros of an accretive operator Aand Fix(S) is the fixed point set of a nonexpansive mapping S. Under suitable control conditions, we prove that the sequence generated by proposed iterative algorithm converges strongly to a common point in $A^{-1}0 \cap Fix(S)$, which is a solution of a certain variational inequality. As an application, we study the iterative algorithm (1.3) with a weak contractive mapping. The main results improve, develop and supplement the corresponding results of Song [18], Zhang and Song [24], Jung [10, 11] and Song et al [19], and some recent results in the literature.

2. Preliminaries and lemmas

Let *E* be a real Banach space with the norm $\|\cdot\|$, and let E^* be its dual. When $\{x_n\}$ is a sequence in *E*, then $x_n \to x$ (resp., $x_n \rightharpoonup x$, $x_n \stackrel{*}{\rightharpoonup} x$) will denote strong (resp., weak, weak^{*}) convergence of the sequence $\{x_n\}$ to *x*.

Recall that a mapping $f: E \to E$ is said to be *contractive* on E if there exists a constant $k \in (0, 1)$ such that $||f(x) - f(y)|| \le k ||x - y||$, $\forall x, y \in E$. An accretive operator A is said to satisfy the range condition if $\overline{D(A)} \subset R(I + rA)$ for all r > 0, where I is an identity operator of E and $\overline{D(A)}$ denotes the closure of the domain D(A) of A. An accretive operator A is called *m*-accretive if R(I + rA) = E for each r > 0. If A is an accretive operator which satisfies the range condition, then we can define, for each r > 0 a mapping $J_r: R(I + rA) \to D(A)$ defined by $J_r = (I + rA)^{-1}$, which is called the resolvent of A. We know that J_r is nonexpansive (i.e., $||J_rx - J_ry|| \le ||x - y||$, $\forall x, y \in R(I + rA)$) and $A^{-1}0 = Fix(J_r) = \{x \in D(J_r): J_rx = x\}$ for all r > 0. Moreover, for r > 0, t > 0 and $x \in E$,

$$J_r x = J_t \left(\frac{t}{r} x + \left(1 - \frac{t}{r} \right) J_r x \right), \tag{2.1}$$

which is referred to as the *Resolvent Identity* (see [1, 7], where more details on accretive operators can be found).

The norm of E is said to be *Gâteaux differentiable* if

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for each x, y in its unit sphere $U = \{x \in E : ||x|| = 1\}$. Such an E is called a *smooth* Banach space.

A Banach space E is said to be uniformly convex if for all $\varepsilon \in [0, 2]$, there exists $\delta_{\varepsilon} > 0$ such that

$$||x|| = ||y|| = 1$$
 implies $\frac{||x+y||}{2} < 1 - \delta_{\varepsilon}$ whenever $||x-y|| \ge \varepsilon$.

Let q > 1 and M > 0 be two fixed real numbers. Then a Banach space is uniformly convex if and only if there exists a continuous strictly increasing convex function $g; [0, \infty) \to [0, \infty)$ with g(0) = 0 such that

$$\|\lambda x + (1-\lambda)y\|^2 \le \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)g(\|x-y\|),$$
(2.2)

for all $x, y \in B_M(0) = \{x \in E : ||x|| \le M\}$. For more detail, see Xu [21].

By a gauge function we mean a continuous strictly increasing function φ defined on $\mathbb{R}^+ := [0, \infty)$ such that $\varphi(0) = 0$ and $\lim_{r \to \infty} \varphi(r) = \infty$. The mapping $\mathcal{J}_{\varphi} : E \to 2^{E^*}$ defined by

$$\mathcal{J}_{\varphi}(x) = \{ f \in E^* : \langle x, f \rangle = \|x\| \|f\|, \|f\| = \varphi(\|x\|) \}, \quad \forall x \in E$$

is called the *duality mapping* with gauge function φ . In particular, the duality mapping with gauge function $\varphi(t) = t$ denoted by \mathcal{J} , is referred to as the *normalized duality mapping*. The following property of duality mapping is well-known ([7]):

$$\mathcal{J}_{\varphi}(\lambda x) = \operatorname{sign} \lambda \left(\frac{\varphi(|\lambda| \cdot ||x||)}{||x||} \right) \mathcal{J}(x), \quad \forall x \in E \setminus 0, \ \lambda \in \mathbb{R},$$

where \mathbb{R} is the set of all real numbers; in particular, $\mathcal{J}(-x) = -\mathcal{J}(x)$, $\forall x \in E$. It is known that E is smooth if and only if the normalized duality mapping \mathcal{J} is single-valued.

We say that a Banach space E has a weakly continuous duality mapping if there exists a gauge function φ such that the duality mapping \mathcal{J}_{φ} is single-valued and continuous from the weak topology to the weak^{*} topology, that is, for any $\{x_n\} \in E$ with $x_n \rightharpoonup x$, $\mathcal{J}_{\varphi}(x_n) \stackrel{*}{\rightharpoonup} \mathcal{J}_{\varphi}(x)$. For example, every l^p space $(1 has a weakly continuous duality mapping with gauge function <math>\varphi(t) = t^{p-1}$ ([1, 7]). Set

$$\Phi(t) = \int_0^t \varphi(\tau) d\tau, \ \forall t \ge 0$$

Then for 0 < k < 1, $\varphi(kx) \leq \varphi(x)$,

$$\Phi(kt) = \int_0^{kt} \varphi(\tau) d\tau = k \int_0^t \varphi(kx) dx \le k \int_0^t \varphi(x) dx = k \Phi(t),$$

and moreover

$$\mathcal{J}_{\varphi}(x) = \partial \Phi(\|x\|), \quad \forall x \in E,$$

where ∂ denotes the subdifferential in the sense convex analysis, i.e., $\partial \Phi(||x||) = \{x^* \in E^* : \Phi(||y||) \geq 0\}$ $\Phi(\|x\|) + \langle x^*, y - x \rangle, \ \forall y \in E \}.$

We need the following lemmas for the proof of our main results. We refer to [1, 7] for Lemma 2.1 and Lemma 2.2.

Lemma 2.1. Let E be a real Banach space, and let φ be a continuous strictly increasing function on \mathbb{R}^+ such that $\varphi(0) = 0$ and $\lim_{r \to \infty} \varphi(r) = \infty$. Define

$$\Phi(t) = \int_0^t \varphi(\tau) d\tau, \quad \forall t \in \mathbb{R}^+$$

Then the following inequality holds:

$$\Phi(\|x+y\|) \le \Phi(\|x\|) + \langle y, j_{\varphi}(x+y) \rangle, \quad \forall x \ y \in E,$$

where $j_{\varphi}(x+y) \in \mathcal{J}_{\varphi}(x+y)$. In particular, if E is smooth, then one has

$$||x+y||^2 \le ||x||^2 + 2\langle y, \mathcal{J}(x+y)\rangle, \quad \forall x, \ y \in E.$$

Lemma 2.2 (Demiclosedness principle). Let E be a reflexive Banach space having a weakly continuous duality mapping \mathcal{J}_{φ} with gauge function φ , let C be a nonempty closed convex subset of E, and let $S: C \to E$ be a nonexpansive mapping. Then the mapping I - S is demiclosed on C, where I is the identity mapping; that is, $x_n \rightarrow x$ in E and $(I - S)x_n \rightarrow y$ imply that $x \in C$ and (I - S)x = y.

Lemma 2.3 ([14, 22]). Let $\{s_n\}$ be a sequence of nonnegative real numbers satisfying

$$s_{n+1} \le (1 - \lambda_n)s_n + \lambda_n \delta_n + \gamma_n, \quad \forall n \ge 0,$$

where $\{\lambda_n\}$, $\{\delta_n\}$ and $\{\gamma_n\}$ satisfy the following conditions:

- (i) $\{\lambda_n\} \subset [0,1] \text{ and } \sum_{n=0}^{\infty} \lambda_n = \infty;$ (ii) $\limsup_{n \to \infty} \delta_n \leq 0 \text{ or } \sum_{n=0}^{\infty} \lambda_n |\delta_n| < \infty;$ (iii) $\gamma_n \geq 0 \ (n \geq 0), \ \sum_{n=0}^{\infty} \gamma_n < \infty.$

Then $\lim_{n\to\infty} s_n = 0.$

Recall that a mapping $g: C \to C$ is said to be weakly contractive ([2]) if

$$||g(x) - g(y)|| \le ||x - y|| - \psi(||x - y||), \text{ for all } x, y \in C,$$

where $\psi: [0, +\infty) \to [0, +\infty)$ is a continuous and strictly increasing function such that ψ is positive on $(0,\infty)$ and $\psi(0)=0$. As a special case, if $\psi(t)=(1-k)t$ for $t\in[0,+\infty)$, where $k\in(0,1)$, then the weakly contractive mapping q is a contraction with constant k. Rhodes [16] obtained the following result for the weakly contractive mapping (see also [2]).

Lemma 2.4 ([16]). Let (X, d) be a complete metric space and g be a weakly contractive mapping on X. Then g has a unique fixed point p in X.

The following Lemma was given in [3].

Lemma 2.5 ([3]). Let $\{s_n\}$ and $\{\gamma_n\}$ be two sequences of nonnegative real numbers, and let $\{\lambda_n\}$ be a sequence of positive numbers satisfying the conditions:

(i) $\sum_{n=0}^{\infty} \lambda_n = \infty;$ (ii) $\lim_{n \to \infty} \frac{\gamma_n}{\lambda_n} = 0.$

Let the recursive inequality

$$s_{n+1} \le s_n - \lambda_n \psi(s_n) + \gamma_n, \quad n \ge 0,$$

be given, where $\psi(t)$ is a continuous and strict increasing function on $[0,\infty)$ with $\psi(0) = 0$. Then $\lim_{n\to\infty} s_n =$ 0.

3. Iterative algorithms

Let E be a real Banach space, let C be a nonempty closed convex subset of E, let $A \subset E \times E$ be an accretive operator in E such that $A^{-1}0 \neq \emptyset$ and $\overline{D(A)} \subset C \subset \bigcap_{r>0} R(I+rA)$, and let J_r be the resolvent of A for each r > 0. Let $S: C \to C$ be a nonexpansive mapping with $F(S) \cap A^{-1}0 \neq \emptyset$, and let $f: C \to C$ be a contractive mapping with a constant $k \in (0, 1)$.

In this section, first we introduce the following algorithm that generates a net $\{x_t\}_{t \in (0,1)}$ in an implicit way:

$$x_t = J_r(tfx_t + (1-t)Sx_t).$$
(3.1)

We prove strong convergence of $\{x_t\}$ as $t \to 0$ to a point q in $A^{-1}0 \cap Fix(S)$ which is a solution of the following variational inequality:

$$\langle (I-f)q, \mathcal{J}_{\varphi}(q-p) \rangle \le 0, \quad \forall p \in A^{-1}0 \cap Fix(S).$$
 (3.2)

We also propose the following algorithm which generates a sequence in an explicit way:

$$x_{n+1} = J_{r_n}(\alpha_n f x_n + (1 - \alpha_n) S x_n), \quad \forall n \ge 0,$$

$$(3.3)$$

where $\{\alpha_n\}, \{\beta_n\} \subset (0,1), \{r_n\} \subset (0,\infty)$ and $x_0 \in C$ is an arbitrary initial guess, and establish the strong convergence of this sequence to a point q in $A^{-1}0 \cap Fix(S)$, which is also a solution of the variational inequality (3.2).

3.1. Strong convergence of the implicit algorithm

Now, for $t \in (0, 1)$, consider a mapping $Q_t : C \to C$ defined by

$$Q_t x = J_r(tfx + (1-t)Sx), \quad \forall x \in C.$$

It is easy to see that Q_t is a contractive mapping with a constant 1 - (1 - k)t. Indeed, we have

$$\begin{aligned} \|Q_t x - Q_t y\| &\leq t \|fx - fy\| + \|(1-t)Sx - (I-t)Sy\| \\ &\leq tk \|x - y\| + (1-t)\|x - y\| \\ &= (1 - (1-k)t)\|x - y\|. \end{aligned}$$

Hence Q_t has a unique fixed point, denoted by x_t , which uniquely solves the fixed point equation (3.1).

The following proposition about the basic properties of $\{x_t\}$ and $\{y_t\}$ was given in [11], where $y_t =$ $tfx_t + (1-t)Sx_t$ for $t \in (0,1)$. We include its proof for the sake of completeness.

Proposition 3.1 ([11]). Let E be a real uniformly convex Banach space, let C be a nonempty closed convex subset of E, let $A \subset E \times E$ be an accretive operator in E such that $A^{-1}0 \neq \emptyset$ and $\overline{D(A)} \subset C \subset$ $\cap_{r>0} R(I+rA)$, and let J_r be the resolvent of A for each r>0. Let $S: C \to C$ be a nonexpansive mapping with $Fix(S) \cap A^{-1}0 \neq \emptyset$, and let $f: C \to C$ be a contractive mapping with a constant $k \in (0,1)$. Let the net $\{x_t\}$ be defined via (3.1), and let $\{y_t\}$ be a net defined by $y_t = tfx_t + (1-t)Sx_t$ for $t \in (0,1)$. Then

- (1) $\{x_t\}$ and $\{y_t\}$ are bounded for $t \in (0, 1)$;
- (2) x_t defines a continuous path from (0,1) in C and so does y_t ;
- (3) $\lim_{t\to 0} \|y_t Sx_t\| = 0;$
- (4) $\lim_{t\to 0} ||y_t J_r y_t|| = 0;$
- (5) $\lim_{t\to 0} ||x_t y_t|| = 0;$
- (6) $\lim_{t\to 0} ||y_t Sy_t|| = 0.$

Proof. (1) Let $p \in Fix(S) \cap A^{-1}0$. Observing $p = Sp = J_r p$, we have

$$||x_t - p|| = ||J_r(tfx_t + (1 - t)Sx_t) - J_rp|| = ||Sy_t - Sp||$$

$$\leq ||y_t - p||$$

$$= ||t(fx_t - fp) + t(fp - p) + (1 - t)(Sx_t - Sp)||$$

$$\leq tk||x_t - p|| + t||fp - p|| + (1 - t)||x_t - p||.$$

So, it follows that

$$||x_t - p|| \le \frac{||fp - p||}{1 - k}$$
 and $||y_t - p|| \le \frac{||fp - p||}{1 - k}$

Hence $\{x_t\}$ and $\{y_t\}$ are bounded and so are $\{fx_t\}$, $\{Sx_t\}$, $\{J_rx_t\}$, $\{Sy_t\}$ and $\{J_ry_t\}$. (2) Let $t, t_0 \in (0, 1)$ and calculate

$$\begin{aligned} \|x_t - x_{t_0}\| &= \|J_r(tfx_t + (1-t)Sx_t) - J_r(t_0fx_{t_0} + (1-t_0)Sx_{t_0})\| \\ &\leq \|(t-t_0)fx_t + t_0(fx_t - fx_{t_0}) \\ &- (t-t_0)Sx_t + (1-t_0)Sx_t - (1-t_0)J_rx_{t_0}\| \\ &\leq |t-t_0|\|fx_t\| + t_0k\|x_t - x_{t_0}\| \\ &+ |t-t_0|\|Sx_t\| + (1-t_0)\|x_t - x_{t_0}\|. \end{aligned}$$

It follows that

$$||x_t - x_{t_0}|| \le \frac{||fx_t|| + ||Sx_t||}{t_0(1-k)} |t - t_0|.$$

This show that x_t is locally Lipschitzian and hence continuous. Also we have

$$||y_t - y_{t_0}|| \le \frac{||fx_t|| + ||Sx_t||}{t_0(1-k)} |t - t_0|,$$

and hence y_t is a continuous path.

(3) By the boundedness of $\{fx_t\}$ and $\{J_rx_t\}$ in (1), we have

$$||y_t - Sx_t|| = ||tfx_t + (1 - t)Sx_t - Sx_t||$$

\$\le t||fx_t - Sx_t|| \rightarrow 0 as \$t \rightarrow 0.\$

(4) Let $p \in Fix(S) \cap A^{-1}0$. Then it follows from Resolvent Identity (2.1) that

$$J_r y_t = J_{\frac{r}{2}} (\frac{1}{2} y_t + \frac{1}{2} J_r y_t).$$

Then we have

$$||J_r y_t - p|| = ||J_{\frac{r}{2}}(\frac{1}{2}y_t + \frac{1}{2}J_r y_t) - p|| \le ||\frac{1}{2}(y_t - p) + \frac{1}{2}(J_r y_t - p)||.$$

By the inequality (2.2) $(q = 2, \lambda = \frac{1}{2})$, we obtain that

$$\begin{aligned} \|J_{r}y_{t} - p\|^{2} &\leq \|J_{\frac{r}{2}}(\frac{1}{2}y_{t} + \frac{1}{2}J_{r}y_{t}) - p\|^{2} \\ &\leq \frac{1}{2}\|y_{t} - p\|^{2} + \frac{1}{2}\|J_{r}y_{t} - p\|^{2} - \frac{1}{4}g(\|y_{t} - J_{r}y_{t}\|) \\ &\leq \frac{1}{2}\|y_{t} - p\|^{2} + \frac{1}{2}\|y_{t} - p\|^{2} - \frac{1}{4}g(\|y_{t} - J_{r}y_{t}\|) \\ &= \|y_{t} - p\|^{2} - \frac{1}{4}g(\|y_{t} - J_{r}y_{t}\|). \end{aligned}$$

$$(3.4)$$

Thus, from (3.1), the convexity of the real function $\psi(t) = t^2$ $(t \in (-\infty, \infty))$ and the inequality (3.4) we have

$$\begin{aligned} \|x_t - p\|^2 &= \|J_r y_t - p\|^2 \\ &\leq \|y_t - p\|^2 - \frac{1}{4}g(\|y_t - J_r y_t\|) \\ &= \|t(fx_t - p) + (1 - t)(Sx_t - p)\|^2 - \frac{1}{4}g(\|y_t - J_r y_t\|) \\ &\leq t\|fx_t - p\|^2 + (1 - t)\|x_t - p\|^2 - \frac{1}{4}g(\|y_t - J_r y_t\|), \end{aligned}$$

and hence

$$\frac{1}{4}g(\|y_t - J_r y_t\|)) \le t(\|f x_t - p\|^2 - \|x_t - p\|^2).$$

By boundedness of $\{fx_t\}$ and $\{x_t\}$, letting $t \to 0$ yields

$$\lim_{t \to 0} g(\|y_t - J_r y_t\|) = 0$$

Thus, from the property of the function g in (2.2) it follows that

$$\lim_{t \to 0} \|y_t - J_r y_t\| = 0$$

(5) By (4), we have

$$||x_t - y_t|| \le ||x_t - J_r y_t|| + ||J_r y_t - y_t|| = ||J_r y_t - y_t|| \to 0 \quad (t \to 0).$$

(6) By (3) and (5), we have

$$\begin{aligned} \|y_t - Sy_t\| &\leq \|y_t - Sx_t\| + \|Sx_t - Sy_t\| \\ &\leq \|y_t - Sx_t\| + \|x_t - y_t\| \to 0 \quad (t \to 0). \end{aligned}$$

We establish strong convergence of the net $\{x_t\}$ as $t \to 0$, which guarantees the existence of solutions of the variational inequality (3.2).

Theorem 3.2. Let E be a real uniformly convex Banach space having a weakly continuous duality mapping \mathcal{J}_{φ} with gauge function φ , let C be a nonempty closed convex subset of E, let $A \subset E \times E$ be an accretive operator in E such that $A^{-1}0 \neq \emptyset$ and $\overline{D(A)} \subset C \subset \bigcap_{r>0} R(I+rA)$, and let \mathcal{J}_r be the resolvent of A for each r > 0. Let $S : C \to C$ be a nonexpansive mapping with $Fix(S) \cap A^{-1}0 \neq \emptyset$, and let $f : C \to C$ be a contractive mapping with a constant $k \in (0, 1)$. Let $\{x_t\}$ be a net defined via (3.1), and let $\{y_t\}$ be a net defined by $y_t = tfx_t + (1-t)Sx_t$ for $t \in (0, 1)$. Then the nets $\{x_t\}$ and $\{y_t\}$ converge strongly to a point q of $A^{-1}0 \cap Fix(S)$ as $t \to 0$, which solves the variational inequality (3.2).

Proof. Note that the definition of the weak continuity of duality mapping \mathcal{J}_{φ} implies that E is smooth. By (1) in Proposition 3.1, we see that $\{x_t\}$ and $\{y_t\}$ are bounded. Assume $t_n \to 0$. Put $x_n := x_{t_n}$ and $y_n := y_{t_n}$. Since E is reflexive, we may assume that $y_n \to q$ for some $q \in C$. Since \mathcal{J}_{φ} is weakly continuous, $\|y_n - J_r y_n\| \to 0$ and $\|y_n - S y_n\| \to 0$ by (4) and (6) in Proposition 3.1, respectively, we have by Lemma 2.2, $q = Sq = J_rq$, and hence $q \in A^{-1}0 \cap Fix(S)$.

Now we prove that $\{x_t\}$ and $\{y_t\}$ converge strongly to a point in $A^{-1}0 \cap Fix(S)$ provided it remains bounded when $t \to 0$.

Let $\{t_n\}$ be a sequence in (0, 1) such that $t_n \to 0$ and $x_{t_n} \rightharpoonup q$ as $n \to \infty$. By (5) in Proposition, $y_{t_n} \rightharpoonup q$ as $n \to \infty$ too. Then argument above shows that $q \in A^{-1}0 \cap Fix(S)$. We next show that $x_{t_n} \to q$. As a matter of fact, we have by Lemma 2.1,

$$\begin{aligned} \Phi(\|x_{t_n} - q\|) &\leq \Phi(\|y_{t_n} - q\|) \\ &= \Phi(\|t_n(fx_{t_n} - fq) + (1 - t_n)(Sx_{t_n} - q) + t_n(fq - q)\|) \\ &\leq \Phi(\|t_nk\|x_{t_n} - q\| + (1 - t_n)\|x_{t_n} - q\|) + t_n\langle fq - q, \mathcal{J}_{\varphi}(y_{t_n} - q)\rangle \\ &= \Phi((1 - (1 - k)t_n)\|x_{t_n} - q\|) + t_n\langle fq - q, \mathcal{J}_{\varphi}(y_{t_n} - q)\rangle \\ &\leq (1 - (1 - k)t_n)\Phi(\|x_{t_n} - q\|) + t_n\langle fq - q, \mathcal{J}_{\varphi}(y_{t_n} - q)\rangle. \end{aligned}$$

This implies that

$$\Phi(\|x_{t_n} - q\|) \le \frac{1}{1-k} \langle fq - q, \mathcal{J}_{\varphi}(y_{t_n} - q) \rangle.$$

Observing that $y_{t_n} \rightharpoonup q$ implies $\mathcal{J}_{\varphi}(y_{t_n} - q) \rightarrow 0$, we conclude from the last inequality

$$\Phi(\|x_{t_n} - q\|) \to 0.$$

Hence $x_{t_n} \to q$ and $y_{t_n} \to q$ by (5) in Proposition 3.1.

We prove that the entire net $\{x_t\}$ and $\{y_t\}$ converge strongly to q. To this end, we assume that two sequences $\{t_n\}$ and $\{s_n\}$ in (0,1) are such that

$$x_{t_n} \to q, y_{t_n} \to q \text{ and } x_{s_n} \to \overline{q}, y_{s_n} \to \overline{q}.$$

We have to show that $q = \overline{q}$. Indeed, for $p \in A^{-1}0 \cap Fix(S)$, it is easy to see that

$$\begin{aligned} \langle y_t - Sx_t, \mathcal{J}_{\varphi}(x_t - p) \rangle &= \langle y_t - x_t, \mathcal{J}_{\varphi}(x_t - p) \rangle + \langle x_t - p + p - Sx_t, \mathcal{J}_{\varphi}(x_t - p) \rangle \\ &\geq \langle y_t - x_t, \mathcal{J}_{\varphi}(x_t - p) \rangle + \Phi(\|x_t - p\|) - \langle Sx_t - p, \mathcal{J}_{\varphi}(x_t - p) \rangle \\ &\geq \langle y_t - x_t, \mathcal{J}_{\varphi}(x_t - p) \rangle + \Phi(\|x_t - p\|) - \|x_t - p\| \| \mathcal{J}_{\varphi}(x_t - p) \| \\ &\geq \langle y_t - x_t, \mathcal{J}_{\varphi}(x_t - p) \rangle + \Phi(\|x_t - p\|) - \Phi(\|x_t - p\|) \\ &= \langle y_t - x_t, \mathcal{J}_{\varphi}(x_t - p) \rangle. \end{aligned}$$

On the other hand, since

$$y_t - Sx_t = -\frac{t}{1-t}(y_t - fx_t),$$

we have for $t \in (0, 1)$ and $p \in F(S) \bigcap A^{-1}0$,

$$\langle y_t - fx_t, \mathcal{J}_{\varphi}(x_t - p) \rangle \leq \frac{1 - t}{t} \langle x_t - y_t, \mathcal{J}_{\varphi}(x_t - p) \rangle$$

$$\leq (1 - \frac{1}{t}) \|x_t - y_t\| \|\mathcal{J}_{\varphi}(x_t - p)\|$$

$$\leq \|x_t - y_t\| \|\mathcal{J}_{\varphi}(x_t - p)\|.$$

$$(3.5)$$

In particular, we obtain

$$\langle y_{t_n} - f x_{t_n}, \mathcal{J}_{\varphi}(x_{t_n} - p) \rangle \leq ||x_{t_n} - y_{t_n}|| ||\mathcal{J}_{\varphi}(x_{t_n} - p)||$$

and

$$\langle y_{s_n} - fx_{s_n}, \mathcal{J}_{\varphi}(x_{s_n} - p) \rangle \leq ||x_{s_n} - y_{s_n}|| ||\mathcal{J}_{\varphi}(x_{s_n} - p)||.$$

Letting $n \to \infty$ in above inequalities, we deduce by (5) in Proposition 3.1,

$$\langle q - fq, \mathcal{J}_{\varphi}(q-p) \rangle \leq 0$$
, and $\langle \overline{q} - f\overline{q}, \mathcal{J}_{\varphi}(\overline{q}-p) \rangle \leq 0$.

In particular, we have

$$\langle q - fq, \mathcal{J}_{\varphi}(q - \overline{q}) \rangle \leq 0$$
, and $\langle \overline{q} - f\overline{q}, \mathcal{J}_{\varphi}(\overline{q} - q) \rangle \leq 0$.

Adding up these inequalities yields

$$\begin{aligned} \|q - \overline{q}\| \|\mathcal{J}_{\varphi}(q - \overline{q})\| &= \langle q - \overline{q}, \mathcal{J}_{\varphi}(q - \overline{q}) \rangle \\ &\leq \langle fq - f\overline{q}, \mathcal{J}_{\varphi}(q - \overline{q}) \rangle \leq k \|q - \overline{q}\| \|\mathcal{J}_{\varphi}(q - \overline{q})\|. \end{aligned}$$

This implies that $(1-k) \|q - \overline{q}\| \|\mathcal{J}_{\varphi}(q - \overline{q})\| \leq 0$. Hence $q = \overline{q}$ and $\{x_t\}$ and $\{y_t\}$ converge strongly to q.

Finally we show that q is the unique solution of the variational inequality (3.2). Indeed, since $x_t, y_t \to q$ by (5) in Proposition 3.1 and $fx_t \to fq$ as $t \to 0$, letting $t \to 0$ in (3.5), we have

$$\langle (I-f)q, \mathcal{J}_{\varphi}(q-p) \rangle \leq 0, \quad \forall p \in A^{-1}0 \cap Fix(S).$$

This implies that q is a solution of the variational inequality (3.2). If $\tilde{q} \in A^{-1}0 \cap Fix(S)$ is other solution of the variational inequality (3.2), then

$$\langle (I-f)\widetilde{q}, \mathcal{J}_{\varphi}(\widetilde{q}-q) \rangle \le 0.$$
 (3.6)

Interchanging \overline{q} and q, we obtain

$$\langle (I-f)q, \mathcal{J}_{\varphi}(q-\widetilde{q}) \rangle \le 0.$$
 (3.7)

Adding up (3.6) and (3.7) yields

$$(1-k)\|\widetilde{q}-q\|\|\mathcal{J}_{\varphi}(\widetilde{q}-q)\| \le 0.$$

That is, $q = \tilde{q}$. Hence q is the unique solution of the variational inequality (3.2). This completes the proof.

3.2. Strong convergence of the explicit algorithm

Now, using Theorem 3.2, we show the strong convergence of the sequence generated by the explicit algorithm (3.3) to a point $q \in A^{-1}0 \cap Fix(S)$, which is also a solution of the variational inequality (3.2).

Theorem 3.3. Let E be a real uniformly convex Banach space having a weakly continuous duality mapping \mathcal{J}_{φ} with gauge function φ , let C be a nonempty closed convex subset of E, let $A \subset E \times E$ be an accretive operator in E such that $A^{-1}0 \neq \emptyset$ and $\overline{D(A)} \subset C \subset \cap_{r>0} R(I+rA)$, and let J_{r_n} be the resolvent of A for each $r_n > 0$. Let r > 0 be any given positive number, and let $S : C \to C$ be a nonexpansive mapping with $Fix(S) \cap A^{-1}0 \neq \emptyset$. Let $\{\alpha_n\}, \{\beta_n\} \in (0,1)$ and $\{r_n\} \subset (0,\infty)$ satisfy the conditions:

(C1)
$$\lim_{n\to\infty} \alpha_n = 0;$$

(C2)
$$\sum_{n=0}^{\infty} \alpha_n = \infty;$$

(C3) $|\alpha_{n+1} - \alpha_n| \le o(\alpha_{n+1}) + \sigma_n$, $\sum_{n=0}^{\infty} \sigma_n < \infty$ (the perturbed control condition); (C4) $\lim_{n\to\infty} r_n = r$ and $r_n \ge \varepsilon > 0$ for $n \ge 0$ and $\sum_{n=0}^{\infty} |r_{n+1} - r_n| < \infty$.

Let $f: C \to C$ be a contractive mapping with a constant $k \in (0,1)$ and $x_0 = x \in C$ be chosen arbitrarily. Let $\{x_n\}$ be a sequence generated by

$$x_{n+1} = J_{r_n}(\alpha_n f x_n + (1 - \alpha_n) S x_n), \quad \forall n \ge 0,$$

$$(3.8)$$

and let $\{y_n\}$ be a sequence defined by $y_n = \alpha_n f x_n + (1 - \alpha_n) J_{r_n} x_n$. Then $\{x_n\}$ and $\{y_n\}$ converge strongly to $q \in A^{-1}0 \cap Fix(S)$, where q is the unique solution of the variational inequality (3.2).

Proof. First, we note that by Theorem 3.2, there exists the unique solution q of the variational inequality

$$\langle (I-f)q, \mathcal{J}_{\varphi}(q-p) \rangle \leq 0, \quad \forall p \in A^{-1}0 \cap Fix(S),$$

where $q = \lim_{t\to 0} x_t = \lim_{t\to 0} y_t$ with x_t and y_t being defined by $x_t = J_r(tfx_t + (1-t)Sx_t)$ and $y_t = tfx_t + (1-t)Sx_t$ for 0 < t < 1, respectively.

We divide the proof into the several steps.

Step 1. We show that $||x_n - p|| \le \max\{||x_0 - p||, \frac{1}{1-k}||f(p) - p||\}$ for all $n \ge 0$ and all $p \in A^{-1}0 \cap Fix(S)$, and so $\{x_n\}, \{y_n\}, \{J_{r_n}x_n\}, \{Sx_n\}, \{J_{r_n}y_n\}, \{Sy_n\}$ and $\{f(x_n)\}$ are bounded. Indeed, let $p \in A^{-1}0 \cap Fix(S)$. From $A^{-1}0 = Fix(J_r)$ for each r > 0, we know $p = Sp = J_{r_n}p$. Then we have

$$\begin{aligned} \|x_{n+1} - p\| &\leq \|y_n - p\| \\ &= \|\alpha_n (fx_n - p) + (1 - \alpha_n) (Sx_n - Sp)\| \\ &\leq \alpha_n \|fx_n - p\| + (1 - \alpha_n) \|x_n - p\| \\ &\leq \alpha_n (\|fx_n - fp\| + \|fp - p\|) + (1 - \alpha_n) \|x_n - p\| \\ &\leq \alpha_n k \|x_n - p\| + \alpha_n \|fp - p\| + (1 - \alpha_n) \|x_n - p\| \\ &= (1 - (1 - k)\alpha_n) \|x_n - p\| + (1 - k)\alpha_n \frac{\|fp - p\|}{1 - k} \\ &\leq \max \bigg\{ \|x_n - p\|, \frac{1}{1 - k} \|f(p) - p\| \bigg\}. \end{aligned}$$

Using an induction, we obtain

$$||x_n - p|| \le \max\left\{ ||x_0 - p||, \frac{1}{1 - k} ||fp - p|| \right\} \text{ and}$$
$$||y_n - p|| \le \max\left\{ ||x_0 - p||, \frac{1}{1 - k} ||fp - p|| \right\}, \quad \forall n \ge 0.$$

Hence $\{x_n\}$ is bounded, and so are $\{y_n\}$, $\{Sx_n\}$, $\{J_{r_n}x_n\}$, $\{Sy_n\}$, $\{J_{r_n}y_n\}$ and $\{fx_n\}$. Moreover, it follows from condition (C1) that

$$||y_n - Sx_n|| = \alpha_n ||f(x_n) - Sx_n|| \to 0 \quad (n \to \infty).$$
 (3.9)

Step 2. We show that $\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0$. First, from the resolvent identity (2.1) we observe that

$$\begin{aligned} \|J_{r_{n}}y_{n} - J_{r_{n-1}}y_{n-1}\| \\ &= \left\|J_{r_{n-1}}\left(\frac{r_{n-1}}{r_{n}}y_{n} + \left(1 - \frac{r_{n-1}}{r_{n}}\right)J_{r_{n}}y_{n}\right) - J_{r_{n-1}}y_{n-1}\right\| \\ &\leq \left\|\frac{r_{n-1}}{r_{n}}y_{n} + \left(1 - \frac{r_{n-1}}{r_{n}}\right)J_{r_{n}}y_{n}\right) - y_{n-1}\right\| \\ &\leq \|y_{n} - y_{n-1}\| + \left|1 - \frac{r_{n-1}}{r_{n}}\right| (\|y_{n} - y_{n-1}\| + \|J_{r_{n}}y_{n} - y_{n-1}\|) \\ &\leq \|y_{n} - y_{n-1}\| + \left|\frac{r_{n} - r_{n-1}}{\varepsilon}\right| M_{1}, \end{aligned}$$
(3.10)

where $M_1 = \sup_{n \ge 0} \{ \|J_{r_n} y_n - y_{n-1}\| + \|y_n - y_{n-1}\| \}$. Since

$$\begin{cases} y_n = \alpha_n f(x_n) + (1 - \alpha_n) S x_n, \\ y_{n-1} = \alpha_{n-1} f(x_{n-1}) + (1 - \alpha_{n-1}) S x_{n-1}, \quad \forall n \ge 1, \end{cases}$$

by (3.10), we have for $n \ge 1$,

$$\begin{aligned} \|x_{n+1} - x_n\| &= \|J_{r_n} y_n - J_{r_{n-1}} y_{n-1}\| \leq \|y_n - y_{n-1}\| + \left|\frac{r_n - r_{n-1}}{\varepsilon}\right| M_1 \\ &= \|(1 - \alpha_n)(Sx_n - Sx_{n-1}) + \alpha_n(fx_n - fx_{n-1}) \\ &+ (\alpha_n - \alpha_{n-1})(fx_{n-1} - Sx_{n-1})\| + \left|\frac{r_n - r_{n-1}}{\varepsilon}\right| M_1 \\ &\leq (1 - \alpha_n)\|x_n - x_{n-1}\| + k\alpha_n\|x_n - x_{n-1}\| \\ &+ |\alpha_n - \alpha_{n-1}|M_2 + \left|1 - \frac{r_{n-1}}{r_n}\right| M_1 \\ &\leq (1 - (1 - k)\alpha_n)\|x_n - x_{n-1}\| + |\alpha_n - \alpha_{n-1}|M_2 + \left|\frac{r_n - r_{n-1}}{\varepsilon}\right| M_1, \end{aligned}$$
(3.11)

where $M_2 = \sup\{||f(x_n) - Sx_n|| : n \ge 0\}$. Thus, by (C3) we have

$$||x_{n+1} - x_n|| \le (1 - (1 - k)\alpha_n) ||x_n - x_{n-1}|| + M_2(o(\alpha_n) + \sigma_{n-1}) + M_1 \left| \frac{r_n - r_{n-1}}{\varepsilon} \right|.$$

In (3.11), by taking $s_{n+1} = ||x_{n+1} - x_n||$, $\lambda_n = (1-k)\alpha_n$, $\lambda_n \delta_n = M_2 o(\alpha_n)$ and

$$\gamma_n = M_1 \left| \frac{r_n - r_{n-1}}{\varepsilon} \right| + M_2 \sigma_{n-1}$$

we have

$$s_{n+1} \le (1 - \lambda_n)s_n + \lambda_n\delta_n + \gamma_n$$

Hence, by conditions (C1), (C2), (C3), (C4) and Lemma 2.3, we obtain

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$

Step 3. We show that $\lim_{n\to\infty} ||y_n - J_{r_n}y_n|| = 0$. Indeed, it follows from Resolvent Identity (2.1) that

$$J_{r_n}y_n = J_{\frac{r_n}{2}}(\frac{1}{2}y_n + \frac{1}{2}J_{r_n}y_n).$$

Then we have

$$\|J_{r_n}y_n - p\| = \|J_{\frac{r_n}{2}}(\frac{1}{2}y_n + \frac{1}{2}J_{r_n}y_n) - p\| \le \|\frac{1}{2}(y_n - p) + \frac{1}{2}(J_{r_n}y_n - p)\|.$$

By the inequality (2.2) $(\lambda = \frac{1}{2})$, we obtain that

$$||J_{r_n}y_n - p||^2 \le ||J_{\frac{r_n}{2}}(\frac{1}{2}x_n + \frac{1}{2}J_{r_n}y_n) - p||^2$$

$$\le \frac{1}{2}||y_n - p||^2 + \frac{1}{2}||J_{r_n}y_n - p||^2 - \frac{1}{4}g(||y_n - J_{r_n}y_n||)$$

$$\le \frac{1}{2}||y_n - p||^2 + \frac{1}{2}||y_n - p||^2 - \frac{1}{4}g(||y_n - J_{r_n}y_n||)$$

$$= ||y_n - p||^2 - \frac{1}{4}g(||y_n - J_{r_n}y_n||).$$
(3.12)

Thus, the convexity of the real function $\psi(t) = t^2$ $(t \in (-\infty, \infty))$ and the inequality (3.12), we have for $p \in A^{-1}0 \cap Fix(S)$,

$$\begin{aligned} \|x_{n+1} - p\|^2 &= \|J_{r_n}y_n - p\|^2 \\ &\leq \|y_n - p\|^2 - \frac{1}{4}g(\|y_n - J_{r_n}y_n\|) \\ &\leq \|\alpha_n fx_n + (1 - \alpha_n)Sx_n - p\|^2 - \frac{1}{4}g(\|y_n - J_{r_n}y_n\|) \\ &\leq \alpha_n \|fx_n - p\|^2 + (1 - \alpha_n)\|Sx_n - p\|^2 - \frac{1}{4}g(\|y_n - J_{r_n}y_n\|) \\ &\leq \alpha_n \|fx_n - p\|^2 + (1 - \alpha_n)\|x_n - p\|^2 - \frac{1}{4}g(\|y_n - J_{r_n}y_n\|), \end{aligned}$$

and hence

$$\frac{1}{4}g(\|y_n - J_{r_n}y_n\|) - \alpha_n(\|fx_n - p\|^2 - \|x_n - p\|^2) \le \|x_n - p\|^2 - \|x_{n+1} - p\|^2.$$

Case 1. When $\frac{1}{4}g(\|y_n - J_{r_n}y_n\|) \le \alpha_n(\|fx_n - p\|^2 - \|x_n - p\|^2)$, by the boundedness of $\{fx_n\}$ and $\{x_n\}$ and condition (C1),

$$\lim_{n \to \infty} g(\|y_n - J_{r_n} y_n\|) = 0.$$

Case 2. When $\frac{1}{4}g(\|y_n - J_{r_n}y_n\|) > \alpha_n(\|fx_n - p\|^2 - \|x_n - p\|^2)$, we obtain

$$\sum_{n=0}^{N} \left[\frac{1}{4}g(\|y_n - J_{r_n}y_n\|) - \alpha_n(\|fx_n - p\|^2 - \|x_n - p\|^2)\right] \le \|x_0 - p\|^2 - \|x_N - p\|^2 \le \|x_0 - p\|^2.$$

Therefore

$$\sum_{n=0}^{\infty} \left[\frac{1}{4}g(\|y_n - J_{r_n}y_n\|) - \alpha_n(\|fx_n - p\|^2 - \|x_n - p\|^2)\right] < \infty,$$

and so

$$\lim_{n \to \infty} \left[\frac{1}{4}g(\|y_n - J_{r_n}y_n\|) - \alpha_n(\|fx_n - p\|^2 - \|x_n - p\|^2)\right] = 0$$

By condition (C1), we have

$$\lim_{n \to \infty} g(\|y_n - J_{r_n}y_n\|) = 0.$$

Thus, from the property of the function g in (2.2) it follows that

$$\lim_{n \to \infty} \|y_n - J_{r_n} y_n\| = 0.$$

Step 4. We show that $\lim_{n\to\infty} ||x_n - y_n|| = 0$. Indeed, from Step 2 and Step 3 it follows that

$$\begin{aligned} \|x_n - y_n\| &\leq \|x_n - x_{n+1}\| + \|x_{n+1} - y_n\| \\ &\leq \|x_n - x_{n+1}\| + \|J_{r_n}y_n - y_n\| \to 0, \quad (n \to \infty). \end{aligned}$$

Step 5. We show that $\lim_{n\to\infty} ||y_n - Sy_n|| = 0$. In fact, by (3.9) and Step 4, we have

$$||y_n - Sy_n|| \le ||y_n - Sx_n|| + ||Sx_n - Sy_n|| \le ||y_n - Sx_n|| + ||x_n - y_n|| \to 0 \quad (n \to \infty).$$

Step 6. We show that $\lim_{n\to\infty} ||x_n - Sx_n|| = 0$. Indeed, from Step 4 and Step 5 it follows that

$$||x_n - Sx_n|| \le ||x_n - y_n|| + ||y_n - Sy_n|| + ||Sy_n - Sx_n||$$

$$\le 2||x_n - y_n|| + ||y_n - Sy_n|| \to \infty \quad (n \to \infty).$$

Step 7. We show that $\lim_{n\to\infty} ||x_n - J_{r_n}x_n|| = 0$. Indeed, by Step 3 and Step 4, we obtain

$$||x_n - J_{r_n} x_n|| \le ||x_n - y_n|| + ||y_n - J_{r_n} y_n|| + ||J_{r_n} y_n - J_{r_n} x_n||$$

$$\le 2||y_n - x_n|| + ||y_n - J_{r_n} y_n|| \to 0 \quad (n \to \infty).$$

Step 8. We show that $\lim_{n\to\infty} ||y_n - J_r y_n|| = 0$ for $r = \lim_{n\to\infty} r_n$. Indeed, from the resolvent identity (2.1) and boundedness of $\{J_{r_n} y_n\}$ we obtain

$$\|J_{r_n}y_n - J_ry_n\| = \left\|J_r\left(\frac{r}{r_n}y_n + \left(1 - \frac{r}{r_n}\right)J_{r_n}y_n\right) - J_ry_n\right\|$$

$$\leq \left\|\left(\frac{r}{r_n}y_n + \left(1 - \frac{r}{r_n}\right)J_{r_n}y_n\right) - y_n\right\|$$

$$\leq \left|1 - \frac{r}{r_n}\right|\|y_n - J_{r_n}y_n\| \to 0 \quad (n \to \infty).$$
(3.13)

Hence, by Step 3 and (3.13), we have

$$||y_n - J_r y_n|| \le ||y_n - J_{r_n} y_n|| + ||J_{r_n} y_n - J_r y_n|| \to 0 \ (n \to \infty).$$

Step 9. We show that $\lim_{n\to\infty} ||x_n - J_r x_n|| = 0$. Indeed, by Step 4 and Step 8, we have

$$\begin{aligned} \|x_n - J_r x_n\| &\leq \|x_n - y_n\| + \|y_n - J_r y_n\| + \|J_r y_n - J_r x_n\| \\ &\leq 2\|x_n - y_n\| + \|y_n - J_r y_n\| \to \infty \quad (n \to \infty). \end{aligned}$$

Step 10. We show that $\limsup_{n\to\infty} \langle (I-f)q, \mathcal{J}_{\varphi}(q-y_n) \rangle \leq 0$. To prove this, let a subsequence $\{y_{n_j}\}$ of $\{y_n\}$ be such that

$$\limsup_{n \to \infty} \langle (I - f)q, \mathcal{J}_{\varphi}(q - y_n) \rangle = \lim_{j \to \infty} \langle (I - f)q, \mathcal{J}_{\varphi}(q - y_{n_j}) \rangle$$

and $y_{n_j} \rightarrow z$ for some $z \in E$. Then, by Step 5, Step 8 and Lemma 2.2, we have $z \in A^{-1}0 \cap Fix(S)$. From the weak continuity of J_{φ} it follows that

$$w - \lim_{i \to \infty} \mathcal{J}_{\varphi}(q - y_{n_i}) = w - \mathcal{J}_{\varphi}(q - z).$$

Hence, from (3.2) we have

$$\lim_{n \to \infty} \sup_{n \to \infty} \langle (I - f)q, \mathcal{J}_{\varphi}(q - y_n) \rangle = \lim_{j \to \infty} \langle (I - f)q, \mathcal{J}_{\varphi}(q - y_{n_j}) \rangle$$
$$= \langle (I - f)q, \mathcal{J}_{\varphi}(q - z) \rangle \leq 0.$$

Step 11. We show that $\lim_{n\to\infty} ||x_n - q|| = 0$. By using (3.8), we have

$$||x_{n+1} - q|| \le ||y_n - q|| = ||\alpha_n (fx_n - q) + (1 - \alpha_n) (Sx_n - q)||.$$

Applying Lemma 2.1, we obtain

$$\Phi(\|x_{n+1} - q\|) \leq \Phi(\|y_n - q\|) \\
\leq \Phi(\|\alpha_n(fx_n - fq) + (1 - \alpha_n)(Sx_n - q)\|) + \alpha_n \langle fq - q, \mathcal{J}_{\varphi}(y_n - q) \rangle \\
\leq \Phi(k\alpha_n\|x_n - q\| + (1 - \alpha_n)\|x_n - q\|) + \alpha_n \langle fq - q, \mathcal{J}_{\varphi}(y_n - q) \rangle \\
\leq (1 - (1 - k)\alpha_n)\Phi(\|x_n - q\|) + \alpha_n \langle fq - q, \mathcal{J}_{\varphi}(y_n - q) \rangle.$$
(3.14)

Put

$$\lambda_n = (1-k)\alpha_n$$
 and $\delta_n = \frac{1}{1-k} \langle (I-f)q, \mathcal{J}_{\varphi}(q-y_n) \rangle$

From conditions (C1), (C2) and Step 8 it follows that $\lambda_n \to 0$, $\sum_{n=0}^{\infty} \lambda_n = \infty$ and $\limsup_{n \to \infty} \delta_n \leq 0$. Since (3.14) reduces to

$$\Phi(\|x_{n+1} - q\|) \le (1 - \lambda_n)\Phi(\|x_n - q\|) + \lambda_n \delta_n$$

from Lemma 2.3 with $\gamma_n = 0$ we conclude that $\lim_{n \to \infty} \Phi(||x_n - q||) = 0$, and thus $\lim_{n \to \infty} x_n = q$. By Step 4, we also have $\lim_{n \to \infty} y_n = q$. This completes the proof.

Corollary 3.4. Let E, C, A, J_{r_n}, S, f and r > 0 be as in Theorem 3.3. Let $\{\alpha_n\} \in (0, 1)$ and $\{r_n\} \subset (0, \infty)$ satisfy conditions (C1) – (C4) in Theorem 3.3. Let $x_0 = x \in C$ be chosen arbitrarily, and let $\{x_n\}$ be a sequence generated by

$$x_{n+1} = J_{r_n}(\alpha_n f x_n + (1 - \alpha_n) S x_n + e_n), \quad \forall n \ge 0.$$

where $\{e_n\} \subset E$ satisfies $\sum_{n=0}^{\infty} ||e_n|| < \infty$ or $\lim_{n\to\infty} \frac{||e_n||}{\alpha_n} = 0$, and let $\{y_n\}$ be a sequence defined by $y_n = \alpha_n f x_n + (1 - \alpha_n) S x_n + e_n$. Then $\{x_n\}$ and $\{y_n\}$ converge strongly to $q \in F(S) \cap A^{-1}0$, where q is the unique solution of the variational inequality (3.2).

Proof. Let $z_{n+1} = J_{r_n}(\alpha_n f z_n + (1 - \alpha_n) S z_n)$ for $n \ge 0$. Then, by Theorem 3.3, $\{z_n\}$ converges strongly to a point $q \in A^{-1}0 \cap Fix(S)$, where q is the unique solution of the variational inequality (3.2), and we derive

$$\begin{aligned} \|x_{n+1} - z_{n+1}\| &\leq \|\alpha_n f x_n + (1 - \alpha_n) S x_n - (\alpha_n z_n + (1 - \alpha_n) S z_n + e_n)\| \\ &\leq \alpha_n \|f x_n - f z_n\| + (1 - \alpha_n) \|S x_n - S z_n\| + \|e_n\| \\ &\leq (1 - (1 - k)\alpha_n) \|x_n - z_n\| + \|e_n\|. \end{aligned}$$

By Lemma 2.3, we obtain

$$\lim_{n \to \infty} \|x_n - z_n\| = 0$$

and hence the desired result follows.

Finally, as in [9], we consider the iterative method with the weakly contractive mapping

Theorem 3.5. Let E, C, A, J_{r_n}, S , and r > 0 be as in Theorem 3.3. Let $\{\alpha_n\} \in (0, 1)$ and $\{r_n\} \subset (0, \infty)$ satisfy the conditions (C1) – (C4) in Theorem 3.3. Let $g: C \to C$ be a weakly contractive mapping with the function ψ . Let $x_0 = x \in C$ be chosen arbitrarily, and let $\{x_n\}$ be a sequence generated by

$$x_{n+1} = J_{r_n}(\alpha_n g x_n + (1 - \alpha_n) S x_n), \quad \forall n \ge 0.$$

and $\{y_n\}$ be a sequence defined by $y_n = \alpha_n g x_n + (1 - \alpha_n) S x_n$. Then $\{x_n\}$ and $\{y_n\}$ converge strongly to $q \in F(S) \cap A^{-1}0$.

Proof. Since E is smooth, there is a sunny nonexpansive retraction Q from C onto $A^{-1}0 \cap Fix(S)$. Then Qg is a weakly contractive mapping of C into itself. Indeed, for all $x, y \in C$,

$$||Qgx - Qgy|| \le ||gx - gy|| \le ||x - y|| - \psi(||x - y||)$$

Lemma 2.4 assures that there exists a unique element $x^* \in C$ such that $x^* = Qgx^*$. Such a $x^* \in C$ is an element of $A^{-1}0 \cap Fix(S)$.

Now we define an iterative scheme as follows:

$$w_{n+1} = J_{r_n}(\alpha_n g x^* + (1 - \alpha_n) S w_n) \quad \forall n \ge 0.$$
(3.15)

2407

Let $\{w_n\}$ be the sequence generated by (3.15). Then Theorem 3.3 with a constant $f = gx^*$ assures that $\{w_n\}$ converges strongly to $Qgx^* = x^*$ as $n \to \infty$. For any n > 0, we have

$$\begin{aligned} \|x_{n+1} - w_{n+1}\| &= \|J_{r_n}(\alpha_n g x_n + (1 - \alpha_n) S x_n) - J_{r_n}(\alpha_n g x^* + (1 - \alpha_n) S w_n)\| \\ &\leq \alpha_n (\|g x_n - g x^*\|) + (1 - \alpha_n) \|x_n - w_n\| \\ &\leq \alpha_n [\|g x_n - g w_n\| + \|g w_n - g x^*\|] + (1 - \alpha_n) \|x_n - w_n\| \\ &\leq \alpha_n [\|x_n - w_n\| - \psi(\|x_n - w_n\|) + \|w_n - x^*\| \\ &- \psi(\|w_n - x^*\|)] + (1 - \alpha_n) \|x_n - w_n\| \\ &\leq \|x_n - w_n\| - \alpha_n \psi(\|x_n - w_n\|) + \alpha_n \|w_n - x^*\|. \end{aligned}$$

Thus, we obtain for $s_n = ||x_n - w_n||$ the following recursive inequality:

$$s_{n+1} \le s_n - \alpha_n \psi(s_n) + \alpha_n \|w_n - x^*\|.$$

Since $\lim_{n\to\infty} ||w_n - x^*|| = 0$, from condition (C2) and Lemma 2.5 it follows that $\lim_{n\to\infty} ||x_n - w_n|| = 0$. Hence

$$\lim_{n \to \infty} \|x_n - x^*\| \le \lim_{n \to \infty} (\|x_n - w_n\| + \|w_n - x^*\|) = 0.$$

By Step 4 in the proof of Theorem 3.3, we also have $\lim_{n\to\infty} y_n = q$. This completes the proof.

Remark 3.6.

- (1) Theorem 3.2, Theorem 3.3 and Theorem 3.5 develop and complement the recent corresponding results studied by many authors in this direction (see, for instance, [10, 11, 18, 20, 24] and the references therein).
- (2) The control condition (C3) in Theorem 3.3 can be replaced by the condition $\sum_{n=0}^{\infty} |\alpha_{n+1} \alpha_n| < \infty$; or the condition $\lim_{n\to\infty} \frac{\alpha_n}{\alpha_{n+1}} = 1$, which are not comparable ([8]).

Acknowledgements

This study was supported by research funds from Dong-A University.

References

- R. P. Agarwal, D. O'Regan, D. R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, New York, (2009).2, 2
- Y. I. Alber, S. Guerre-Delabriere, L. Zelenko, Principle of weakly contractive maps in metric spaces, Comm. Appl. Nonlinear Anal., 5 (1998), 45–68.2
- [3] Y. I. Alber, S. Reich, J. C. Yao, Iterative methods for solving fixed-point problems with nonself-mappings in Banach spaces, Abstr. Appl. Anal., 4 (2003), 193–216.2, 2.5
- [4] T. D. Benavides, G. L. Acedo, H. K. Xu, Iterative solutions for zeros of accretive operators, Math. Nachr., 248-249 (2003), 62–71.1
- [5] H. Bréziz, P. L. Lions, Products infinis de resolvents, Israel J. Math., 29 (1978), 329–345.1
- [6] R. E. Jr. Bruck, A strongly convergent iterative solution of $0 \in U(x)$ for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl., 48 (1974), 114–126.1
- [7] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, (1990).2, 2
- [8] J. S. Jung, Viscosity approximation methods for a family of finite nonexpansive mappings in Banach spaces, Nonlinear Anal., 64 (2006), 2536–2552.3.6
- [9] J. S. Jung, Convergence of composite iterative methods for finding zeros of accretive operators, Nonlinear Anal., 71 (2009), 1736–1746.3.2
- [10] J. S. Jung, Some results on Rockafellar-type iterative algorithms for zeros of accretive operators, J. Inequal. Appl., 2013 (2013), 19 pages. 1, 1, 3.6
- [11] J. S. Jung, Iterative algorithms for zeros of accretive operators and fixed points of nonexpansive mappings in Banach spaces, J. Comput. Anal. Appl., 20 (2016), 688–706.1, 1, 3.1, 3.1, 3.6

- [12] J. S. Jung, W. Takahashi, Dual convergence theorems for the infinite products of resolvents in Banach spaces, Kodai Math. J., 14 (1991), 358–365.1
- [13] J. S. Jung, W. Takahashi, On the asymptotic behavior of infinite products of resolvents in Banach spaces, Nonlinear Anal., 20 (1993), 469–479.1
- [14] L. S. Liu, Iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., 194 (1995), 114–125.2.3
- [15] S. Reich, On infinite products of resolvents, Atti. Accad. naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 63 (1997), 338–340.1
- [16] B. E. Rhodes, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683–2693.2, 2.4
- [17] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877–898.1
- [18] Y. Song, New iterative algorithms for zeros of accretive operators, J. Korean Math. Soc., 46 (2009), 83–97.1, 1, 1, 3.6
- [19] Y. Song, J. I. Kang, Y. J. Cho, On iterations methods for zeros of accretive operators in Banach spaces, Appl. Math. Comput., 216 (2010), 1007–1017.1
- [20] Y. Song, C. Yang, A note on a paper "A regularization method for the proximal point algorithm", J. Global Optim., 43 (2009), 115–125.1, 3.6
- [21] H. K. Xu, Inequality in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127–1138.1, 2
- [22] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240–256.2.3
- [23] H. K Xu, A regularization method for the proximal point algorithm, J. Global Optim., 36 (2006), 115–125.1
- [24] Q. Zhang, Y. Song, Halpern type proximal point algorithm of accretive operators, Nonlinear Anal., 75 (2012), 1859–1868.1, 1, 3.6