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Abstract

In this paper, an iterative algorithm for finding a common point of the set of zeros of an accretive
operator and the set of fixed points of a nonexpansive mapping is considered in a uniformly convex Banach
space having a weakly continuous duality mapping. Under suitable control conditions, strong convergence
of the sequence generated by proposed algorithm to a common point of two sets is established. The main
theorems develop and complement the recent results announced by researchers in this area. c©2016 All
rights reserved.

Keywords: Iterative algorithm, accretive operator, resolvent, zeros, nonexpansive mappings, fixed points,
variational inequality, weakly continuous duality mapping, uniformly convex, contractive mapping, weakly
contractive mapping.
2010 MSC: 47H06, 47H09, 47H10, 47J25, 49M05, 65J15.

1. Introduction

Let E be a real Banach space with the norm ‖ · ‖ and the dual space E∗. The value of x∗ ∈ E∗ at y ∈ E
is denoted by 〈y, x∗〉 and the normalized duality mapping J from E into 2E

∗
is defined by

J (x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖}, ∀x ∈ E.

Recall that a (possibly multivalued) operator A ⊂ E × E with the domain D(A) and the range R(A)
in E is accretive if , for each xi ∈ D(A) and yi ∈ Axi (i = 1, 2), there exists a j ∈ J (x1 − x2) such that
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〈y1 − y2, j〉 ≥ 0. (Here J is the normalized duality mapping.) In a Hilbert space, an accretive operator is
also called monotone operator. The set of zero of A is denoted by A−10, that is,

A−10 := {z ∈ D(A) : 0 ∈ Az}.

If A−10 6= ∅, then the inclusion 0 ∈ Ax is solvable.
Iterative methods has extensively been studied over the last forty years for constructions of zeros of

accretive operators (see, for instance, [4, 5, 6, 12, 13, 15, 17] and the references therein). In particular, in
order to find a zero of an accretive operator, Rockafellar [17] introduced a powerful and successful algorithm
which is recognized as Rockafellar proximal point algorithm: for any initial point x0 ∈ E, a sequence {xn}
is generated by

xn+1 = Jrn(xn + en), ∀n ≥ 0,

where Jr = (I + rA)−1 for all r > 0, is the resolvent of A and {en} is an error sequence in a Hilbert space
E. Bruck [6] proposed the following iterative algorithm in a Hilbert space E: for any fixed point u ∈ E,

xn+1 = Jrn(u). ∀n ≥ 0.

Xu [23] in 2006 and Song and Yang [20] in 2009 obtained the strong convergence of the following
regularization method for Rockafellar’s proximal point algorithm in a Hilbert space E: for any initial point
x0 ∈ E

xn+1 = Jrn(αnu+ (1− αn)xn + en), ∀n ≥ 0, (1.1)

where {αn} ⊂ (0, 1), {en} ⊂ E and {rn} ⊂ (0,∞). In 2009, Song [18] introduced an iterative algorithm
for finding a zero of an accretive operator A in a reflexive Banach space E with a uniformly Gâteaux
differentiable norm satisfying that every weakly compact convex subset of E has the fixed point property
for nonexpansive mappings: for any initial point x0 ∈ E,

xn+1 = βnxn + (1− βn)Jrn(αnu+ (1− αn)xn), ∀n ≥ 0, (1.2)

where {αn}, {βn} ⊂ (0, 1) and {rn} ⊂ (0,∞). Zhang and Song [24] considered the iterative method (1.1) for
finding a zero of an accretive operator A in a uniformly convex Banach space E with a uniformly Gâteaux
differentiable norm (or with a weakly sequentially continuous normalized duality mapping J ). In order to
obtain strong convergence of the sequence generated by algorithm (1.1) to a zero of an accretive operator
A together with weaker conditions on {βn} and {rn} than ones in [18], they used the well-known inequality
in uniformly convex Banach spaces (see Xu [21]). In 2013, Jung [10] extended the results of [18, 24] to
viscosity iterative algorithms along with different conditions on {αn}, {βn} and {rn}. Very recently, Jung
[11] introduced the following iterative algorithm for finding a common point of the set of zeros of accretive
operator A and the set of fixed points of a nonexpansive mapping S in a uniformly convex Banach space E
with a uniformly Gâteaux differentiable norm:

xn+1 = Jrn(αnfxn + (1− αn)Sxn), ∀n ≥ 0, (1.3)

where x0 ∈ C, which is a closed convex subset of E; f : C → C is a contractive mapping; and {αn} ⊂ (0, 1);
{rn} ⊂ (0,∞).

In this paper, as a continuation of study in this direction, we consider the iterative algorithm (1.3) for
finding a common point in A−10∩Fix(S) in a uniformly convex Banach space E having a weakly continuous
duality mapping Jϕ with gauge function ϕ, where A−10 is the set of zeros of an accretive operator A
and Fix(S) is the fixed point set of a nonexpansive mapping S. Under suitable control conditions, we
prove that the sequence generated by proposed iterative algorithm converges strongly to a common point
in A−10 ∩ Fix(S), which is a solution of a certain variational inequality. As an application, we study
the iterative algorithm (1.3) with a weak contractive mapping. The main results improve, develop and
supplement the corresponding results of Song [18], Zhang and Song [24], Jung [10, 11] and Song et al [19],
and some recent results in the literature.
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2. Preliminaries and lemmas

Let E be a real Banach space with the norm ‖ · ‖, and let E∗ be its dual. When {xn} is a sequence in E,

then xn → x (resp., xn ⇀ x, xn
∗
⇀ x) will denote strong (resp., weak, weak∗) convergence of the sequence

{xn} to x.
Recall that a mapping f : E → E is said to be contractive on E if there exists a constant k ∈ (0, 1) such

that ‖f(x)− f(y)‖ ≤ k‖x− y‖, ∀x, y ∈ E. An accretive operator A is said to satisfy the range condition if
D(A) ⊂ R(I + rA) for all r > 0, where I is an identity operator of E and D(A) denotes the closure of the
domain D(A) of A. An accretive operator A is called m-accretive if R(I + rA) = E for each r > 0. If A
is an accretive operator which satisfies the range condition, then we can define, for each r > 0 a mapping
Jr : R(I + rA)→ D(A) defined by Jr = (I + rA)−1, which is called the resolvent of A. We know that Jr is
nonexpansive (i.e., ‖Jrx−Jry‖ ≤ ‖x−y‖, ∀x, y ∈ R(I+rA)) and A−10 = Fix(Jr) = {x ∈ D(Jr) : Jrx = x}
for all r > 0. Moreover, for r > 0, t > 0 and x ∈ E,

Jrx = Jt

(
t

r
x+

(
1− t

r

)
Jrx

)
, (2.1)

which is referred to as the Resolvent Identity (see [1, 7], where more details on accretive operators can be
found).

The norm of E is said to be Gâteaux differentiable if

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. Such an E is called a smooth Banach space.
A Banach space E is said to be uniformly convex if for all ε ∈ [0, 2], there exists δε > 0 such that

‖x‖ = ‖y‖ = 1 implies
‖x+ y‖

2
< 1− δε whenever ‖x− y‖ ≥ ε.

Let q > 1 and M > 0 be two fixed real numbers. Then a Banach space is uniformly convex if and only if
there exists a continuous strictly increasing convex function g; [0,∞)→ [0,∞) with g(0) = 0 such that

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g(‖x− y‖), (2.2)

for all x, y ∈ BM (0) = {x ∈ E : ‖x‖ ≤M}. For more detail, see Xu [21].
By a gauge function we mean a continuous strictly increasing function ϕ defined on R+ := [0,∞) such

that ϕ(0) = 0 and limr→∞ ϕ(r) =∞. The mapping Jϕ : E → 2E
∗

defined by

Jϕ(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖, ‖f‖ = ϕ(‖x‖)}, ∀x ∈ E

is called the duality mapping with gauge function ϕ. In particular, the duality mapping with gauge function
ϕ(t) = t denoted by J , is referred to as the normalized duality mapping. The following property of duality
mapping is well-known ([7]):

Jϕ(λx) = signλ

(
ϕ(|λ| · ‖x‖)
‖x‖

)
J (x), ∀x ∈ E \ 0, λ ∈ R,

where R is the set of all real numbers; in particular, J (−x) = −J (x), ∀x ∈ E. It is known that E is smooth
if and only if the normalized duality mapping J is single-valued.

We say that a Banach space E has a weakly continuous duality mapping if there exists a gauge function
ϕ such that the duality mapping Jϕ is single-valued and continuous from the weak topology to the weak∗

topology, that is, for any {xn} ∈ E with xn ⇀ x, Jϕ(xn)
∗
⇀ Jϕ(x). For example, every lp space (1 < p <∞)

has a weakly continuous duality mapping with gauge function ϕ(t) = tp−1 ([1, 7]). Set

Φ(t) =

∫ t

0
ϕ(τ)dτ, ∀t ≥ 0.
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Then for 0 < k < 1, ϕ(kx) ≤ ϕ(x),

Φ(kt) =

∫ kt

0
ϕ(τ)dτ = k

∫ t

0
ϕ(kx)dx ≤ k

∫ t

0
ϕ(x)dx = kΦ(t),

and moreover
Jϕ(x) = ∂Φ(‖x‖), ∀x ∈ E,

where ∂ denotes the subdifferential in the sense convex analysis, i.e., ∂Φ(‖x‖) = {x∗ ∈ E∗ : Φ(‖y‖) ≥
Φ(‖x‖) + 〈x∗, y − x〉, ∀y ∈ E}.

We need the following lemmas for the proof of our main results. We refer to [1, 7] for Lemma 2.1 and
Lemma 2.2.

Lemma 2.1. Let E be a real Banach space, and let ϕ be a continuous strictly increasing function on R+

such that ϕ(0) = 0 and limr→∞ ϕ(r) =∞. Define

Φ(t) =

∫ t

0
ϕ(τ)dτ, ∀t ∈ R+.

Then the following inequality holds:

Φ(‖x+ y‖) ≤ Φ(‖x‖) + 〈y, jϕ(x+ y)〉, ∀x y ∈ E,

where jϕ(x+ y) ∈ Jϕ(x+ y). In particular, if E is smooth, then one has

‖x+ y‖2 ≤ ‖x‖2 + 2〈y,J (x+ y)〉, ∀x, y ∈ E.

Lemma 2.2 (Demiclosedness principle). Let E be a reflexive Banach space having a weakly continuous
duality mapping Jϕ with gauge function ϕ, let C be a nonempty closed convex subset of E, and let S : C → E
be a nonexpansive mapping. Then the mapping I − S is demiclosed on C, where I is the identity mapping;
that is, xn ⇀ x in E and (I − S)xn → y imply that x ∈ C and (I − S)x = y.

Lemma 2.3 ([14, 22]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− λn)sn + λnδn + γn, ∀n ≥ 0,

where {λn}, {δn} and {γn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and
∑∞

n=0 λn =∞;

(ii) lim supn→∞ δn ≤ 0 or
∑∞

n=0 λn|δn| <∞;

(iii) γn ≥ 0 (n ≥ 0),
∑∞

n=0 γn <∞.

Then limn→∞ sn = 0.

Recall that a mapping g : C → C is said to be weakly contractive ([2]) if

‖g(x)− g(y)‖ ≤ ‖x− y‖ − ψ(‖x− y‖), for all x, y ∈ C,

where ψ : [0,+∞) → [0,+∞) is a continuous and strictly increasing function such that ψ is positive on
(0,∞) and ψ(0) = 0. As a special case, if ψ(t) = (1− k)t for t ∈ [0,+∞), where k ∈ (0, 1), then the weakly
contractive mapping g is a contraction with constant k. Rhodes [16] obtained the following result for the
weakly contractive mapping (see also [2]).

Lemma 2.4 ([16]). Let (X, d) be a complete metric space and g be a weakly contractive mapping on X.
Then g has a unique fixed point p in X.
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The following Lemma was given in [3].

Lemma 2.5 ([3]). Let {sn} and {γn} be two sequences of nonnegative real numbers, and let {λn} be a
sequence of positive numbers satisfying the conditions:

(i)
∑∞

n=0 λn =∞;

(ii) limn→∞
γn
λn

= 0.

Let the recursive inequality
sn+1 ≤ sn − λnψ(sn) + γn, n ≥ 0,

be given, where ψ(t) is a continuous and strict increasing function on [0,∞) with ψ(0) = 0. Then limn→∞ sn =
0.

3. Iterative algorithms

Let E be a real Banach space, let C be a nonempty closed convex subset of E, let A ⊂ E × E be an
accretive operator in E such that A−10 6= ∅ and D(A) ⊂ C ⊂ ∩r>0R(I + rA), and let Jr be the resolvent of
A for each r > 0. Let S : C → C be a nonexpansive mapping with F (S) ∩A−10 6= ∅, and let f : C → C be
a contractive mapping with a constant k ∈ (0, 1).

In this section, first we introduce the following algorithm that generates a net {xt}t∈(0,1) in an implicit
way:

xt = Jr(tfxt + (1− t)Sxt). (3.1)

We prove strong convergence of {xt} as t → 0 to a point q in A−10 ∩ Fix(S) which is a solution of the
following variational inequality:

〈(I − f)q,Jϕ(q − p)〉 ≤ 0, ∀p ∈ A−10 ∩ Fix(S). (3.2)

We also propose the following algorithm which generates a sequence in an explicit way:

xn+1 = Jrn(αnfxn + (1− αn)Sxn), ∀n ≥ 0, (3.3)

where {αn}, {βn} ⊂ (0, 1), {rn} ⊂ (0,∞) and x0 ∈ C is an arbitrary initial guess, and establish the strong
convergence of this sequence to a point q in A−10 ∩ Fix(S), which is also a solution of the variational
inequality (3.2).

3.1. Strong convergence of the implicit algorithm

Now, for t ∈ (0, 1), consider a mapping Qt : C → C defined by

Qtx = Jr(tfx+ (1− t)Sx), ∀x ∈ C.

It is easy to see that Qt is a contractive mapping with a constant 1− (1− k)t. Indeed, we have

‖Qtx−Qty‖ ≤ t‖fx− fy‖+ ‖(1− t)Sx− (I − t)Sy‖
≤ tk‖x− y‖+ (1− t)‖x− y‖
= (1− (1− k)t)‖x− y‖.

Hence Qt has a unique fixed point, denoted by xt, which uniquely solves the fixed point equation (3.1).
The following proposition about the basic properties of {xt} and {yt} was given in [11], where yt =

tfxt + (1− t)Sxt for t ∈ (0, 1). We include its proof for the sake of completeness.

Proposition 3.1 ([11]). Let E be a real uniformly convex Banach space, let C be a nonempty closed
convex subset of E, let A ⊂ E × E be an accretive operator in E such that A−10 6= ∅ and D(A) ⊂ C ⊂
∩r>0R(I + rA), and let Jr be the resolvent of A for each r > 0. Let S : C → C be a nonexpansive mapping
with Fix(S)∩A−10 6= ∅, and let f : C → C be a contractive mapping with a constant k ∈ (0, 1). Let the net
{xt} be defined via (3.1), and let {yt} be a net defined by yt = tfxt + (1− t)Sxt for t ∈ (0, 1). Then
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(1) {xt} and {yt} are bounded for t ∈ (0, 1);

(2) xt defines a continuous path from (0, 1) in C and so does yt;

(3) limt→0 ‖yt − Sxt‖ = 0;

(4) limt→0 ‖yt − Jryt‖ = 0;

(5) limt→0 ‖xt − yt‖ = 0;

(6) limt→0 ‖yt − Syt‖ = 0.

Proof. (1) Let p ∈ Fix(S) ∩A−10. Observing p = Sp = Jrp, we have

‖xt − p‖ = ‖Jr(tfxt + (1− t)Sxt)− Jrp‖ = ‖Syt − Sp‖
≤ ‖yt − p‖
= ‖t(fxt − fp) + t(fp− p) + (1− t)(Sxt − Sp)‖
≤ tk‖xt − p‖+ t‖fp− p‖+ (1− t)‖xt − p‖.

So, it follows that

‖xt − p‖ ≤
‖fp− p‖

1− k
and ‖yt − p‖ ≤

‖fp− p‖
1− k

.

Hence {xt} and {yt} are bounded and so are {fxt}, {Sxt}, {Jrxt}, {Syt} and {Jryt}.
(2) Let t, t0 ∈ (0, 1) and calculate

‖xt − xt0‖ = ‖Jr(tfxt + (1− t)Sxt)− Jr(t0fxt0 + (1− t0)Sxt0)‖
≤ ‖(t− t0)fxt + t0(fxt − fxt0)

− (t− t0)Sxt + (1− t0)Sxt − (1− t0)Jrxt0‖
≤ |t− t0|‖fxt‖+ t0k‖xt − xt0‖

+ |t− t0|‖Sxt‖+ (1− t0)‖xt − xt0‖.

It follows that

‖xt − xt0‖ ≤
‖fxt‖+ ‖Sxt‖
t0(1− k)

|t− t0|.

This show that xt is locally Lipschitzian and hence continuous. Also we have

‖yt − yt0‖ ≤
‖fxt‖+ ‖Sxt‖
t0(1− k)

|t− t0|,

and hence yt is a continuous path.
(3) By the boundedness of {fxt} and {Jrxt} in (1), we have

‖yt − Sxt‖ = ‖tfxt + (1− t)Sxt − Sxt‖
≤ t‖fxt − Sxt‖ → 0 as t→ 0.

(4) Let p ∈ Fix(S)
⋂
A−10. Then it follows from Resolvent Identity (2.1) that

Jryt = J r
2
(
1

2
yt +

1

2
Jryt).

Then we have

‖Jryt − p‖ = ‖J r
2
(
1

2
yt +

1

2
Jryt)− p‖ ≤ ‖

1

2
(yt − p) +

1

2
(Jryt − p)‖.
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By the inequality (2.2) (q = 2, λ = 1
2), we obtain that

‖Jryt − p‖2 ≤ ‖J r
2
(
1

2
yt +

1

2
Jryt)− p‖2

≤ 1

2
‖yt − p‖2 +

1

2
‖Jryt − p‖2 −

1

4
g(‖yt − Jryt‖)

≤ 1

2
‖yt − p‖2 +

1

2
‖yt − p‖2 −

1

4
g(‖yt − Jryt‖)

= ‖yt − p‖2 −
1

4
g(‖yt − Jryt‖).

(3.4)

Thus, from (3.1), the convexity of the real function ψ(t) = t2 (t ∈ (−∞,∞)) and the inequality (3.4) we
have

‖xt − p‖2 = ‖Jryt − p‖2

≤ ‖yt − p‖2 −
1

4
g(‖yt − Jryt‖)

= ‖t(fxt − p) + (1− t)(Sxt − p)‖2 −
1

4
g(‖yt − Jryt‖)

≤ t‖fxt − p‖2 + (1− t)‖xt − p‖2 −
1

4
g(‖yt − Jryt‖),

and hence
1

4
g(‖yt − Jryt‖)) ≤ t(‖fxt − p‖2 − ‖xt − p‖2).

By boundedness of {fxt} and {xt}, letting t→ 0 yields

lim
t→0

g(‖yt − Jryt‖) = 0.

Thus, from the property of the function g in (2.2) it follows that

lim
t→0
‖yt − Jryt‖ = 0.

(5) By (4), we have

‖xt − yt‖ ≤ ‖xt − Jryt‖+ ‖Jryt − yt‖ = ‖Jryt − yt‖ → 0 (t→ 0).

(6) By (3) and (5), we have

‖yt − Syt‖ ≤ ‖yt − Sxt‖+ ‖Sxt − Syt‖
≤ ‖yt − Sxt‖+ ‖xt − yt‖ → 0 (t→ 0).

We establish strong convergence of the net {xt} as t→ 0, which guarantees the existence of solutions of
the variational inequality (3.2).

Theorem 3.2. Let E be a real uniformly convex Banach space having a weakly continuous duality mapping
Jϕ with gauge function ϕ, let C be a nonempty closed convex subset of E, let A ⊂ E × E be an accretive

operator in E such that A−10 6= ∅ and D(A) ⊂ C ⊂ ∩r>0R(I + rA), and let Jr be the resolvent of A for
each r > 0. Let S : C → C be a nonexpansive mapping with Fix(S) ∩ A−10 6= ∅, and let f : C → C be a
contractive mapping with a constant k ∈ (0, 1). Let {xt} be a net defined via (3.1), and let {yt} be a net
defined by yt = tfxt + (1− t)Sxt for t ∈ (0, 1). Then the nets {xt} and {yt} converge strongly to a point q
of A−10 ∩ Fix(S) as t→ 0, which solves the variational inequality (3.2).



J. S. Jung, J. Nonlinear Sci. Appl. 9 (2016), 2394–2409 2401

Proof. Note that the definition of the weak continuity of duality mapping Jϕ implies that E is smooth.
By (1) in Proposition 3.1, we see that {xt} and {yt} are bounded. Assume tn → 0. Put xn := xtn and
yn := ytn . Since E is reflexive, we may assume that yn ⇀ q for some q ∈ C. Since Jϕ is weakly continuous,
‖yn − Jryn‖ → 0 and ‖yn − Syn‖ → 0 by (4) and (6) in Proposition 3.1, respectively, we have by Lemma
2.2, q = Sq = Jrq, and hence q ∈ A−10 ∩ Fix(S).

Now we prove that {xt} and {yt} converge strongly to a point in A−10 ∩ Fix(S) provided it remains
bounded when t→ 0.

Let {tn} be a sequence in (0, 1) such that tn → 0 and xtn ⇀ q as n→∞. By (5) in Proposition, ytn ⇀ q
as n → ∞ too. Then argument above shows that q ∈ A−10 ∩ Fix(S). We next show that xtn → q. As a
matter of fact, we have by Lemma 2.1,

Φ(‖xtn − q‖) ≤ Φ(‖ytn − q‖)
= Φ(‖tn(fxtn − fq) + (1− tn)(Sxtn − q) + tn(fq − q)‖)
≤ Φ(‖tnk‖xtn − q‖+ (1− tn)‖xtn − q‖) + tn〈fq − q,Jϕ(ytn − q)〉
= Φ((1− (1− k)tn)‖xtn − q‖) + tn〈fq − q,Jϕ(ytn − q)〉
≤ (1− (1− k)tn)Φ(‖xtn − q‖) + tn〈fq − q,Jϕ(ytn − q)〉.

This implies that

Φ(‖xtn − q‖) ≤
1

1− k
〈fq − q,Jϕ(ytn − q)〉.

Observing that ytn ⇀ q implies Jϕ(ytn − q)→ 0, we conclude from the last inequality

Φ(‖xtn − q‖)→ 0.

Hence xtn → q and ytn → q by (5) in Proposition 3.1.
We prove that the entire net {xt} and {yt} converge strongly to q. To this end, we assume that two

sequences {tn} and {sn} in (0,1) are such that

xtn → q, ytn → q and xsn → q, ysn → q.

We have to show that q = q. Indeed, for p ∈ A−10 ∩ Fix(S), it is easy to see that

〈yt − Sxt,Jϕ(xt − p)〉 = 〈yt − xt,Jϕ(xt − p)〉+ 〈xt − p+ p− Sxt,Jϕ(xt − p)〉
≥ 〈yt − xt,Jϕ(xt − p)〉+ Φ(‖xt − p‖)− 〈Sxt − p,Jϕ(xt − p)〉
≥ 〈yt − xt,Jϕ(xt − p)〉+ Φ(‖xt − p‖)− ‖xt − p‖‖Jϕ(xt − p)‖
≥ 〈yt − xt,Jϕ(xt − p)〉+ Φ(‖xt − p‖)− Φ(‖xt − p‖)
= 〈yt − xt,Jϕ(xt − p)〉.

On the other hand, since

yt − Sxt = − t

1− t
(yt − fxt),

we have for t ∈ (0, 1) and p ∈ F (S)
⋂
A−10,

〈yt − fxt,Jϕ(xt − p)〉 ≤
1− t
t
〈xt − yt,Jϕ(xt − p)〉

≤ (1− 1

t
)‖xt − yt‖‖Jϕ(xt − p)‖

≤ ‖xt − yt‖‖Jϕ(xt − p)‖.

(3.5)

In particular, we obtain

〈ytn − fxtn ,Jϕ(xtn − p)〉 ≤ ‖xtn − ytn‖‖Jϕ(xtn − p)‖
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and
〈ysn − fxsn ,Jϕ(xsn − p)〉 ≤ ‖xsn − ysn‖‖Jϕ(xsn − p)‖.

Letting n→∞ in above inequalities, we deduce by (5) in Proposition 3.1,

〈q − fq,Jϕ(q − p)〉 ≤ 0, and 〈q − fq,Jϕ(q − p)〉 ≤ 0.

In particular, we have

〈q − fq,Jϕ(q − q)〉 ≤ 0, and 〈q − fq,Jϕ(q − q)〉 ≤ 0.

Adding up these inequalities yields

‖q − q‖‖Jϕ(q − q)‖ = 〈q − q,Jϕ(q − q)〉
≤ 〈fq − fq,Jϕ(q − q)〉 ≤ k‖q − q‖‖Jϕ(q − q)‖.

This implies that (1− k)‖q − q‖‖Jϕ(q − q)‖ ≤ 0. Hence q = q and {xt} and {yt} converge strongly to q.
Finally we show that q is the unique solution of the variational inequality (3.2). Indeed, since xt, yt → q

by (5) in Proposition 3.1 and fxt → fq as t→ 0, letting t→ 0 in (3.5), we have

〈(I − f)q,Jϕ(q − p)〉 ≤ 0, ∀p ∈ A−10 ∩ Fix(S).

This implies that q is a solution of the variational inequality (3.2). If q̃ ∈ A−10 ∩ Fix(S) is other solution
of the variational inequality (3.2), then

〈(I − f)q̃,Jϕ(q̃ − q)〉 ≤ 0. (3.6)

Interchanging q and q, we obtain
〈(I − f)q,Jϕ(q − q̃)〉 ≤ 0. (3.7)

Adding up (3.6) and (3.7) yields
(1− k)‖q̃ − q‖‖Jϕ(q̃ − q)‖ ≤ 0.

That is, q = q̃. Hence q is the unique solution of the variational inequality (3.2). This completes the
proof.

3.2. Strong convergence of the explicit algorithm

Now, using Theorem 3.2, we show the strong convergence of the sequence generated by the explicit
algorithm (3.3) to a point q ∈ A−10 ∩ Fix(S), which is also a solution of the variational inequality (3.2).

Theorem 3.3. Let E be a real uniformly convex Banach space having a weakly continuous duality mapping
Jϕ with gauge function ϕ, let C be a nonempty closed convex subset of E, let A ⊂ E × E be an accretive

operator in E such that A−10 6= ∅ and D(A) ⊂ C ⊂ ∩r>0R(I + rA), and let Jrn be the resolvent of A for
each rn > 0. Let r > 0 be any given positive number, and let S : C → C be a nonexpansive mapping with
Fix(S) ∩A−10 6= ∅. Let {αn}, {βn} ∈ (0, 1) and {rn} ⊂ (0,∞) satisfy the conditions:

(C1) limn→∞ αn = 0;

(C2)
∑∞

n=0 αn =∞;

(C3) |αn+1 − αn| ≤ o(αn+1) + σn,
∑∞

n=0 σn <∞ (the perturbed control condition);

(C4) limn→∞ rn = r and rn ≥ ε > 0 for n ≥ 0 and
∑∞

n=0 |rn+1 − rn| <∞.

Let f : C → C be a contractive mapping with a constant k ∈ (0, 1) and x0 = x ∈ C be chosen arbitrarily.
Let {xn} be a sequence generated by

xn+1 = Jrn(αnfxn + (1− αn)Sxn), ∀n ≥ 0, (3.8)

and let {yn} be a sequence defined by yn = αnfxn + (1− αn)Jrnxn. Then {xn} and {yn} converge strongly
to q ∈ A−10 ∩ Fix(S), where q is the unique solution of the variational inequality (3.2).
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Proof. First, we note that by Theorem 3.2, there exists the unique solution q of the variational inequality

〈(I − f)q,Jϕ(q − p)〉 ≤ 0, ∀p ∈ A−10 ∩ Fix(S),

where q = limt→0 xt = limt→0 yt with xt and yt being defined by xt = Jr(tfxt + (1 − t)Sxt) and yt =
tfxt + (1− t)Sxt for 0 < t < 1, respectively.

We divide the proof into the several steps.

Step 1. We show that ‖xn−p‖ ≤ max{‖x0−p‖, 1
1−k‖f(p)−p‖} for all n ≥ 0 and all p ∈ A−10∩Fix(S), and

so {xn}, {yn}, {Jrnxn}, {Sxn}, {Jrnyn}, {Syn} and {f(xn)} are bounded. Indeed, let p ∈ A−10 ∩ Fix(S).
From A−10 = Fix(Jr) for each r > 0, we know p = Sp = Jrnp. Then we have

‖xn+1 − p‖ ≤ ‖yn − p‖
= ‖αn(fxn − p) + (1− αn)(Sxn − Sp)‖
≤ αn‖fxn − p‖+ (1− αn)‖xn − p‖
≤ αn(‖fxn − fp‖+ ‖fp− p‖) + (1− αn)‖xn − p‖
≤ αnk‖xn − p‖+ αn‖fp− p‖+ (1− αn)‖xn − p‖

= (1− (1− k)αn)‖xn − p‖+ (1− k)αn
‖fp− p‖

1− k

≤ max

{
‖xn − p‖,

1

1− k
‖f(p)− p‖

}
.

Using an induction, we obtain

‖xn − p‖ ≤ max

{
‖x0 − p‖,

1

1− k
‖fp− p‖

}
and

‖yn − p‖ ≤ max

{
‖x0 − p‖,

1

1− k
‖fp− p‖

}
, ∀n ≥ 0.

Hence {xn} is bounded, and so are {yn}, {Sxn}, {Jrnxn}, {Syn}, {Jrnyn} and {fxn}. Moreover, it follows
from condition (C1) that

‖yn − Sxn‖ = αn‖f(xn)− Sxn‖ → 0 (n→∞). (3.9)

Step 2. We show that limn →∞ ‖xn+1 − xn‖ = 0. First, from the resolvent identity (2.1) we observe that

‖Jrnyn − Jrn−1yn−1‖

=

∥∥∥∥Jrn−1

(
rn−1
rn

yn +

(
1− rn−1

rn

)
Jrnyn

)
− Jrn−1yn−1

∥∥∥∥
≤
∥∥∥∥rn−1rn

yn +

(
1− rn−1

rn

)
Jrnyn

)
− yn−1

∥∥∥∥
≤ ‖yn − yn−1‖+

∣∣∣∣1− rn−1
rn

∣∣∣∣(‖yn − yn−1‖+ ‖Jrnyn − yn−1‖)

≤ ‖yn − yn−1‖+

∣∣∣∣rn − rn−1ε

∣∣∣∣M1,

(3.10)

where M1 = supn≥0{‖Jrnyn − yn−1‖+ ‖yn − yn−1‖}. Since{
yn = αnf(xn) + (1− αn)Sxn,

yn−1 = αn−1f(xn−1) + (1− αn−1)Sxn−1, ∀n ≥ 1,
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by (3.10), we have for n ≥ 1,

‖xn+1 − xn‖ = ‖Jrnyn − Jrn−1yn−1‖ ≤ ‖yn − yn−1‖+

∣∣∣∣rn − rn−1ε

∣∣∣∣M1

= ‖(1− αn)(Sxn − Sxn−1) + αn(fxn − fxn−1)

+ (αn − αn−1)(fxn−1 − Sxn−1)‖+

∣∣∣∣rn − rn−1ε

∣∣∣∣M1

≤ (1− αn)‖xn − xn−1‖+ kαn‖xn − xn−1‖

+ |αn − αn−1|M2 +

∣∣∣∣1− rn−1
rn

∣∣∣∣M1

≤ (1− (1− k)αn)‖xn − xn−1‖+ |αn − αn−1|M2 +

∣∣∣∣rn − rn−1ε

∣∣∣∣M1,

(3.11)

where M2 = sup{‖f(xn)− Sxn‖ : n ≥ 0}. Thus, by (C3) we have

‖xn+1 − xn‖ ≤ (1− (1− k)αn)‖xn − xn−1‖+M2(o(αn) + σn−1) +M1

∣∣∣∣rn − rn−1ε

∣∣∣∣.
In (3.11), by taking sn+1 = ‖xn+1 − xn‖, λn = (1− k)αn, λnδn = M2o(αn) and

γn = M1

∣∣∣∣rn − rn−1ε

∣∣∣∣+M2σn−1,

we have
sn+1 ≤ (1− λn)sn + λnδn + γn.

Hence, by conditions (C1), (C2), (C3), (C4) and Lemma 2.3, we obtain

lim
n→∞

‖xn+1 − xn‖ = 0.

Step 3. We show that limn→∞ ‖yn − Jrnyn‖ = 0. Indeed, it follows from Resolvent Identity (2.1) that

Jrnyn = J rn
2

(
1

2
yn +

1

2
Jrnyn).

Then we have

‖Jrnyn − p‖ = ‖J rn
2

(
1

2
yn +

1

2
Jrnyn)− p‖ ≤ ‖1

2
(yn − p) +

1

2
(Jrnyn − p)‖.

By the inequality (2.2) (λ = 1
2), we obtain that

‖Jrnyn − p‖2 ≤ ‖J rn
2

(
1

2
xn +

1

2
Jrnyn)− p‖2

≤ 1

2
‖yn − p‖2 +

1

2
‖Jrnyn − p‖2 −

1

4
g(‖yn − Jrnyn‖)

≤ 1

2
‖yn − p‖2 +

1

2
‖yn − p‖2 −

1

4
g(‖yn − Jrnyn‖)

= ‖yn − p‖2 −
1

4
g(‖yn − Jrnyn‖).

(3.12)

Thus, the convexity of the real function ψ(t) = t2 (t ∈ (−∞,∞)) and the inequality (3.12), we have for
p ∈ A−10 ∩ Fix(S),
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‖xn+1 − p‖2 = ‖Jrnyn − p‖2

≤ ‖yn − p‖2 −
1

4
g(‖yn − Jrnyn‖)

≤ ‖αnfxn + (1− αn)Sxn − p‖2 −
1

4
g(‖yn − Jrnyn‖)

≤ αn‖fxn − p‖2 + (1− αn)‖Sxn − p‖2 −
1

4
g(‖yn − Jrnyn‖)

≤ αn‖fxn − p‖2 + (1− αn)‖xn − p‖2 −
1

4
g(‖yn − Jrnyn‖),

and hence
1

4
g(‖yn − Jrnyn‖)− αn(‖fxn − p‖2 − ‖xn − p‖2) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2.

Now we consider two cases:
Case 1. When 1

4g(‖yn − Jrnyn‖) ≤ αn(‖fxn − p‖2 − ‖xn − p‖2), by the boundedness of {fxn} and {xn}
and condition (C1),

lim
n→∞

g(‖yn − Jrnyn‖) = 0.

Case 2. When 1
4g(‖yn − Jrnyn‖) > αn(‖fxn − p‖2 − ‖xn − p‖2), we obtain

N∑
n=0

[
1

4
g(‖yn − Jrnyn‖)− αn(‖fxn − p‖2 − ‖xn − p‖2)] ≤ ‖x0 − p‖2 − ‖xN − p‖2 ≤ ‖x0 − p‖2.

Therefore
∞∑
n=0

[
1

4
g(‖yn − Jrnyn‖)− αn(‖fxn − p‖2 − ‖xn − p‖2)] <∞,

and so

lim
n→∞

[
1

4
g(‖yn − Jrnyn‖)− αn(‖fxn − p‖2 − ‖xn − p‖2)] = 0.

By condition (C1), we have
lim
n→∞

g(‖yn − Jrnyn‖) = 0.

Thus, from the property of the function g in (2.2) it follows that

lim
n→∞

‖yn − Jrnyn‖ = 0.

Step 4. We show that limn→∞ ‖xn − yn‖ = 0. Indeed, from Step 2 and Step 3 it follows that

‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖
≤ ‖xn − xn+1‖+ ‖Jrnyn − yn‖ → 0, (n→∞).

Step 5. We show that limn→∞ ‖yn − Syn‖ = 0. In fact, by (3.9) and Step 4, we have

‖yn − Syn‖ ≤ ‖yn − Sxn‖+ ‖Sxn − Syn‖
≤ ‖yn − Sxn‖+ ‖xn − yn‖ → 0 (n→∞).

Step 6. We show that limn→∞ ‖xn − Sxn‖ = 0. Indeed, from Step 4 and Step 5 it follows that

‖xn − Sxn‖ ≤ ‖xn − yn‖+ ‖yn − Syn‖+ ‖Syn − Sxn‖
≤ 2‖xn − yn‖+ ‖yn − Syn‖ → ∞ (n→∞).
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Step 7. We show that limn→∞ ‖xn − Jrnxn‖ = 0. Indeed, by Step 3 and Step 4, we obtain

‖xn − Jrnxn‖ ≤ ‖xn − yn‖+ ‖yn − Jrnyn‖+ ‖Jrnyn − Jrnxn‖
≤ 2‖yn − xn‖+ ‖yn − Jrnyn‖ → 0 (n→∞).

Step 8. We show that limn→∞ ‖yn − Jryn‖ = 0 for r = limn→∞ rn. Indeed, from the resolvent identity
(2.1) and boundedness of {Jrnyn} we obtain

‖Jrnyn − Jryn‖ =

∥∥∥∥Jr( r

rn
yn +

(
1− r

rn

)
Jrnyn

)
− Jryn

∥∥∥∥
≤
∥∥∥∥( r

rn
yn +

(
1− r

rn

)
Jrnyn

)
− yn

∥∥∥∥
≤
∣∣∣∣1− r

rn

∣∣∣∣‖yn − Jrnyn‖ → 0 (n→∞).

(3.13)

Hence, by Step 3 and (3.13), we have

‖yn − Jryn‖ ≤ ‖yn − Jrnyn‖+ ‖Jrnyn − Jryn‖ → 0 (n→∞).

Step 9. We show that limn→∞ ‖xn − Jrxn‖ = 0. Indeed, by Step 4 and Step 8, we have

‖xn − Jrxn‖ ≤ ‖xn − yn‖+ ‖yn − Jryn‖+ ‖Jryn − Jrxn‖
≤ 2‖xn − yn‖+ ‖yn − Jryn‖ → ∞ (n→∞).

Step 10. We show that lim supn→∞〈(I − f)q,Jϕ(q − yn)〉 ≤ 0. To prove this, let a subsequence {ynj} of
{yn} be such that

lim sup
n→∞

〈(I − f)q,Jϕ(q − yn)〉 = lim
j→∞
〈(I − f)q,Jϕ(q − ynj )〉

and ynj ⇀ z for some z ∈ E. Then, by Step 5, Step 8 and Lemma 2.2, we have z ∈ A−10 ∩ Fix(S). From
the weak continuity of Jϕ it follows that

w − lim
i→∞
Jϕ(q − yni) = w − Jϕ(q − z).

Hence, from (3.2) we have

lim sup
n→∞

〈(I − f)q,Jϕ(q − yn)〉 = lim
j→∞
〈(I − f)q,Jϕ(q − ynj )〉

= 〈(I − f)q,Jϕ(q − z)〉 ≤ 0.

Step 11. We show that limn→∞ ‖xn − q‖ = 0. By using (3.8), we have

‖xn+1 − q‖ ≤ ‖yn − q‖ = ‖αn(fxn − q) + (1− αn)(Sxn − q)‖.

Applying Lemma 2.1, we obtain

Φ(‖xn+1 − q‖) ≤ Φ(‖yn − q‖)
≤ Φ(‖αn(fxn − fq) + (1− αn)(Sxn − q)‖) + αn〈fq − q,Jϕ(yn − q)〉
≤ Φ(kαn‖xn − q‖+ (1− αn)‖xn − q‖) + αn〈fq − q,Jϕ(yn − q)〉
≤ (1− (1− k)αn)Φ(‖xn − q‖) + αn〈fq − q,Jϕ(yn − q)〉.

(3.14)
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Put

λn = (1− k)αn and δn =
1

1− k
〈(I − f)q,Jϕ(q − yn)〉.

From conditions (C1), (C2) and Step 8 it follows that λn → 0,
∑∞

n=0 λn =∞ and lim supn→∞ δn ≤ 0. Since
(3.14) reduces to

Φ(‖xn+1 − q‖) ≤ (1− λn)Φ(‖xn − q‖) + λnδn,

from Lemma 2.3 with γn = 0 we conclude that limn→∞Φ(‖xn − q‖) = 0, and thus limn→∞ xn = q. By Step
4, we also have limn→∞ yn = q. This completes the proof.

Corollary 3.4. Let E, C, A, Jrn, S, f and r > 0 be as in Theorem 3.3. Let {αn}∈ (0, 1) and {rn} ⊂ (0,∞)
satisfy conditions (C1) – (C4) in Theorem 3.3. Let x0 = x ∈ C be chosen arbitrarily, and let {xn} be a
sequence generated by

xn+1 = Jrn(αnfxn + (1− αn)Sxn + en), ∀n ≥ 0,

where {en} ⊂ E satisfies
∑∞

n=0 ‖en‖ < ∞ or limn→∞
‖en‖
αn

= 0, and let {yn} be a sequence defined by

yn = αnfxn + (1−αn)Sxn + en. Then {xn} and {yn} converge strongly to q ∈ F (S)∩A−10, where q is the
unique solution of the variational inequality (3.2).

Proof. Let zn+1 = Jrn(αnfzn + (1− αn)Szn) for n ≥ 0. Then, by Theorem 3.3, {zn} converges strongly to
a point q ∈ A−10∩ Fix(S), where q is the unique solution of the variational inequality (3.2), and we derive

‖xn+1 − zn+1‖ ≤ ‖αnfxn + (1− αn)Sxn − (αnzn + (1− αn)Szn + en)‖
≤ αn‖fxn − fzn‖+ (1− αn)‖Sxn − Szn‖+ ‖en‖
≤ (1− (1− k)αn)‖xn − zn‖+ ‖en‖.

By Lemma 2.3, we obtain
lim
n→∞

‖xn − zn‖ = 0,

and hence the desired result follows.

Finally, as in [9], we consider the iterative method with the weakly contractive mapping

Theorem 3.5. Let E, C, A, Jrn, S, and r > 0 be as in Theorem 3.3. Let {αn} ∈ (0, 1) and {rn} ⊂ (0,∞)
satisfy the conditions (C1) – (C4) in Theorem 3.3. Let g : C → C be a weakly contractive mapping with the
function ψ. Let x0 = x ∈ C be chosen arbitrarily, and let {xn} be a sequence generated by

xn+1 = Jrn(αngxn + (1− αn)Sxn), ∀n ≥ 0.

and {yn} be a sequence defined by yn = αngxn + (1 − αn)Sxn. Then {xn} and {yn} converge strongly to
q ∈ F (S) ∩A−10.

Proof. Since E is smooth, there is a sunny nonexpansive retraction Q from C onto A−10 ∩ Fix(S). Then
Qg is a weakly contractive mapping of C into itself. Indeed, for all x, y ∈ C,

‖Qgx−Qgy‖ ≤ ‖gx− gy‖ ≤ ‖x− y‖ − ψ(‖x− y‖).

Lemma 2.4 assures that there exists a unique element x∗ ∈ C such that x∗ = Qgx∗. Such a x∗ ∈ C is an
element of A−10 ∩ Fix(S).

Now we define an iterative scheme as follows:

wn+1 = Jrn(αngx
∗ + (1− αn)Swn) ∀n ≥ 0. (3.15)
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Let {wn} be the sequence generated by (3.15). Then Theorem 3.3 with a constant f = gx∗ assures that
{wn} converges strongly to Qgx∗ = x∗ as n→∞. For any n > 0, we have

‖xn+1 − wn+1‖ = ‖Jrn(αngxn + (1− αn)Sxn)− Jrn(αngx
∗ + (1− αn)Swn)‖

≤ αn(‖gxn − gx∗‖) + (1− αn)‖xn − wn‖
≤ αn[‖gxn − gwn‖+ ‖gwn − gx∗‖] + (1− αn)‖xn − wn‖
≤ αn[‖xn − wn‖ − ψ(‖xn − wn‖) + ‖wn − x∗‖
− ψ(‖wn − x∗‖)] + (1− αn)‖xn − wn‖

≤ ‖xn − wn‖ − αnψ(‖xn − wn‖) + αn‖wn − x∗‖.

Thus, we obtain for sn = ‖xn − wn‖ the following recursive inequality:

sn+1 ≤ sn − αnψ(sn) + αn‖wn − x∗‖.

Since limn→∞ ‖wn − x∗‖ = 0, from condition (C2) and Lemma 2.5 it follows that limn→∞ ‖xn − wn‖ = 0.
Hence

lim
n→∞

‖xn − x∗‖ ≤ lim
n→∞

(‖xn − wn‖+ ‖wn − x∗‖) = 0.

By Step 4 in the proof of Theorem 3.3, we also have limn→∞ yn = q. This completes the proof.

Remark 3.6.

(1) Theorem 3.2, Theorem 3.3 and Theorem 3.5 develop and complement the recent corresponding results
studied by many authors in this direction (see, for instance, [10, 11, 18, 20, 24] and the references
therein).

(2) The control condition (C3) in Theorem 3.3 can be replaced by the condition
∑∞

n=0 |αn+1 −αn| <∞;
or the condition limn→∞

αn
αn+1

= 1, which are not comparable ([8]).
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