Functional inequalities in generalized quasi-Banach spaces

Ming Fang ${ }^{\text {a,c }}$, Gang Lu ${ }^{\text {b }}$, Dong He Peia,*
${ }^{a}$ School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P. R. China.
${ }^{b}$ Shenyang University of Technology, Shenyang 110870, P. R. China.
${ }^{\text {c }}$ School of Science, Yanbian University, Yanji 133001, P. R. China.

Communicated by C. Park

Abstract

In this paper, we investigate the Hyers-Ulam stability of the following function inequalities $$
\begin{aligned} \|a f(x)+b g(y)+c h(z)\| & \leq\left\|K p\left(\frac{a x+b y+c z}{K}\right)\right\|, \\ \|a f(x)+b g(y)+K h(z)\| & \leq\left\|K p\left(\frac{a x+b y}{K}+z\right)\right\| \end{aligned}
$$ in generalized quasi-Banach spaces, where a, b, c, K are nonzero real numbers. © 2016 All rights reserved. Keywords: Hyers-Ulam stability, additive functional inequality, generalized quasi-Banach space, additive mapping. 2010 MSC: 47H10, 54H25.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [14] in 1940, concerning the stability of group homomorphisms. Let $\left(G_{1},.\right)$ be a group and let $\left(G_{2}, *\right)$ be a metric group with the metric $d(.,$.$) . Given \epsilon>0$, does there exists a $\delta>0$, such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality $d(h(x . y), h(x) * h(y))<\delta$ for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \rightarrow G_{2}$ with

[^0]$d(h(x), H(x))<\epsilon$ for all $x \in G_{1}$? In the other words, Under what condition does there exist a homomorphism near an approximate homomorphism? The concept of stability for functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. In 1941, Hyers [5] gave the first affirmative answer to the question of Ulam for Banach spaces. Let $f: E \rightarrow E^{\prime}$ be a mapping between Banach spaces such that
$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$
for all $x, y \in E$, and for some $\delta>0$. Then there exists a unique additive mapping $T: E \rightarrow E^{\prime}$ such that
$$
\|f(x)-T(x)\| \leq \delta
$$
for all $x \in E$. Moreover, if $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E$, then T is \mathbb{R}-linear. In 1978, Th. M. Rassias [9] proved the following theorem.

Theorem 1.1. Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then there exists a unique additive mapping $T: E \rightarrow E^{\prime}$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

for all $x \in E$. If $p<0$ then inequality (1.1) holds for all $x, y \neq 0$, and $\sqrt{1.2}$ for $x \neq 0$. Also, if the function $t \mapsto f(t x)$ from \mathbb{R} into E^{\prime} is continuous in $t \in \mathbb{R}$ for each fixed $x \in E$, then T is \mathbb{R}-linear.

In 1991, Gajda [4] answered the question for the case $p>1$, which was raised by Th. M. Rassias. On the other hand, J. M. Rassias [11] generalized the Hyers-Ulam stability result by presenting a weaker condition controlled by a product of different powers of norms.

Theorem 1.2 ([10, 12]). If it is assumed that there exists constants $\Theta \geq 0$ and $p_{1}, p_{2} \in \mathbb{R}$ such that $p=p_{1}+p_{2} \neq 1$, and $f: E \rightarrow E^{\prime}$ is a mapping from a norm space E into a Banach space E^{\prime} such that the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \Theta\|x\|^{p_{1}}\|y\|^{p_{2}}
$$

for all $x, y \in E$, then there exists a unique additive mapping $T: E \rightarrow E^{\prime}$ such that

$$
\|f(x)-T(x)\| \leq \frac{\Theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E$. If, in addition, $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E$, then T is \mathbb{R}-linear.
In [8], Park et al. investigated the following inequalities

$$
\begin{aligned}
\|f(x)+f(y)+f(z)\| & \leq\left\|2 f\left(\frac{x+y+z}{2}\right)\right\| \\
\|f(x)+f(y)+f(z)\| & \leq\|f(x+y+z)\| \\
\|f(x)+f(y)+2 f(z)\| & \leq\left\|2 f\left(\frac{x+y}{2}+z\right)\right\|
\end{aligned}
$$

in Banach spaces. Recently, Cho et al. 3] investigated the following functional inequality

$$
\|f(x)+f(y)+f(z) \leq\| K f\left(\frac{x+y+z}{K}\right) \| \quad(0<|K|<|3|)
$$

in non-Archimedean Banach spaces. Lu and Park [6] investigated the following functional inequality

$$
\left\|\sum_{i=1}^{N} f\left(x_{i}\right)\right\| \leq\left\|K f\left(\frac{\sum_{i=1}^{N}\left(x_{i}\right)}{K}\right)\right\| \quad(0<|K| \leq N)
$$

in Fréchet spaces.
In [7], we investigated the following functional inequalities

$$
\begin{array}{ll}
\|f(x)+f(y)+f(z)\| \leq\left\|K f\left(\frac{x+y+z}{K}\right)\right\| & (0<|K|<3) \\
\|f(x)+f(y)+K f(z)\| \leq\left\|K f\left(\frac{x+y}{K}+z\right)\right\| & (0<K \neq 2) \tag{1.4}
\end{array}
$$

and proved the Hyers-Ulam stability of the functional inequalities 1.3 and 1.4 in Banach spaces.
We consider the following functional inequalities

$$
\begin{align*}
& \|a f(x)+b g(y)+c h(z)\| \leq\left\|K p\left(\frac{a x+b y+c z}{K}\right)\right\| \tag{1.5}\\
& \|a f(x)+b g(y)+K h(z)\| \leq\left\|K p\left(\frac{a x+b y}{K}+z\right)\right\| \tag{1.6}
\end{align*}
$$

where a, b, c, K are nonzero scalars.
Now, we recall some basic facts concerning quasi-Banach spaces and some preliminary results.
Definition $1.3([2, \boxed{13})$. Let X be a linear space. A quasi-norm is a real-valued function on X satisfying the following:
(1) $\|x\| \geq 0$ for all $x \in X$ and $\|x\|=0$ if and only if $x=0$.
(2) $\|\lambda x\|=|\lambda|\|x\|$ for all $\lambda \in \mathbb{R}$ and all $x \in X$.
(3) There is a constant $\beta \geq 1$ such that $\|x+y\| \leq \beta(\|x\|+\|y\|)$ for all $x, y \in X$.

The pair $(X,\|\cdot\|)$ is called a quasi-normed space if $\|\cdot\|$ is a quasi-norm on X.
A quasi-Banach space is a complete quasi-normed space.
Baak [1] generalized the concept of quasi-normed spaces.
Definition 1.4 ([1]). Let X be a linear space. A generalized quasi-norm is a real-valued function on X satisfying the following:
(1) $\|x\| \geq 0$ for all $x \in X$ and $\|x\|=0$ if and only if $x=0$.
(2) $\|\lambda x\|=|\lambda| \cdot\|x\|$ for all $\lambda \in \mathbb{R}$ and all $x \in X$.
(3) There is a constant $\beta \geq 1$ such that $\left\|\sum_{j=1}^{\infty} x_{j}\right\| \leq \sum_{j=1}^{\infty} \beta\left\|x_{j}\right\|$ for all $x_{1}, x_{2}, \cdots \in X$ with $\sum_{j=1}^{\infty} x_{j} \in X$.

The pair $(X,\|\cdot\|)$ is called a generalized quasi-normed space if $\|\cdot\|$ is a generalized quasi-norm on X. The smallest possible C is called the modulus of concavity of $\|\cdot\|$.

A generalized quasi-Banach space is a complete generalized quasi-normed space.
In this paper, we show that the Hyers-Ulam stability of the functional inequalities (1.5) and (1.6) in generalized quasi-Banach spaces.

Throughout this paper, assume that X is a generalized quasi-normed vector space with generalized quasi-norm $\|\cdot\|$ and that $(Y,\|\cdot\|)$ is a generalized quasi-Banach space. Let β be the modulus of concavity of $\|\cdot\|$.

2. Hyers-Ulam stability of the functional inequality (1.5)

Throughout this section, assume that a, b, c and K are the nonzero scalars.
Proposition 2.1. Let $f, g, h, p: X \rightarrow Y$ be mappings such that $g(0)=h(0)=p(0)=0$ and

$$
\begin{equation*}
\|a f(x)+b g(y)+c h(z)\| \leq\left\|K p\left(\frac{a x+b y+c z}{K}\right)\right\| \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in X$. Then the mappings f, g and h are additive, for all $x \in X$.
Proof. Letting $x=y=z=0$ in 2.1, we get

$$
\|a f(0)\| \leq\|K p(0)\|=0
$$

So $f(0)=0$.
Letting $(x, y, z)=\left(x, 0,-\frac{a}{c} x\right)$ in (2.1), we get

$$
\begin{equation*}
\left\|a f(x)+\operatorname{ch}\left(-\frac{a}{c} x\right)\right\| \leq\|K p(0)\|=0 \tag{2.2}
\end{equation*}
$$

for all $x \in X$.
Replacing (x, y, z) by $\left(x,-\frac{a}{b} x, 0\right)$ in (2.1), we get

$$
\begin{equation*}
\left\|a f(x)+b g\left(-\frac{a}{b} x\right)\right\| \leq\|K p(0)\|=0 \tag{2.3}
\end{equation*}
$$

for all $x \in X$.
Replacing (x, y, z) by $\left(x, y,-\frac{a x+b y}{c}\right)$ in 2.1, we get

$$
\begin{equation*}
\left\|a f(x)+b g(y)+c h\left(-\frac{a x+b y}{c}\right)\right\| \leq\|K p(0)\|=0 \tag{2.4}
\end{equation*}
$$

for all $x, y \in X$.
By (2.2), (2.3) and (2.4), we get

$$
\begin{equation*}
f(x)-f\left(-\frac{b}{a} y\right)-f\left(x+\frac{b}{a} y\right)=0 \tag{2.5}
\end{equation*}
$$

for all $x, y \in X$.
Letting $x=0$ in 2.5 , we have $f(y)=-f(-y)$, and hence

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in X$. Since f is additive, it is clear that g and h are additive. And $f(x)=\frac{c}{a} h\left(\frac{a}{c} x\right), g(x)=\frac{c}{b} h\left(\frac{b}{c} x\right)$, as desired.

Next, we show that the Hyers-Ulam stability of the functional inequality (1.5).
Theorem 2.2. Assume that mappings $f, g, h, p: X \rightarrow Y$ with $g(0)=h(0)=p(0)=0$ satisfy the inequality

$$
\begin{equation*}
\|a f(x)+b g(y)+c h(z)\| \leq\left\|K p\left(\frac{a x+b y+c z}{K}\right)\right\|+\phi(x, y, z) \tag{2.6}
\end{equation*}
$$

where $\phi: X^{3} \rightarrow[0, \infty)$ satisfies $\phi(0,0,0)=0$ and

$$
\widetilde{\phi}(x, y, z):=\sum_{j=0}^{\infty}\left(\frac{1}{2}\right)^{j} \phi\left(2^{j} x, 2^{j} y, 2^{j} z\right)<\infty
$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{align*}
& \|f(x)-A(x)\| \leq \frac{\beta^{2}}{2|a|}\left\{\widetilde{\phi}\left(x,-\frac{a}{b} x, 0\right)+\widetilde{\phi}\left(x, 0,-\frac{a}{c} x\right)+\widetilde{\phi}\left(2 x,-\frac{a}{b} x,-\frac{a}{c} x\right)\right\} \\
& \left\|g(x)-\frac{a}{b} A\left(\frac{b}{a} x\right)\right\| \leq \frac{\beta^{2}}{2|b|}\left\{\widetilde{\phi}\left(-\frac{b}{a} x, x, 0\right)+\widetilde{\phi}\left(0, x,-\frac{b}{c} x\right)+\widetilde{\phi}\left(-\frac{b}{a} x, 2 x,-\frac{b}{c} x\right)\right\} \tag{2.7}\\
& \left\|h(x)-\frac{a}{c} A\left(\frac{c}{a} x\right)\right\| \leq \frac{\beta^{2}}{2|c|}\left\{\widetilde{\phi}\left(0,-\frac{c}{b} x, x\right)+\widetilde{\phi}\left(-\frac{c}{a} x, 0, x\right)+\widetilde{\phi}\left(-\frac{c}{a} x,-\frac{c}{b} x, 2 x\right)\right\}
\end{align*}
$$

for all $x \in X$.
Proof. Letting $x=y=z=0$ in (2.6), we get $\|a f(0)\| \leq\|K p(0)\|+\phi(0,0,0)=\|K p(0)\|$. So $f(0)=0$.
Letting $(x, y, z)=\left(x,-\frac{a}{b} x, 0\right)$ in (2.6), we get

$$
\begin{equation*}
\left\|a f(x)+b g\left(-\frac{a}{b} x\right)\right\| \leq \phi\left(x,-\frac{a}{b} x, 0\right) \tag{2.8}
\end{equation*}
$$

for all $x \in X$.
Replacing (x, y, z) by $\left(x, 0,-\frac{a}{c} x\right)$ in 2.6 , we get

$$
\begin{equation*}
\left\|a f(x)+c h\left(-\frac{a}{c} x\right)\right\| \leq \phi\left(x, 0,-\frac{a}{c} x\right) \tag{2.9}
\end{equation*}
$$

for all $x \in X$.
Replacing (x, y, z) by $\left(2 x,-\frac{a}{b} x,-\frac{a}{c} x\right)$ in 2.6, we get

$$
\begin{equation*}
\left\|a f(2 x)+b g\left(-\frac{a}{b} x\right)+\operatorname{ch}\left(-\frac{a}{c} x\right)\right\| \leq \phi\left(2 x,-\frac{a}{b} x,-\frac{a}{c} x\right) \tag{2.10}
\end{equation*}
$$

for all $x \in X$.
By (2.8), (2.9) and (2.10), it follows that

$$
\begin{equation*}
\|2 f(x)-f(2 x)\| \leq \frac{\beta}{|a|}\left(\phi\left(x,-\frac{a}{b} x, 0\right)+\phi\left(x, 0,-\frac{a}{c} x\right)+\phi\left(2 x,-\frac{a}{b} x,-\frac{a}{c} x\right)\right) \tag{2.11}
\end{equation*}
$$

for all $x \in X$. such that

$$
\begin{equation*}
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{\beta}{2|a|}\left(\phi\left(x,-\frac{a}{b} x, 0\right)+\phi\left(x, 0,-\frac{a}{c} x\right)+\phi\left(2 x,-\frac{a}{b} x,-\frac{a}{c} x\right)\right) \tag{2.12}
\end{equation*}
$$

for all $x \in X$.
It follows from 2.12 that

$$
\begin{align*}
& \left\|\left(\frac{1}{2}\right)^{l} f\left(2^{l} x\right)-\left(\frac{1}{2}\right)^{m} f\left(2^{m} x\right)\right\| \\
& \leq \beta \sum_{j=l}^{m-1}\left\|\left(\frac{1}{2}\right)^{j} f\left(2^{j} x\right)-\left(\frac{1}{2}\right)^{j+1} f\left(2^{j+1} x\right)\right\| \tag{2.13}\\
& \leq \frac{\beta^{2}}{2|a|} \sum_{j=l}^{m-1}\left(\frac{1}{2}\right)^{j}\left[\phi\left(2^{j} x,-\frac{a}{b} 2^{j} x, 0\right)+\phi\left(2^{j} x, 0,-\frac{a}{c} 2^{j} x,\right)+\phi\left(2^{j+1} x,-\frac{a}{b} 2^{j} x,-\frac{a}{c} 2^{j} x,\right)\right]
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It means that the sequence $\left\{\left(\frac{c}{a}\right)^{n} f\left(\left(\frac{a}{c}\right)^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\left(\frac{1}{2}\right)^{n} f\left(2^{n} x\right)\right\}$ converges. We define
the mapping $A: X \rightarrow Y$ by $A(x)=\lim _{n \rightarrow \infty}\left\{\left(\frac{1}{2}\right)^{n} f\left(2^{n} x\right)\right\}$ for all $x \in X$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$, we get

$$
\begin{align*}
\|f(x)-A(x)\| & \leq \frac{\beta^{2}}{2|a|} \sum_{j=0}^{\infty}\left(\frac{1}{2}\right)^{j} \\
& {\left[\phi\left(2^{j} x,-\frac{a}{b} 2^{j} x, 0\right)+\phi\left(2^{j} x, 0,-\frac{a}{c} 2^{j} x,\right)+\phi\left(2^{j+1} x,-\frac{a}{b} 2^{j} x,-\frac{a}{c} 2^{j} x,\right)\right] } \tag{2.14}\\
& =\frac{\beta^{2}}{2|a|}\left\{\widetilde{\phi}\left(x,-\frac{a}{b} x, 0\right)+\widetilde{\phi}\left(x, 0,-\frac{a}{c} x\right)+\widetilde{\phi}\left(2 x,-\frac{a}{b} x,-\frac{a}{c} x\right)\right\}
\end{align*}
$$

for all $x \in X$.
Similarly, there exists a mapping $B: X \rightarrow Y$ such that $B(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} g\left(2^{n} x\right)$ and

$$
\begin{equation*}
\|g(x)-B(x)\| \leq \frac{\beta^{2}}{2|b|}\left\{\widetilde{\phi}\left(-\frac{b}{a} x, x, 0\right)+\widetilde{\phi}\left(0, x,-\frac{b}{c} x\right)+\widetilde{\phi}\left(-\frac{b}{a} x, 2 x,-\frac{b}{c} x\right)\right\} \tag{2.15}
\end{equation*}
$$

for all $x \in X$.
We also obtain a mapping $C: X \rightarrow Y$ such that $C(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} x\right)$, and

$$
\|h(x)-C(x)\| \leq \frac{\beta^{2}}{2|K|}\left\{\widetilde{\phi}\left(-\frac{c}{a} x, 0, x\right)+\widetilde{\phi}\left(0,-\frac{c}{b} x, x\right)+\widetilde{\phi}\left(-\frac{c}{a} x,-\frac{c}{b} x, 2 x\right)\right\}
$$

for all $x \in X$.
Next, we show that A is an additive mapping.

$$
\begin{aligned}
\|A(x)+A(y)-A(x+y)\|= & \lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n}\left\|f\left(2^{n} x\right)+f\left(2^{n} y\right)-f\left(2^{n}(x+y)\right)\right\| \\
\leq & \beta \frac{1}{|a|} \lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n}\left[\left\|a f\left(2^{n} x\right)+b g\left(-\frac{a}{b} 2^{n} x\right)\right\|\right. \\
& +\left\|a f\left(2^{n} y\right)+c h\left(-\frac{a}{c} 2^{n} y\right)\right\| \\
& \left.+\left\|a f\left(2^{n}(x+y)\right)+b g\left(-\frac{a}{b} 2^{n} x\right)+c h\left(-\frac{a}{c} 2^{n} y\right)\right\|\right] \\
\leq & \beta \frac{1}{|a|} \lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n}\left[\phi\left(2^{n} x,-\frac{a}{b}\left(2^{n} x\right), 0\right)+\phi\left(2^{n} y, 0,-\frac{a}{c}\left(2^{n} y\right)\right)\right. \\
& \left.+\phi\left(2^{n} x+2^{n} y,-\frac{a}{b} 2^{n} x,-\frac{a}{c} 2^{n} y\right)\right] \\
= & 0
\end{aligned}
$$

for all $x, y \in X$. Thus the mapping $A: X \rightarrow Y$ is additive.
Now, we prove the uniqueness of A. Assume that $T: X \rightarrow Y$ is another additive mapping satisfying (2.7). We obtain

$$
\begin{aligned}
\|A(x)-T(x)\|= & \frac{1}{2^{n}}\left\|A\left(2^{n} x\right)-T\left(2^{n} x\right)\right\| \\
\leq & \beta \cdot\left(\frac{1}{2}\right)^{n}\left[\left\|A\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|\right. \\
& \left.+\left\|T\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|\right] \\
\leq & \frac{\beta^{3}}{|a|}\left[\widetilde{\phi}\left(2^{n} x,-\frac{a}{b} 2^{n} x, 0\right)+\widetilde{\phi}\left(2^{n} x, 0, \frac{a}{c} 2^{n} x\right)+\widetilde{\phi}\left(2^{n} x,-\frac{a}{b} 2^{n} x,-\frac{a}{c} 2^{n} x\right)\right]
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. Then we can conclude that $A(x)=T(x)$ for all $x \in X$.

Replacing (x, y, z) by $\left(2^{n} x,-\frac{a}{b} 2^{n} x, 0\right)$ in (2.6), we get

$$
\frac{1}{2^{n}}\left\|a f\left(2^{n} x\right)+b g\left(-\frac{a}{b} 2^{n} x\right)\right\| \leq \frac{1}{2^{n}} \phi\left(2^{n} x,-\frac{a}{b} 2^{n} x, 0\right),
$$

and so

$$
a A(x)+b B\left(-\frac{a}{b} x\right)=0
$$

for all $x \in X$. Similarly $a A(x)+c C\left(-\frac{a}{c} x\right)=0$ for all $x \in X$. And $a A(x)+b B(y)+c C\left(-\frac{a x+b y}{c}\right)=0$. Hence

$$
\begin{equation*}
a A(x)-a A\left(-\frac{b}{a} y\right)-a A\left(x+\frac{b}{a} y\right)=0 \tag{2.16}
\end{equation*}
$$

for all $x, y \in X$.
Letting $x=y=0$ in 2.16), we have $A(0)=0$. Letting $x=0$ in 2.16, $A(-y)=-A(y)$, such that $B(x)=\frac{a}{b} A\left(\frac{b}{a} x\right)$ and $C(x)=\frac{a}{c} A\left(\frac{c}{a} x\right)$. Therefore the inequalities 2.7 hold.

Corollary 2.3. Let q and θ be positive real numbers with $0<q<1$. Let $f, g, h, p: X \rightarrow Y$ be mappings with $g(0)=h(0)=p(0)=0$ satisfying

$$
\|a f(x)+b g(y)+c h(z)\| \leq\left\|K p\left(\frac{a x+b y+c z}{K}\right)\right\|+\theta\left(\|x\|^{q}+\|y\|^{q}+\|z\|^{q}\right)
$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{aligned}
& \|f(x)-A(x)\| \leq \frac{\beta^{2} \theta}{|a|} \frac{2^{1-q}}{2^{1-q}-1}\left(1+2^{q-1}+\frac{|a|^{q}}{|b|^{q}}+\frac{|a|^{q}}{|c|^{q}}\right)\|x\|^{q} \\
& \left\|g(x)-\frac{a}{b} A\left(\frac{b}{a} x\right)\right\| \leq \frac{\beta^{2} \theta}{|b|} \frac{2^{1-q}}{2^{1-q}-1}\left(1+2^{q-1}+\frac{|b|^{q}}{|a|^{q}}+\frac{|b|^{q}}{|c|^{q}}\right)\|x\|^{q} \\
& \left\|h(x)-\frac{a}{K} A\left(\frac{K}{a} x\right)\right\| \leq \frac{\beta^{2} \theta}{|c|} \frac{2^{1-q}}{2^{1-q}-1}\left(1+2^{q-1}+\frac{|c|^{q}}{|b|^{q}}+\frac{|c|^{q}}{|a|^{q}}\right)\|x\|^{q}
\end{aligned}
$$

for all $x \in X$.

3. Hyers-Ulam stability of the functional inequality (1.6)

Throughout this section, assume that K, a, b are nonzero real numbers with $|a| \geq K$.
Proposition 3.1. Let $f, g, h, p: X \rightarrow Y$ be mappings with $p(0)=0$ such that

$$
\begin{equation*}
\|a f(x)+b g(y)+K h(z)\| \leq\left\|K p\left(\frac{a x+b y}{K}+z\right)\right\| \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in X$. Then the mappings $f: X \rightarrow Y$ is additive.
Proof. Letting $x=y=z=0$ in (3.1), we get

$$
\|a f(0)\| \leq\|K p(0)\|=0
$$

So $f(0)=0$.
Letting $y=-\frac{a}{b} x$ and $z=0$ in (3.1), we get

$$
\begin{equation*}
\left\|a f(x)+b g\left(-\frac{a}{b} x\right)\right\| \leq\|K p(0)\|=0 \tag{3.2}
\end{equation*}
$$

for all $x \in X$. So $f(x)=-\frac{b}{a} g\left(-\frac{a}{b} x\right)$ for all $x \in X$.
Replacing x by $-x$ and letting $y=0$ and $z=\frac{a}{K} x$ in (3.1), we get

$$
\begin{equation*}
\left\|a f(-x)+K h\left(\frac{a}{K} x\right)\right\| \leq\|K p(0)\|=0 \tag{3.3}
\end{equation*}
$$

for all $x \in X$. So $f(-x)=-\frac{K}{a} h\left(\frac{a}{K} x\right)$ for all $x \in X$.
Thus we get

$$
\|f(x)+f(-x)\|=\frac{1}{|a|}\left\|a f(0)+b g\left(-\frac{a}{b} x\right)+K h\left(\frac{a}{K} x\right)\right\| \leq \frac{1}{|a|}|K|\|p(0)\|=0
$$

for all $x \in X$. So $f(-x)=-f(x)$ for all $x \in X$. Similarly, we can show that $g(-x)=-g(x)$ and $h(-x)=-h(x)$.

Letting $z=\frac{-x-y}{K}$ in (3.1), we get

$$
\begin{aligned}
\left\|a f(x)+b g(y)-K h\left(\frac{a x+b y}{K}\right)\right\| & =\left\|a f(x)+b g(y)+K h\left(\frac{-a x-b y}{K}\right)\right\| \\
& \leq\|K p(0)\|=0
\end{aligned}
$$

for all $x, y \in X$. By (3.2) and (3.3),

$$
\begin{equation*}
a f(x)-a f\left(-\frac{b}{a} y\right)-a f\left(x+\frac{b}{a} y\right)=0 \tag{3.4}
\end{equation*}
$$

for all $x, y \in X$. Thus

$$
f(x)+f(y)-f(x+y)=0
$$

for all $x, y \in X$, as desired.
Theorem 3.2. Assume that mappings $f, g, h, p: X \rightarrow Y$ with $g(0)=h(0)=p(0)=0$ satisfy the inequality

$$
\begin{equation*}
\|a f(x)+b g(y)+K h(z)\| \leq\left\|K p\left(\frac{a x+b y}{K}+z\right)\right\|+\phi(x, y, z) \tag{3.5}
\end{equation*}
$$

where $\phi: X^{3} \rightarrow[0, \infty)$ satisfies $\phi(0,0,0)=0$ and

$$
\widetilde{\phi}(x, y, z):=\sum_{j=1}^{\infty} \frac{1}{2^{j}} \phi\left(2^{j} x, 2^{j} y, 2^{j} z\right)<\infty
$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{align*}
& \|f(x)-A(x)\| \leq \frac{\beta^{2}}{2|a|}\left\{\widetilde{\phi}\left(x,-\frac{a}{b} x, 0\right)+\widetilde{\phi}\left(x, 0,-\frac{a}{K} x\right)+\widetilde{\phi}\left(2 x,-\frac{a}{b} x,-\frac{a}{K} x\right)\right\} \\
& \left\|g(x)-\frac{a}{b} A\left(\frac{b}{a} x\right)\right\| \leq \frac{\beta^{2}}{2|b|}\left\{\widetilde{\phi}\left(-\frac{b}{a} x, x, 0\right)+\widetilde{\phi}\left(0, x,-\frac{b}{K} x\right)+\widetilde{\phi}\left(-\frac{b}{a} x, 2 x,-\frac{b}{K} x\right)\right\} \tag{3.6}\\
& \left\|h(x)-\frac{a}{K} A\left(\frac{K}{a} x\right)\right\| \leq \frac{\beta^{2}}{2|K|}\left\{\widetilde{\phi}\left(-\frac{K}{a} x, 0, x\right)+\widetilde{\phi}\left(0,-\frac{K}{b} x, x\right)+\widetilde{\phi}\left(-\frac{K}{a} x,-\frac{K}{b} x, 2 x\right)\right\}
\end{align*}
$$

for all $x \in X$.
Proof. Letting $x=y=z=0$ in (3.5), we get $\|a f(0)\| \leq\|K p(0)\|+\phi(0,0,0)=0$. So $f(0)=0$.
Letting $x=x, y=-\frac{a x}{b}, z=0$ in (3.5, we obtain

$$
\left\|a f(x)+b g\left(-\frac{a}{b} x\right)\right\| \leq \phi\left(x,-\frac{a}{b} x, 0\right)
$$

for all $x \in X$.
Letting $y=0, z=-\frac{a x}{K}$ in (3.5), we obtain

$$
\left\|a f(x)+K h\left(-\frac{a}{K} x\right)\right\| \leq \phi\left(x, 0,-\frac{a}{K} x\right)
$$

for all $x \in X$.
Letting $x=2 x, y=-\frac{a x}{b}, z=-\frac{a}{K} x$ in (3.5), we get

$$
\left\|a f(2 x)+b g\left(-\frac{a}{b} x\right)+K h\left(-\frac{a}{K} x\right)\right\| \leq \phi\left(2 x,-\frac{a}{b} x,-\frac{a}{K} x\right)
$$

for all $x \in X$. So

$$
\begin{align*}
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq & \frac{\beta}{2|a|}\left[\left\|a f(x)+b g\left(-\frac{a}{b} x\right)\right\|+\left\|a f(x)+K h\left(-\frac{a}{K} x\right)\right\|\right. \\
& \left.+\left\|a f(2 x)+b g\left(-\frac{a}{b} x\right)+K h\left(-\frac{a}{K} x\right)\right\|\right] \tag{3.7}\\
\leq & \frac{\beta}{2|a|}\left[\phi\left(x,-\frac{a}{b} x, 0\right)+\phi\left(x, 0-\frac{a}{K} x\right)+\phi\left(2 x,-\frac{a}{b} x,-\frac{a}{K} x\right)\right]
\end{align*}
$$

for all $x \in X$. It follows from (3.7) that

$$
\begin{aligned}
& \left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| \\
& \quad \leq \beta \sum_{j=l}^{m-1}\left\|\frac{1}{2^{j}} f\left(2^{j} x\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x\right)\right\| \\
& \quad \leq \frac{\beta^{2}}{2|a|} \sum_{j=l}^{m-1} \frac{1}{2^{j}}\left[\phi\left(2^{j} x,-\frac{a}{b} 2^{j} x, 0\right)+\phi\left(2^{j} x,, 0-\frac{a}{K} 2^{j} x\right)+\phi\left(2^{j+1} x,-\frac{a}{b} 2^{j} x,-\frac{a}{K} 2^{j} x\right)\right]
\end{aligned}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It means that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left.\left\{\frac{1}{2^{n}}\right) f\left(2^{n} x\right)\right\}$ converges. So we may define the mapping $A: X \rightarrow Y$ by $A(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)$ for all $x \in X$.

Moreover, by letting $l=0$ and passing the limit $m \rightarrow \infty$, we get the first formula of (3.6).
Similarly, there exists a mapping $B: X \rightarrow Y$ such that $B(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} g\left(2^{n} x\right)$ and

$$
\begin{equation*}
\|g(x)-B(x)\| \leq \frac{\beta^{2}}{2|b|}\left\{\widetilde{\phi}\left(-\frac{b}{a} x, x, 0\right)+\widetilde{\phi}\left(0, x,-\frac{b}{K} x\right)+\widetilde{\phi}\left(-\frac{b}{a} x, 2 x,-\frac{b}{K} x\right)\right\} \tag{3.8}
\end{equation*}
$$

for all $x \in X$.
We also obtain a mapping $C: X \rightarrow Y$ such that $C(x):=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} x\right)$, and

$$
\|h(x)-C(x)\| \leq \frac{\beta^{2}}{2|K|}\left\{\widetilde{\phi}\left(-\frac{K}{a} x, 0, x\right)+\widetilde{\phi}\left(0,-\frac{K}{b} x, x\right)+\widetilde{\phi}\left(-\frac{K}{a} x,-\frac{K}{b} x, 2 x\right)\right\}
$$

for all $x \in X$.
Now, we show that A is additive.

$$
\begin{aligned}
\|A(x)+A(y)-A(x+y)\|= & \lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|f\left(2^{n} x\right)+f\left(2^{n} y\right)-f\left(2^{n}(x+y)\right)\right\| \\
\leq & \frac{\beta}{|a|} \lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left[\left\|a f\left(2^{n} x\right)+b g\left(-\frac{a}{b} 2^{n} x\right)\right\|\right. \\
& +\left\|a f\left(2^{n} y\right)+K h\left(-\frac{a}{K} 2^{n} y\right)\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left\|a f\left(2^{n}(x+y)\right)+b g\left(-\frac{a}{b} 2^{n} x\right)+K h\left(-\frac{a}{K} 2^{n} y\right)\right\|\right] \\
\leq & \frac{\beta}{|a|} \lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left[\phi\left(2^{n} x,-\frac{a}{b}\left(2^{n} x\right), 0\right)+\phi\left(2^{n} y, 0,-\frac{a}{K}\left(2^{n} y\right)\right)\right. \\
& \left.+\phi\left(2^{n} x+2^{n} y,-\frac{a}{b} 2^{n} y,-\frac{a}{K} 2^{n} y\right)\right] \\
= & 0
\end{aligned}
$$

for all $x, y \in X$. So the mapping $A: X \rightarrow Y$ is an additive mapping.
Now, we show that the uniqueness of A. Assume that $T: X \rightarrow Y$ is another additive mapping satisfying (3.6). Then we get

$$
\begin{aligned}
\|A(x)-T(x)\| & =\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|A\left(2^{n} x\right)-T\left(2^{n} x\right)\right\| \\
& \leq \beta \lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left[\left\|A\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left\|T\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|\right] \\
& \leq \beta \frac{\beta^{2}}{|a|} \lim _{n \rightarrow \infty}\left[\widetilde{\phi}\left(x,-\frac{a}{b} x, 0\right)+\widetilde{\phi}\left(x, 0,-\frac{a}{K} x\right)+\widetilde{\phi}\left(2 x,-\frac{a}{b} x,-\frac{a}{K} x\right)\right] \\
& =0
\end{aligned}
$$

for all $x \in X$. Thus we may conclude that $A(x)=T(x)$ for all $x \in X$. This proves the uniqueness of A. So the mapping $A: X \rightarrow Y$ is a unique additive mapping satisfying (3.6).

Replacing (x, y, z) by $\left(2^{n} x,-\frac{a}{b} 2^{n} x, 0\right)$ in (3.5), we get

$$
\frac{1}{2^{n}}\left\|a f\left(2^{n} x\right)+b g\left(-\frac{a}{b} 2^{n} x\right)\right\| \leq \frac{1}{2^{n}} \phi\left(2^{n} x,-\frac{a}{b} 2^{n} x, 0\right)
$$

and so

$$
a A(x)+b B\left(-\frac{a}{b} x\right)=0
$$

for all $x \in X$. Similarly $a A(x)+K C\left(-\frac{a}{K} x\right)=0$ for all $x \in X$. And $a A(x)+b B(y)+K C\left(-\frac{a x+b y}{K}\right)=0$. Hence

$$
\begin{equation*}
a A(x)-a A\left(-\frac{b}{a} y\right)-a A\left(x+\frac{b}{a} y\right)=0 \tag{3.9}
\end{equation*}
$$

for all $x, y \in X$.
Letting $x=y=0$ in (3.9), we have $A(0)=0$. Letting $x=0$ in (3.9), $A(-y)=-A(y)$, such that $B(x)=\frac{a}{b} A\left(\frac{b}{a} x\right)$ and $C(x)=\frac{a}{K} A\left(\frac{K}{a} x\right)$.

Corollary 3.3. Let q, θ and K be positive real numbers with $q>1$. Let $f, h, g, p: X \rightarrow Y$ be mappings with $h(0)=g(0)=p(0)$ satisfying

$$
\|a f(x)+b g(y)+K h(z)\| \leq\left\|K p\left(\frac{a x+b y}{K}+z\right)\right\|+\theta\left(\|x\|^{q}+\|y\|^{q}+\|z\|^{q}\right)
$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{aligned}
& \|f(x)-A(x)\| \leq \frac{\beta^{2} \theta}{|a|} \frac{2}{2^{q}-1}\left(1+2^{q-1}+\frac{|a|^{q}}{|b|^{q}}+\frac{|a|^{q}}{|c|^{q}}\right)\|x\|^{q} \\
& \left\|g(x)-\frac{a}{b} A\left(\frac{b}{a} x\right)\right\| \leq \frac{\beta^{2} \theta}{|b|} \frac{2}{2^{q}-1}\left(1+2^{q-1}+\frac{|b|^{q}}{|a|^{q}}+\frac{|b|^{q}}{|c|^{q}}\right)\|x\|^{q} \\
& \left\|h(x)-\frac{a}{K} A\left(\frac{K}{a} x\right)\right\| \leq \frac{\beta^{2} \theta}{|K|} \frac{2}{2^{q}-1}\left(1+2^{q-1}+\frac{|K|^{q}}{|b|^{q}}+\frac{|K|^{q}}{|a|^{q}}\right)\|x\|^{q}
\end{aligned}
$$

for all $x \in X$.

Acknowledgments

The third author DongHe Pei was supported by NSF of China NO. 11271063 and NCET of China No.050319.

References

[1] C. Baak, Generalized quasi-Banach spaces, J. Chungcheong Math. Soc., 18 (2005), 215-222. 1.1 .4
[2] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, American Marhematics Soc., Providence, (2000). 1.3
[3] Y. Cho, C. Park, R. Saadati, Functional inequalities in non-Archimedean Banach spaces, Appl. Math. Lett., 23 (2010), 1238-1242. 1
[4] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci., 14 (1991), 431-434. 1
[5] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27 (1941), 222-224. 1
[6] G. Lu, Y. Jiang, C. Park, Additive function equation in Fréchet spaces, J. Comput. Anal. Appl., 15 (2013), 369-373.1
[7] G. Lu, C. Park, Additive functional inequalities in Banach spaces, J. Inequal. Appl., 2012 (2012), 10 pages. 1
[8] C. Park, Y. Cho, M. Han, Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl., 2007 (2007), 13 pages. 1
[9] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. 1
[10] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), 126-130.1.2
[11] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., 108 (1984), 445-446. 1
[12] J. M. Rassias, On a new approximation of approximately linear mappings by linear mappings, Discuss. Math., 7 (1985), 193-196.1.2
[13] S. Rolewicz, Metric Linear Spaces, PWN-Polish Sci. Publ., Reidel and Dordrecht, (1984). 1.3
[14] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, (1960). 1

[^0]: *Corresponding author
 Email addresses: fangming@ybu.edu.cn (Ming Fang), lvgang1234@hanmail.net (Gang Lu), peidh340@nenu.edu.cn (Dong He Pei)

