
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 2481–2491

Research Article

Functional inequalities in generalized quasi-Banach
spaces

Ming Fanga,c, Gang Lub, Dong He Peia,∗

aSchool of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P. R. China.
bShenyang University of Technology, Shenyang 110870, P. R. China.
cSchool of Science, Yanbian University, Yanji 133001, P. R. China.

Communicated by C. Park

Abstract

In this paper, we investigate the Hyers-Ulam stability of the following function inequalities

‖af(x) + bg(y) + ch(z)‖ ≤
∥∥∥∥Kp(ax+ by + cz

K

)∥∥∥∥ ,
‖af(x) + bg(y) +Kh(z)‖ ≤

∥∥∥∥Kp(ax+ by

K
+ z

)∥∥∥∥ ,
in generalized quasi-Banach spaces, where a, b, c,K are nonzero real numbers. c©2016 All rights reserved.
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mapping.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [14] in 1940, concerning
the stability of group homomorphisms. Let (G1, .) be a group and let (G2, ∗) be a metric group with the
metric d(., .). Given ε > 0, does there exists a δ > 0, such that if a mapping h : G1 → G2 satisfies the
inequality d(h(x.y), h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with
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d(h(x), H(x)) < ε for all x ∈ G1? In the other words, Under what condition does there exist a homomorphism
near an approximate homomorphism? The concept of stability for functional equation arises when we replace
the functional equation by an inequality which acts as a perturbation of the equation. In 1941, Hyers [5]
gave the first affirmative answer to the question of Ulam for Banach spaces. Let f : E → E′ be a mapping
between Banach spaces such that

‖f(x+ y)− f(x)− f(y)‖ ≤ δ

for all x, y ∈ E, and for some δ > 0. Then there exists a unique additive mapping T : E → E′ such that

‖f(x)− T (x)‖ ≤ δ

for all x ∈ E. Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ E, then T is R-linear. In 1978,
Th. M. Rassias [9] proved the following theorem.

Theorem 1.1. Let f : E → E′ be a mapping from a normed vector space E into a Banach space E′ subject
to the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then there exists a unique additive
mapping T : E → E′ such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for all x, y 6= 0, and (1.2) for x 6= 0. Also, if the function
t 7→ f(tx) from R into E′ is continuous in t ∈ R for each fixed x ∈ E, then T is R-linear.

In 1991, Gajda [4] answered the question for the case p > 1, which was raised by Th. M. Rassias. On the
other hand, J. M. Rassias [11] generalized the Hyers-Ulam stability result by presenting a weaker condition
controlled by a product of different powers of norms.

Theorem 1.2 ([10, 12]). If it is assumed that there exists constants Θ ≥ 0 and p1, p2 ∈ R such that
p = p1 + p2 6= 1, and f : E → E′ is a mapping from a norm space E into a Banach space E′ such that the
inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ Θ‖x‖p1‖y‖p2

for all x, y ∈ E, then there exists a unique additive mapping T : E → E′ such that

‖f(x)− T (x)‖ ≤ Θ

2− 2p
‖x‖p,

for all x ∈ E. If, in addition, f(tx) is continuous in t ∈ R for each fixed x ∈ E, then T is R-linear.

In [8], Park et al. investigated the following inequalities

‖f(x) + f(y) + f(z)‖ ≤
∥∥∥∥2f

(
x+ y + z

2

)∥∥∥∥ ,
‖f(x) + f(y) + f(z)‖ ≤‖f(x+ y + z)‖,

‖f(x) + f(y) + 2f(z)‖ ≤
∥∥∥∥2f

(
x+ y

2
+ z

)∥∥∥∥
in Banach spaces. Recently, Cho et al. [3] investigated the following functional inequality

‖f(x) + f(y) + f(z) ≤
∥∥∥∥Kf (x+ y + z

K

)∥∥∥∥ (0 < |K| < |3|)
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in non-Archimedean Banach spaces. Lu and Park [6] investigated the following functional inequality∥∥∥∥∥
N∑
i=1

f(xi)

∥∥∥∥∥ ≤
∥∥∥∥∥Kf

(∑N
i=1(xi)

K

)∥∥∥∥∥ (0 < |K| ≤ N)

in Fréchet spaces.
In [7], we investigated the following functional inequalities

‖f(x) + f(y) + f(z)‖ ≤
∥∥∥∥Kf (x+ y + z

K

)∥∥∥∥ (0 < |K| < 3), (1.3)

‖f(x) + f(y) +Kf(z)‖ ≤
∥∥∥∥Kf (x+ y

K
+ z

)∥∥∥∥ (0 < K 6= 2) (1.4)

and proved the Hyers-Ulam stability of the functional inequalities (1.3) and (1.4) in Banach spaces.
We consider the following functional inequalities

‖af(x) + bg(y) + ch(z)‖ ≤
∥∥∥∥Kp(ax+ by + cz

K

)∥∥∥∥ , (1.5)

‖af(x) + bg(y) +Kh(z)‖ ≤
∥∥∥∥Kp(ax+ by

K
+ z

)∥∥∥∥ , (1.6)

where a, b, c,K are nonzero scalars.
Now, we recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.3 ([2, 13]). Let X be a linear space. A quasi-norm is a real-valued function on X satisfying
the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.

(2) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and all x ∈ X.

(3) There is a constant β ≥ 1 such that ‖x+ y‖ ≤ β(‖x‖+ ‖y‖) for all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-norm on X.
A quasi-Banach space is a complete quasi-normed space.
Baak [1] generalized the concept of quasi-normed spaces.

Definition 1.4 ([1]). Let X be a linear space. A generalized quasi-norm is a real-valued function on X
satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.

(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and all x ∈ X.

(3) There is a constant β ≥ 1 such that ‖
∑∞

j=1 xj‖ ≤
∑∞

j=1 β‖xj‖ for all x1, x2, · · · ∈ X with
∑∞

j=1 xj ∈ X.

The pair (X, ‖ · ‖) is called a generalized quasi-normed space if ‖ · ‖ is a generalized quasi-norm on X.
The smallest possible C is called the modulus of concavity of ‖ · ‖.

A generalized quasi-Banach space is a complete generalized quasi-normed space.
In this paper, we show that the Hyers-Ulam stability of the functional inequalities (1.5) and (1.6) in

generalized quasi-Banach spaces.
Throughout this paper, assume that X is a generalized quasi-normed vector space with generalized

quasi-norm ‖ · ‖ and that (Y, ‖ · ‖) is a generalized quasi-Banach space. Let β be the modulus of concavity
of ‖ · ‖.
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2. Hyers-Ulam stability of the functional inequality (1.5)

Throughout this section, assume that a, b, c and K are the nonzero scalars.

Proposition 2.1. Let f, g, h, p : X → Y be mappings such that g(0) = h(0) = p(0) = 0 and

‖af(x) + bg(y) + ch(z)‖ ≤
∥∥∥∥Kp(ax+ by + cz

K

)∥∥∥∥ (2.1)

for all x, y, z ∈ X. Then the mappings f, g and h are additive, for all x ∈ X.

Proof. Letting x = y = z = 0 in (2.1), we get

‖af(0)‖ ≤ ‖Kp(0)‖ = 0.

So f(0) = 0.
Letting (x, y, z) =

(
x, 0,−a

cx
)

in (2.1), we get∥∥∥af(x) + ch(−a
c
x)
∥∥∥ ≤ ‖Kp(0)‖ = 0 (2.2)

for all x ∈ X.
Replacing (x, y, z) by (x,−a

bx, 0) in (2.1), we get∥∥∥af(x) + bg
(
−a
b
x
)∥∥∥ ≤ ‖Kp(0)‖ = 0 (2.3)

for all x ∈ X.
Replacing (x, y, z) by (x, y,−ax+by

c ) in (2.1), we get∥∥∥∥af(x) + bg(y) + ch(−ax+ by

c
)

∥∥∥∥ ≤ ‖Kp(0)‖ = 0 (2.4)

for all x, y ∈ X.
By (2.2),(2.3) and (2.4), we get

f(x)− f(− b
a
y)− f(x+

b

a
y) = 0 (2.5)

for all x, y ∈ X.
Letting x = 0 in (2.5), we have f(y) = −f(−y), and hence

f(x+ y) = f(x) + f(y)

for all x, y ∈ X. Since f is additive, it is clear that g and h are additive. And f(x) = c
ah(acx), g(x) = c

bh( bcx),
as desired.

Next, we show that the Hyers-Ulam stability of the functional inequality (1.5).

Theorem 2.2. Assume that mappings f, g, h, p : X → Y with g(0) = h(0) = p(0) = 0 satisfy the inequality

‖af(x) + bg(y) + ch(z)‖ ≤
∥∥∥∥Kp(ax+ by + cz

K

)∥∥∥∥+ φ(x, y, z), (2.6)

where φ : X3 → [0,∞) satisfies φ(0, 0, 0) = 0 and

φ̃(x, y, z) :=
∞∑
j=0

(
1

2

)j

φ
(
2jx, 2jy, 2jz

)
<∞
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for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ β2

2|a|

{
φ̃
(
x,−a

b
x, 0
)

+ φ̃
(
x, 0,−a

c
x
)

+ φ̃
(

2x,−a
b
x,−a

c
x
)}

∥∥∥∥g(x)− a

b
A

(
b

a
x

)∥∥∥∥ ≤ β2

2|b|

{
φ̃

(
− b
a
x, x, 0

)
+ φ̃

(
0, x,−b

c
x

)
+ φ̃

(
− b
a
x, 2x,−b

c
x

)}
∥∥∥h(x)− a

c
A
( c
a
x
)∥∥∥ ≤ β2

2|c|

{
φ̃
(

0,−c
b
x, x

)
+ φ̃

(
− c
a
x, 0, x

)
+ φ̃

(
− c
a
x,−c

b
x, 2x

)} (2.7)

for all x ∈ X.

Proof. Letting x = y = z = 0 in (2.6), we get ‖af(0)‖ ≤ ‖Kp(0)‖+ φ(0, 0, 0) = ‖Kp(0)‖. So f(0) = 0.
Letting (x, y, z) = (x,−a

bx, 0) in (2.6), we get∥∥∥af(x) + bg
(
−a
b
x
)∥∥∥ ≤ φ(x,−a

b
x, 0
)

(2.8)

for all x ∈ X.
Replacing (x, y, z) by (x, 0,−a

cx) in (2.6), we get∥∥∥af(x) + ch
(
−a
c
x
)∥∥∥ ≤ φ(x, 0,−a

c
x
)

(2.9)

for all x ∈ X.
Replacing (x, y, z) by (2x,−a

bx,−
a
cx) in (2.6), we get∥∥∥af(2x) + bg(−a

b
x) + ch

(
−a
c
x
)∥∥∥ ≤ φ(2x,−a

b
x,−a

c
x
)

(2.10)

for all x ∈ X.
By (2.8),(2.9) and (2.10), it follows that

‖2f(x)− f(2x)‖ ≤ β

|a|

(
φ
(
x,−a

b
x, 0
)

+ φ
(
x, 0,−a

c
x
)

+ φ
(

2x,−a
b
x,−a

c
x
))

(2.11)

for all x ∈ X. such that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ β

2|a|

(
φ
(
x,−a

b
x, 0
)

+ φ
(
x, 0,−a

c
x
)

+ φ
(

2x,−a
b
x,−a

c
x
))

(2.12)

for all x ∈ X.
It follows from (2.12) that∥∥∥∥(

1

2
)lf
(

2lx
)
− (

1

2
)mf (2mx)

∥∥∥∥
≤ β

m−1∑
j=l

∥∥∥∥(
1

2
)jf
(
2jx
)
− (

1

2
)j+1f

(
2j+1x

)∥∥∥∥
≤ β2

2|a|

m−1∑
j=l

(
1

2

)j [
φ
(

2jx,−a
b

2jx, 0
)

+ φ
(

2jx, 0,−a
c

2jx,
)

+ φ
(

2j+1x,−a
b

2jx,−a
c

2jx,
)]

(2.13)

for all nonnegative integers m and l with m > l and all x ∈ X. It means that the sequence {( c
a)nf((ac )nx)}

is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence {(12)nf(2nx)} converges. We define
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the mapping A : X → Y by A(x) = limn→∞{(12)nf(2nx)} for all x ∈ X. Moreover, letting l = 0 and passing
the limit m→∞, we get

‖f(x)−A(x)‖ ≤ β2

2|a|

∞∑
j=0

(
1

2

)j

[
φ
(

2jx,−a
b

2jx, 0
)

+ φ
(

2jx, 0,−a
c

2jx,
)

+ φ
(

2j+1x,−a
b

2jx,−a
c

2jx,
)]

=
β2

2|a|

{
φ̃
(
x,−a

b
x, 0
)

+ φ̃
(
x, 0,−a

c
x
)

+ φ̃
(

2x,−a
b
x,−a

c
x
)} (2.14)

for all x ∈ X.
Similarly, there exists a mapping B : X → Y such that B(x) = limn→∞

1
2n g(2nx) and

‖g(x)−B(x)‖ ≤ β2

2|b|

{
φ̃

(
− b
a
x, x, 0

)
+ φ̃

(
0, x,−b

c
x

)
+ φ̃

(
− b
a
x, 2x,−b

c
x

)}
(2.15)

for all x ∈ X.
We also obtain a mapping C : X → Y such that C(x) := limn→∞

1
2nh(2nx), and

‖h(x)− C(x)‖ ≤ β2

2|K|

{
φ̃
(
− c
a
x, 0, x

)
+ φ̃

(
0,−c

b
x, x

)
+ φ̃

(
− c
a
x,−c

b
x, 2x

)}
for all x ∈ X.

Next, we show that A is an additive mapping.

‖A(x) +A(y)−A(x+ y)‖ = lim
n→∞

(
1

2
)n ‖f (2nx) + f (2ny)− f (2n(x+ y))‖

≤ β 1

|a|
lim
n→∞

(
1

2
)n
[∥∥∥af (2nx) + bg

(
−a
b

2nx
)∥∥∥

+
∥∥∥af (2ny) + ch

(
−a
c

2ny
)∥∥∥

+
∥∥∥af (2n(x+ y)) + bg

(
−a
b

2nx
)

+ ch
(
−a
c

2ny
)∥∥∥]

≤ β 1

|a|
lim
n→∞

(
1

2
)n
[
φ
(

2nx,−a
b

(2nx), 0
)

+ φ
(

2ny, 0,−a
c

(2ny)
)

+φ
(

2nx+ 2ny,−a
b

2nx,−a
c

2ny
)]

= 0

for all x, y ∈ X. Thus the mapping A : X → Y is additive.
Now, we prove the uniqueness of A. Assume that T : X → Y is another additive mapping satisfying

(2.7). We obtain

‖A(x)− T (x)‖ =
1

2n
‖A (2nx)− T (2nx)‖

≤ β · (1

2
)n [‖A (2nx)− f (2nx)‖

+ ‖T (2nx)− f (2nx)‖]

≤ β3

|a|

[
φ̃
(

2nx,−a
b

2nx, 0
)

+ φ̃
(

2nx, 0,
a

c
2nx

)
+ φ̃

(
2nx,−a

b
2nx,−a

c
2nx

)]
,

which tends to zero as n→∞ for all x ∈ X. Then we can conclude that A(x) = T (x) for all x ∈ X.
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Replacing (x, y, z) by (2nx,−a
b2nx, 0) in (2.6), we get

1

2n

∥∥∥af(2nx) + bg
(
−a
b

2nx
)∥∥∥ ≤ 1

2n
φ
(

2nx,−a
b

2nx, 0
)
,

and so
aA(x) + bB

(
−a
b
x
)

= 0

for all x ∈ X. Similarly aA(x) + cC
(
−a

cx
)

= 0 for all x ∈ X. And aA(x) + bB(y) + cC
(
−ax+by

c

)
= 0.

Hence

aA(x)− aA
(
− b
a
y

)
− aA

(
x+

b

a
y

)
= 0 (2.16)

for all x, y ∈ X.
Letting x = y = 0 in (2.16), we have A(0) = 0. Letting x = 0 in (2.16), A(−y) = −A(y), such that

B(x) = a
bA
(
b
ax
)

and C(x) = a
cA
(
c
ax
)
. Therefore the inequalities (2.7) hold.

Corollary 2.3. Let q and θ be positive real numbers with 0 < q < 1. Let f, g, h, p : X → Y be mappings
with g(0) = h(0) = p(0) = 0 satisfying

‖af(x) + bg(y) + ch(z)‖ ≤
∥∥∥∥Kp(ax+ by + cz

K

)∥∥∥∥+ θ(‖x‖q + ‖y‖q + ‖z‖q)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ β2θ

|a|
21−q

21−q − 1

(
1 + 2q−1 +

|a|q

|b|q
+
|a|q

|c|q

)
‖x‖q∥∥∥∥g(x)− a

b
A

(
b

a
x

)∥∥∥∥ ≤ β2θ

|b|
21−q

21−q − 1

(
1 + 2q−1 +

|b|q

|a|q
+
|b|q

|c|q

)
‖x‖q∥∥∥∥h(x)− a

K
A

(
K

a
x

)∥∥∥∥ ≤ β2θ

|c|
21−q

21−q − 1

(
1 + 2q−1 +

|c|q

|b|q
+
|c|q

|a|q

)
‖x‖q

for all x ∈ X.

3. Hyers-Ulam stability of the functional inequality (1.6)

Throughout this section, assume that K, a, b are nonzero real numbers with |a| ≥ K.

Proposition 3.1. Let f, g, h, p : X → Y be mappings with p(0) = 0 such that

‖af(x) + bg(y) +Kh(z)‖ ≤
∥∥∥∥Kp(ax+ by

K
+ z

)∥∥∥∥ (3.1)

for all x, y, z ∈ X. Then the mappings f : X → Y is additive.

Proof. Letting x = y = z = 0 in (3.1), we get

‖af(0)‖ ≤ ‖Kp(0)‖ = 0.

So f(0) = 0.
Letting y = −a

bx and z = 0 in (3.1), we get∥∥∥af(x) + bg
(
−a
b
x
)∥∥∥ ≤ ‖Kp(0)‖ = 0 (3.2)
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for all x ∈ X. So f(x) = − b
ag(−a

bx) for all x ∈ X.
Replacing x by −x and letting y = 0 and z = a

Kx in (3.1), we get∥∥∥af(−x) +Kh
( a
K
x
)∥∥∥ ≤ ‖Kp(0)‖ = 0 (3.3)

for all x ∈ X. So f(−x) = −K
a h( a

Kx) for all x ∈ X.
Thus we get

‖f(x) + f(−x)‖ =
1

|a|

∥∥∥af(0) + bg
(
−a
b
x
)

+Kh
( a
K
x
)∥∥∥ ≤ 1

|a|
|K|‖p(0)‖ = 0

for all x ∈ X. So f(−x) = −f(x) for all x ∈ X. Similarly, we can show that g(−x) = −g(x) and
h(−x) = −h(x).

Letting z = −x−y
K in (3.1), we get∥∥∥∥af(x) + bg(y)−Kh

(
ax+ by

K

)∥∥∥∥ =

∥∥∥∥af(x) + bg(y) +Kh

(
−ax− by

K

)∥∥∥∥
≤ ‖Kp(0)‖ = 0

for all x, y ∈ X. By (3.2) and (3.3),

af(x)− af(− b
a
y)− af(x+

b

a
y) = 0 (3.4)

for all x, y ∈ X. Thus
f(x) + f(y)− f(x+ y) = 0

for all x, y ∈ X, as desired.

Theorem 3.2. Assume that mappings f, g, h, p : X → Y with g(0) = h(0) = p(0) = 0 satisfy the inequality

‖af(x) + bg(y) +Kh(z)‖ ≤
∥∥∥∥Kp(ax+ by

K
+ z

)∥∥∥∥+ φ(x, y, z), (3.5)

where φ : X3 → [0,∞) satisfies φ(0, 0, 0) = 0 and

φ̃(x, y, z) :=

∞∑
j=1

1

2j
φ
(
2jx, 2jy, 2jz

)
<∞

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ β2

2|a|

{
φ̃
(
x,−a

b
x, 0
)

+ φ̃
(
x, 0,− a

K
x
)

+ φ̃
(

2x,−a
b
x,− a

K
x
)}

∥∥∥∥g(x)− a

b
A

(
b

a
x

)∥∥∥∥ ≤ β2

2|b|

{
φ̃

(
− b
a
x, x, 0

)
+ φ̃

(
0, x,− b

K
x

)
+ φ̃

(
− b
a
x, 2x,− b

K
x

)}
∥∥∥∥h(x)− a

K
A

(
K

a
x

)∥∥∥∥ ≤ β2

2|K|

{
φ̃

(
−K
a
x, 0, x

)
+ φ̃

(
0,−K

b
x, x

)
+ φ̃

(
−K
a
x,−K

b
x, 2x

)} (3.6)

for all x ∈ X.

Proof. Letting x = y = z = 0 in (3.5), we get ‖af(0)‖ ≤ ‖Kp(0)‖+ φ(0, 0, 0) = 0. So f(0) = 0.
Letting x = x, y = −ax

b , z = 0 in (3.5), we obtain∥∥∥af(x) + bg
(
−a
b
x
)∥∥∥ ≤ φ(x,−a

b
x, 0
)
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for all x ∈ X.
Letting y = 0, z = −ax

K in (3.5), we obtain∥∥∥af(x) +Kh
(
− a

K
x
)∥∥∥ ≤ φ(x, 0,− a

K
x
)

for all x ∈ X.
Letting x = 2x, y = −ax

b , z = − a
Kx in (3.5), we get∥∥∥af (2x) + bg
(
−a
b
x
)

+Kh
(
− a

K
x
)∥∥∥ ≤ φ(2x,−a

b
x,− a

K
x
)

for all x ∈ X. So∥∥∥∥f(x)− 1

2
f (2x)

∥∥∥∥ ≤ β

2|a|

[∥∥∥af(x) + bg
(
−a
b
x
)∥∥∥+

∥∥∥af (x) +Kh
(
− a

K
x
)∥∥∥

+
∥∥∥af(2x) + bg

(
−a
b
x
)

+Kh
(
− a

K
x
)∥∥∥]

≤ β

2|a|

[
φ
(
x,−a

b
x, 0
)

+ φ
(
x, , 0− a

K
x
)

+ φ
(

2x,−a
b
x,− a

K
x
)] (3.7)

for all x ∈ X. It follows from (3.7) that∥∥∥∥ 1

2l
f
(

2lx
)
− 1

2m
f (2mx)

∥∥∥∥
≤ β

m−1∑
j=l

∥∥∥∥ 1

2j
f
(
2jx
)
− 1

2j+1
f
(
2j+1x

)∥∥∥∥
≤ β2

2|a|

m−1∑
j=l

1

2j

[
φ
(

2jx,−a
b

2jx, 0
)

+ φ
(

2jx, , 0− a

K
2jx
)

+ φ
(

2j+1x,−a
b

2jx,− a

K
2jx
)]

for all nonnegative integers m and l with m > l and all x ∈ X. It means that the sequence
{

1
2n f(2nx)

}
is

a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
{

1
2n )f(2nx)

}
converges. So we may

define the mapping A : X → Y by A(x) = limn→∞
1
2n f(2nx) for all x ∈ X.

Moreover, by letting l = 0 and passing the limit m→∞, we get the first formula of (3.6).
Similarly, there exists a mapping B : X → Y such that B(x) = limn→∞

1
2n g(2nx) and

‖g(x)−B(x)‖ ≤ β2

2|b|

{
φ̃

(
− b
a
x, x, 0

)
+ φ̃

(
0, x,− b

K
x

)
+ φ̃

(
− b
a
x, 2x,− b

K
x

)}
(3.8)

for all x ∈ X.
We also obtain a mapping C : X → Y such that C(x) := limn→∞

1
2nh(2nx), and

‖h(x)− C(x)‖ ≤ β2

2|K|

{
φ̃

(
−K
a
x, 0, x

)
+ φ̃

(
0,−K

b
x, x

)
+ φ̃

(
−K
a
x,−K

b
x, 2x

)}
for all x ∈ X.

Now, we show that A is additive.

‖A(x) +A(y)−A(x+ y)‖ = lim
n→∞

1

2n
‖f (2nx) + f (2ny)− f (2n(x+ y))‖

≤ β

|a|
lim
n→∞

1

2n

[∥∥∥af (2nx) + bg
(
−a
b

2nx
)∥∥∥

+
∥∥∥af (2ny) +Kh

(
− a

K
2ny
)∥∥∥
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+
∥∥∥af (2n(x+ y)) + bg

(
−a
b

2nx
)

+Kh
(
− a

K
2ny
)∥∥∥]

≤ β

|a|
lim
n→∞

1

2n

[
φ
(

2nx,−a
b

(2nx), 0
)

+ φ
(

2ny, 0,− a

K
(2ny)

)
+φ
(

2nx+ 2ny,−a
b

2ny,− a

K
2ny
)]

= 0

for all x, y ∈ X. So the mapping A : X → Y is an additive mapping.
Now, we show that the uniqueness of A. Assume that T : X → Y is another additive mapping satisfying

(3.6). Then we get

‖A(x)− T (x)‖ = lim
n→∞

1

2n
‖A(2nx)− T (2nx)‖

≤ β lim
n→∞

1

2n
[‖A(2nx)− f(2nx)‖+ ‖T (2nx)− f(2nx)‖]

≤ β β
2

|a|
lim
n→∞

[
φ̃
(
x,−a

b
x, 0
)

+ φ̃
(
x, 0,− a

K
x
)

+ φ̃
(

2x,−a
b
x,− a

K
x
)]

= 0

for all x ∈ X. Thus we may conclude that A(x) = T (x) for all x ∈ X. This proves the uniqueness of A. So
the mapping A : X → Y is a unique additive mapping satisfying (3.6).

Replacing (x, y, z) by (2nx,−a
b2nx, 0) in (3.5), we get

1

2n

∥∥∥af(2nx) + bg
(
−a
b

2nx
)∥∥∥ ≤ 1

2n
φ
(

2nx,−a
b

2nx, 0
)
,

and so
aA(x) + bB

(
−a
b
x
)

= 0

for all x ∈ X. Similarly aA(x) + KC
(
− a

Kx
)

= 0 for all x ∈ X. And aA(x) + bB(y) + KC
(
−ax+by

K

)
= 0.

Hence

aA(x)− aA
(
− b
a
y

)
− aA

(
x+

b

a
y

)
= 0 (3.9)

for all x, y ∈ X.
Letting x = y = 0 in (3.9), we have A(0) = 0. Letting x = 0 in (3.9), A(−y) = −A(y), such that

B(x) = a
bA
(
b
ax
)

and C(x) = a
KA

(
K
a x
)
.

Corollary 3.3. Let q, θ and K be positive real numbers with q > 1. Let f, h, g, p : X → Y be mappings
with h(0) = g(0) = p(0) satisfying

‖af(x) + bg(y) +Kh(z)‖ ≤
∥∥∥∥Kp(ax+ by

K
+ z

)∥∥∥∥+ θ(‖x‖q + ‖y‖q + ‖z‖q)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ β2θ

|a|
2

2q − 1

(
1 + 2q−1 +

|a|q

|b|q
+
|a|q

|c|q

)
‖x‖q∥∥∥∥g(x)− a

b
A

(
b

a
x

)∥∥∥∥ ≤ β2θ

|b|
2

2q − 1

(
1 + 2q−1 +

|b|q

|a|q
+
|b|q

|c|q

)
‖x‖q∥∥∥∥h(x)− a

K
A

(
K

a
x

)∥∥∥∥ ≤ β2θ

|K|
2

2q − 1

(
1 + 2q−1 +

|K|q

|b|q
+
|K|q

|a|q

)
‖x‖q

for all x ∈ X.
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