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Abstract

In this paper, using the concept of α-admissible pairs of mappings, we prove several common fixed point
results in the setting of b-metric-like spaces. We also introduce the notion of generalized cyclic contraction
pairs and establish some common fixed results for such pairs in b-metric-like spaces. Some examples are
presented making effective the new concepts and results. Moreover, as consequences we prove some common
fixed point results for generalized contraction pairs in partially ordered b-metric-like spaces. c©2016 All
rights reserved.
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1. Introduction and Preliminaries

The concept of b-metric spaces and related fixed point theorems have been investigated by a number of
authors; see for example [5, 8, 11, 12, 14, 15, 23, 28]. In 2013, Alghamdi et al. [2] generalized the notion of a
b-metric by introduction of the concept of a b-metric-like and proved some related fixed point results. After
that, Chen et al. [13] and Hussain et al. [16] proved some fixed point theorems in the setting of b-metric-like
spaces.

First, we recall some basic concepts and notations on b-metric-like concept.
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Definition 1.1. Let X be a non-empty and s ≥ 1. Let d : X ×X → [0,∞) be a function such that:
(d1) d(x, y) = 0 implies x = y,
(d2) d(x, y) = d(y, x),
(d3) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then, d is called a b-metric-like and the pair (X, d) is called a b-metric-like space. The number s is called
the coefficient of (X, d).

In the following, some examples of a b-metric-like which is nor a b-metric neither a metric-like.

Example 1.2. Let X = {0, 1, 2} and d : X ×X → [0,∞) be defined by

d(0, 0) = 0, d(1, 1) = d(2, 2) = 2,

d(0, 1) = 4, d(1, 2) = 1 and d(2, 0) = 2,

with d(x, y) = d(y, x) for all x, y ∈ X. Then, (X, d) is a b−metric-like space with coefficient s = 2, but is
nor a b-metric, neither a metric-like since d(0, 1) = 4 > 3 = d(0, 2) + d(2, 1) = 2 + 1.

Example 1.3. Let X = R and p > 1 be a real number. Define the function d : X ×X → [0,∞) by

d(x, y) = (|x|+ |y|)p ∀x, y ∈ X.

Then, (X, d) is a b-metric-like space with coefficient s = 2p−1, but is neither a b-metric space since d(1, 1) = 2p

nor a metric-like space since d(−1, 1) = 2p > 2 = 1 + 1 = d(−1, 0) + d(0, 1).

Example 1.4. Let X = [0,∞) and d : X ×X → [0,∞) be defined by

d(x, y) = (x3 + y3)2, ∀x, y ∈ X.

Then (X, d) is a b-metric-like space with coefficient s = 2, but is nor a b-metric space since d(1, 1) = 4
neither a metric-like space since d(1, 2) = 81 > 65 = 1 + 64 = d(1, 0) + d(0, 2).

Definition 1.5. Let (X, d) be a b-metric-like space, {xn} be a sequence in X, and x ∈ X. The sequence
{xn} converges to x if and only if

lim
n→∞

d(xn, x) = d(x, x). (1.1)

Remark 1.6. In a b-metric-like space, the limit for a convergent sequence is not unique in general.

Definition 1.7. Let (X, d) be a b-metric-like space and {xn} be a sequence in X. We say that {xn} is
Cauchy if and only if limn,m→∞ d(xn, xm) exists and is finite.

Definition 1.8. Let (X, d) be a b-metric-like space. We say that (X, d) is complete if and only if each
Cauchy sequence in X is convergent.

Lemma 1.9. Let (X, d) be a b-metric-like space and {xn} be a sequence that converges to u with d(u, u) = 0.
Then, for each z ∈ X one has

1

s
d(u, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(u, z).

Lemma 1.10. Let (X, d) be a b-metric-like space and T : X → X be a given mapping. Suppose that T is
continuous at u ∈ X. Then, for all sequence {xn} in X such that xn → u, we have Txn → Tu, that is,

lim
n→∞

d(Txn, Tu) = d(Tu, Tu).

Let (X, d) be a b-metric-like space. We need in the sequel the following trivial inequality:

d(x, x) ≤ 2sd(x, y), for all x, y ∈ X. (1.2)

In 2012, Samet et al. [27] introduced the concept of α-admissible maps.
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Definition 1.11 ([27]). For a nonempty set X, let T : X → X and α : X ×X → [0,∞) be mappings. We
say that the self-mapping T on X is α-admissible if for all x, y ∈ X, we have,

α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1. (1.3)

Many papers dealing with above notion have been considered to prove some (common) fixed point results,
for example see [1, 3, 6, 9, 17, 18, 19, 20, 21, 24, 26].

Very recently, Aydi [4] generalized Definition 1.11 to a pair of mappings.

Definition 1.12. For a nonempty set X, let A,B : X → X and α : X ×X → [0,∞) be mappings. We say
that (A,B) is an α-admissible pair if for all x, y ∈ X, we have

α(x, y) ≥ 1 =⇒ α(Ax,By) ≥ 1 and α(By,Ax) ≥ 1.

The following examples illustrate Definition 1.12.

Example 1.13. Let X = R and α : X ×X → [0,∞) be defined by

α(x, y) =

{
1 if x, y ∈ [0, 1],

0 otherwise.

Consider the mappings A,B : X → X given by

Ax =
x

2
and Bx = x2, ∀x ∈ X.

Then, (A,B) is an α-admissible pair. In fact, let x, y ∈ X such that α(x, y) ≥ 1. By definition of α, this
implies that x, y ∈ [0, 1]. Thus,

α(Ax,By) = α(
x

2
, y2) = 1 and α(By,Ax) = α(y2,

x

2
) = 1.

Then, (A,B) is an α-admissible pair.

Example 1.14. Let X = R and α : X ×X → [0,∞) be defined by

α(x, y) = exy ∀x, y ∈ X.

Consider the mappings A,B : X → X given by

Ax = x3 and Bx = x5, ∀x ∈ X.

Then, (A,B) is an α-admissible pair. In fact, let x, y ∈ X such that α(x, y) ≥ 1. By definition of α, this
implies that xy ≥ 0. Thus,

α(Ax,By) = α(By,Ax) = ex
3y5 ≥ 1,

because x3y5 = x2y4xy ≥ 0. Then, (A,B) is an α-admissible pair.

Take s ≥ 1. Denote N the set of positive integers and Ψs the set of functions ψ : [0,∞) → [0,∞)
satisfying:
(ψ1) ψ is nondecreasing;

(ψ2)
∑
n

snψn(t) <∞ for each t ∈ R+, where ψn is the nth iterate of ψ.

Remark 1.15. It is easy to see that if ψ ∈ Ψs, then ψ(t) < t for any t > 0.

In this paper, we provide some common fixed point results for generalized contractions (including cyclic
contractions and contractions with a partial order) via α-admissible pair of mappings on b-metric-like spaces.
As consequences of our obtained results, we prove some existing known fixed point results on metric-like
spaces and on b-metric spaces. Our results will be illustrated by some concrete examples.
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2. Fixed Point Theorems for (α,ψ)-contractions

First, we introduce the concept of α-contractive pair of mappings in the setting of b-metric-like spaces.

Definition 2.1. Let (X, d) be a b-metric-like space, ψ ∈ Ψs and α : X ×X → [0,∞). A pair A,B : X → X
is called an (α,ψ)-contraction pair if

d(Ax,By) ≤ ψ(M(x, y)), (2.1)

for all x, y ∈ X satisfying α(x, y) ≥ 1, where

M(x, y) = max{d(x, y), d(x,Ax), d(y,By),
d(x,By) + d(y,Ax)

4s
}. (2.2)

Our first main result is

Theorem 2.2. Let (X, d) be a complete b-metric-like space and A,B : X → X be an (α,ψ)-contraction
pair. Suppose that

(i) (A,B) is an α−admissible pair;

(ii) there exists x0 ∈ X such that min{α(x0, Ax0), α(Ax0, x0)} ≥ 1;

(iii) A and B are continuous on (X, d);

(iv) α(z, z) ≥ 1 for every z satisfying the conditions

d(z, z) = 0, d(z,Az) ≤ sd(Az,Az) ≤ s2d(z,Az) and d(z,Bz) ≤ sd(Bz,Bz) ≤ s2d(z,Bz); (2.3)

(v) ψ(t) < t
2s2

for each t > 0.

Then, A and B admit a common fixed point, i.e. there exists u ∈ X such that

Au = u = Bu. (2.4)

Proof. Choose x1 = Ax0 and x2 = Bx1. By induction, we can construct a sequence {xn} in X such that

x2n+1 = Ax2n and x2n+2 = Bx2n+1, (2.5)

for all n ≥ 0. We split the proof into several steps.
Step 1: α(xn, xn+1) ≥ 1 and α(xn+1, xn) ≥ 1 for all n ≥ 0.

By condition (ii) and the fact that the pair (A,B) is α-admissible,

α(x0, x1) ≥ 1⇒

{
α(x1, x2) = α(Ax0, Bx1) ≥ 1 and

α(x2, x1) = α(Bx1, Ax0) ≥ 1.

Again

α(x2, x1) ≥ 1⇒

{
α(x3, x2) = α(Ax2, Bx1) ≥ 1 and

α(x2, x3) = α(Bx1, Ax2) ≥ 1.

By induction, we may obtain α(xn, xn+1) ≥ 1 and α(xn+1, xn) ≥ 1 for all n ≥ 0.
Step 2: We will show that

if for some n, d(x2n, x2n+1) = 0, then Ax2n = x2n = Bx2n (2.6)

and
if for some n, d(x2n+1, x2n+2) = 0, then Ax2n+1 = x2n+1 = Bx2n+1. (2.7)
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Suppose for some n that d(x2n, x2n+1) = 0. We shall prove that d(x2n+1, x2n+2) = 0. We argue by
contradiction. For this, assume that

d(x2n+1, x2n+2) > 0.

Then, by Step 1 and (2.1),

d(x2n+1, x2n+2) = d(Ax2n, Bx2n+1) ≤ ψ(M(x2n, x2n+1)),

where

M(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n, Ax2n), d(x2n+1, Bx2n+1),

d(x2n, Bx2n+1) + d(x2n+1, Ax2n)

4s
}

= max{0, d(x2n+1, x2n+2),
1

4s
(d(x2n, x2n+2) + d(x2n+1, x2n+1))}

= d(x2n+1, x2n+2),

because

d(x2n+1, x2n+1) ≤ 2sd(x2n+1, x2n+2) and

d(x2n, x2n+2) ≤ sd(x2n, x2n+1) + sd(x2n+1, x2n+2) = sd(x2n+1, x2n+2).

Consequently,

d(x2n+1, x2n+2) ≤ ψ(d(x2n+1, x2n+2)).

Since ψ(t) < t, so we get

d(x2n+1, x2n+2) ≤ ψ(d(x2n+1, x2n+2)) < d(x2n+1, x2n+2),

a contradiction. Thus, if d(x2n, x2n+1) = 0, then d(x2n+1, x2n+2) = 0. We deduce that x2n = x2n+1 = x2n+2,
so that

x2n = x2n+1 = Ax2n and

x2n = x2n+2 = Bx2n+1 = B(Ax2n) = Bx2n,

that is x2n is a common fixed point of A and B.
Similarly, one shows that

d(x2n+1, x2n+2) = 0⇒ d(x2n+2, x2n+3) = 0,

and so x2n+1 = x2n+2 = x2n+3, which implies

x2n+1 = x2n+2 = Bx2n+1 and

x2n+1 = x2n+3 = Ax2n+2 = A(Bx2n+1) = Ax2n+1,

that is x2n+1 is a common fixed point of A and B.

By (2.6) and (2.7), the proof is completed in the case when d(xk, xk+1) = 0 for some k ≥ 0. From now
on, we assume that

d(xn, xn+1) > 0, ∀n ≥ 0. (2.8)
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Step 3. We will show that

d(xn, xn+1) ≤ ψn(d(x0, x1)) for all n ≥ 0. (2.9)

By Step 1, α(x2n, x2n−1) ≥ 1, then

d(x2n+1, x2n) = d(Ax2n, Bx2n−1) ≤ ψ(M(x2n, x2n−1))

where

M(x2n, x2n−1) = max{d(x2n, x2n−1), d(x2n, x2n+1), d(x2n−1, x2n),

d(x2n, x2n) + d(x2n−1, x2n+1)

4s
}

= max{d(x2n, x2n−1), d(x2n, x2n+1),
1

4s
(d(x2n−1, x2n+1) + d(x2n, x2n))}

= max{d(x2n, x2n−1), d(x2n, x2n+1)},

because

d(x2n, x2n) ≤ 2sd(x2n, x2n+1) and

d(x2n−1, x2n+1) ≤ sd(x2n−1, x2n) + sd(x2n, x2n+1).

If max{d(x2n, x2n−1), d(x2n, x2n+1)} = d(x2n, x2n+1) for some n ≥ 1, then

0 < d(x2n+1, x2n) ≤ ψ(d(x2n, x2n+1)).

Taking into account ψ(t) < t, one obtains a contradiction. It follows that

max{d(x2n, x2n−1), d(x2n, x2n+1)} = d(x2n, x2n−1)

for all n ≥ 1. Then

d(x2n, x2n+1) ≤ ψ(d(x2n, x2n−1)). (2.10)

A similar reasoning shows that

d(x2n+1, x2n+2) ≤ ψ(d(x2n, x2n+1)). (2.11)

Consequently, by (2.10) and (2.11),

d(xn, xn+1) ≤ ψ(d(xn−1, xn)) ∀n ≥ 1. (2.12)

Therefore

d(xn, xn+1) ≤ ψn(d(x0, x1)), ∀n ≥ 1.

Step 4. We shall show that {xn} is a Cauchy sequence. Using (d3), we have

d(xn, xn+2) ≤sd(xn, xn+1) + sd(xn+1, xn+2)

≤sd(xn, xn+1) + s2d(xn+1, xn+2).

Similarly,

d(xn, xn+3) ≤sd(xn, xn+1) + sd(xn+1, xn+3)

≤sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3).
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By induction, we get for all m > n

d(xn, xm) ≤
m−1∑
i=n

si−n+1d(xi, xi+1) ≤
m−1∑
i=n

sid(xi, xi+1) ≤
∞∑
i=n

siψi(d(x0, x1))→ 0 as n→∞,

which leads to

lim
n,m→∞

d(xn, xm) = 0, (2.13)

that is, {xn} is a Cauchy sequence. Since (X, d) is a complete b-metric-like space, then there exists u ∈ X
such that

lim
n→∞

d(xn, u) = d(u, u) = lim
n,m→∞

d(xn, xm) = 0. (2.14)

Step 5. u satisfies the condition (2.3).
By the continuity of A, we have Axn → Au in (X, d), that is lim

n→∞
d(xn, Au) = d(Au,Au), so that

lim
n→∞

d(x2n+1, Au) = lim
n→∞

d(Ax2n, Au) = d(Au,Au).

On the other side, lim
n→∞

d(xn, u) = 0 = d(u, u) and so by Lemma 1.9,

1

s
d(u,Au) ≤ lim

n→∞
d(x2n+1, Au) ≤ sd(u,Au).

This yields that
1

s
d(u,Au) ≤ d(Au,Au) ≤ sd(u,Au). (2.15)

Similarly, one shows that
1

s
d(u,Bu) ≤ d(Bu,Bu) ≤ sd(u,Bu). (2.16)

Step 6. u is a common fixed point of A and B.

Suppose by contradiction that d(Au,Bu) > 0. Since u satisfies (2.3), it follows from (iv) that α(u, u) ≥ 1,
so by (2.1),

d(Au,Bu) ≤ ψ(M(u, u)),

where

M(u, u) = max{d(u, u), d(u,Au), d(u,Bu),
d(u,Bu) + d(u,Au)

4s
)}

= max{0, d(u,Au), d(u,Bu),
d(u,Bu) + d(u,Au)

4s
)}

= max{d(u,Au), d(u,Bu)}.

By using (2.15) and (2.16), we get

M(u, u) ≤ max{2s2d(Au,Bu), 2s2d(Au,Bu)} = 2s2d(Au,Bu).

Again, by condition (v), we have

d(Au,Bu) ≤ ψ(2s2d(Au,Bu)) < d(Au,Bu),

which is a contradiction. Thus, d(Au,Bu) = 0. In this case, the fact that d(u,Au) ≤ sd(Au,Au) implies

0 ≤ d(u,Au) ≤ sd(Au,Au) ≤ 2s2d(Au,Bu) = 0,

and so Au = u. Therefore, Bu = Au = u. The proof is completed.
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In the following, we state some consequences and corollaries of our obtained result.

Corollary 2.3. Let (X, d) be a complete b-metric-like space, ψ ∈ Ψs and A,B : X → X be given mappings.
Suppose there exists a function α : X ×X → [0,∞) such that

α(x, y)d(Ax,By) ≤ ψ(M(x, y)), (2.17)

for all x, y ∈ X, where M(x, y) is defined by (2.2).

Also, Suppose that

(i) (A,B) is an α−admissible pair;

(ii) there exists x0 ∈ X such that min{α(x0, Ax0), α(Ax0, x0)} ≥ 1;

(iii) A and B are continuous on (X, d);

(iv) α(z, z) ≥ 1 for every z satisfying the conditions

d(z, z) = 0, d(z,Az) ≤ sd(Az,Az) ≤ s2d(z,Az) and d(z,Bz) ≤ sd(Bz,Bz) ≤ s2d(z,Bz); (2.18)

(v) ψ(t) < t
2s2
, for each t > 0.

Then, A and B have a common fixed point.

Proof. Let x, y ∈ X such that α(x, y) ≥ 1. Then, if (2.17) holds, we have

d(Ax,By) ≤ α(x, y)d(Ax,By) ≤ ψ(M(x, y)).

Then, the proof is concluded by Theorem 2.2.

Corollary 2.4. Let (X, d) be a complete b-metric-like space, ψ ∈ Ψs and A,B : X → X be continuous
mappings satisfying

d(Ax,By) ≤ ψ(M(x, y)), (2.19)

for all x, y ∈ X, where M(x, y) is defined by (2.2).

If ψ(t) < t
2s2

for each t > 0, then A and B have a common fixed point.

Proof. It suffices to take α(x, y) = 1 in Corollary 2.3.

Corollary 2.5. Let (X, d) be a complete b-metric-like space and A,B : X → X be continuous mappings.
Suppose there exists k ∈ [0, 1

2s2
) such that

d(Ax,By) ≤ kM(x, y), (2.20)

for all x, y ∈ X, where M(x, y) is defined by (2.2). Then, A and B have a common fixed point.

Proof. It suffices to take ψ(t) = kt for all t ≥ 0 in Corollary 2.4.

Corollary 2.6. Let (X, d) be a complete b-metric-like space and A,B : X → X be continuous mappings.
Suppose there exists k ∈ [0, 1

2s2
) such that

d(Ax,By) ≤ kd(x, y), (2.21)

for all x, y ∈ X. Then, A and B have a common fixed point.

In the setting of b-metric spaces, we have,
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Corollary 2.7. Let (X, d) be a complete b-metric space, ψ ∈ Ψs and A,B : X → X be given mappings.
Suppose there exists a function α : X ×X → [0,∞) such that

α(x, y)d(Ax,By) ≤ ψ(M(x, y)), (2.22)

for all x, y ∈ X, where M(x, y) is defined by (2.2).

Also, Suppose that

(i) (A,B) is an α−admissible pair;

(ii) there exists x0 ∈ X such that min{α(x0, Ax0), α(Ax0, x0)} ≥ 1;

(iii) A and B are continuous on (X, d).

Then, A and B have a common fixed point.

Proof. Following the proof of Theorem 2.2, we know that the sequence {xn} is Cauchy in (X, d) and converges
to some u ∈ X. We show that u is a common fixed point of A and B. Using the continuity of A and B and
Lemma 1.9, we obtain Au = Bu = u.

In metric-like spaces (the case s = 1), we may state the following result.

Corollary 2.8. Let (X, d) be a complete metric-like space, ψ ∈ Ψ1 and A,B : X → X such that

d(Ax,By) ≤ ψ(max{d(x, y), d(x,Ax), d(y,By),
d(x,By) + d(y,Ax)

4
}),

for all x, y ∈ X satisfying α(x, y) ≥ 1.
Also, Suppose that

(i) (A,B) is an α−admissible pair;

(ii) there exists x0 ∈ X such that min{α(x0, Ax0), α(Ax0, x0)} ≥ 1;

(iii) A and B are continuous on (X, d);

(iv) α(z, z) ≥ 1 for every z satisfying the conditions

d(z, z) = 0, d(z,Az) = d(Az,Az) and d(z,Bz) = d(Bz,Bz); (2.23)

(v) ψ(t) < t
2 for each t > 0.

Then, A and B have a common fixed point.

Theorem 2.2 remains true if we replace the continuity hypothesis by the following property:

(H) If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 and α(xn+1, xn) ≥ 1 for all n and xn → x ∈ X as
n→∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 and α(x, xn(k)) ≥ 1
for all k.

The statement is given as follows.

Theorem 2.9. Let (X, d) be a complete b-metric-like space and A,B : X → X an (α,ψ)-contraction pair.
Suppose that

(i) (A,B) is an α−admissible pair;

(ii) there exists x0 ∈ X such that min{α(x0, Ax0), α(Ax0, x0)} ≥ 1;

(iii) (H) holds;

(iv) ψ(t) < t
s for each t > 0.

Then, A and B admit a common fixed point.
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Proof. Following the proof of Theorem 2.2, we know that the sequence {xn} is Cauchy in (X, d) and converges
to some u ∈ X. We show that u is a common fixed point of A and B.

Suppose on the contrary that Au 6= u or Bu 6= u. Assume that d(u,Au) > 0.

By assumption (iii) (that is, α(u, x2n(k)−1) ≥ 1), we have

d(Au, x2n(k)) = d(Au,Bx2n(k)−1)) ≤ ψ(M(u, x2n(k)−1)),

where

M(u, x2n(k)−1)) = max{d(u, x2n(k)−1), d(u,Au), d(x2n(k)−1, x2n(k)−1),

d(u,Bx2n(k)−1) + d(x2n(k)−1, Au)

4s
}

= max{d(u, x2n(k)−1), d(u,Au), d(x2n(k)−1, x2n(k)),

d(u, x2n(k)) + d(x2n(k)−1, Au)

4s
}

≤max{d(u, x2n(k)−1), d(u,Au), d(x2n(k)−1, x2n(k)),

d(u, x2n(k)) + sd(x2n(k)−1, u) + sd(u,Au)

4s
}.

We know that

lim
n→∞

d(u, x2n(k)−1) = lim
n→∞

d(x2n(k)−1, x2n(k)) = lim
n→∞

d(u, x2n(k)) = 0.

Then, there exists N ∈ N such that for all k ≥ N,

M(u, x2n(k)−1)) ≤ d(u,Au).

Then, by (ψ1), we obtain for all k ≥ N,

d(Au, x2n(k)) ≤ ψ(d(u,Au)). (2.24)

On the other hand, we have

d(Au, u) ≤ sd(Au, x2n(k)) + sd(x2n(k), u), ∀k ≥ 0. (2.25)

Combining (2.24) and (2.25), we get for all k ≥ N,

d(Au, u) ≤ sψ(d(u,Au)) + sd(x2n(k), u). (2.26)

Having in mind ψ(t) < t
s , so letting k →∞ in (2.26), we get

0 < d(u,Au) ≤ sψ(d(u,Au)) < d(u,Au),

which is a contradiction. Similarly, if d(u,Bu) > 0 we get a contradiction. Hence, Au = u = Bu and so u
is a common fixed point of A and B.

Analogously, we can derive the following results.

Corollary 2.10. Let (X, d) be a complete b-metric-like space, ψ ∈ Ψs and A,B : X → X be given mappings.
Suppose there exists a function α : X ×X → [0,∞) such that

α(x, y)d(Ax,By) ≤ ψ(M(x, y)), (2.27)

for all x, y ∈ X, where M(x, y) is defined by (2.2).

Also, Suppose that
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(i) (A,B) is an α-admissible pair;

(ii) ∃x0 ∈ X such that min{α(x0, Ax0), α(Ax0, x0)} ≥ 1;

(iii) (H) holds;

(iv) ψ(t) < t
s for each t > 0.

Then, A and B have a common fixed point.

Corollary 2.11. Let (X, d) be a complete b-metric-like space, ψ ∈ Ψs and A,B : X → X be given mappings.
Suppose that

d(Ax,By) ≤ ψ(M(x, y)), (2.28)

for all x, y ∈ X, where M(x, y) is defined by (2.2).

If ψ(t) < t
s for each t > 0, then A and B have a common fixed point.

Corollary 2.12. Let (X, d) be a complete b-metric-like space and A,B : X → X be given mappings. Suppose
there exists k ∈ [0, 1s ) such that

d(Ax,By) ≤ kM(x, y), (2.29)

for all x, y ∈ X, where M(x, y) is defined by (2.2). Then, A and B have a common fixed point.

In the case s = 1, we have the two following corollaries.

Corollary 2.13. Let (X, d) be a complete metric-like space, ψ ∈ Ψ1 and A,B : X → X such that

d(Ax,By) ≤ ψ(max{d(x, y), d(x,Ax), d(y,By),
d(x,By) + d(y,Ax)

4
}),

for all x, y ∈ X satisfying α(x, y) ≥ 1.
Also, Suppose that

(i) (A,B) is an α−admissible pair;

(ii) there exists x0 ∈ X such that min{α(x0, Ax0), α(Ax0, x0)} ≥ 1;

(iii) (H) holds.

Then, A and B have a common fixed point.

Corollary 2.14. Let (X, d) be a complete metric-like space, ψ ∈ Ψ1 and A,B : X → X such that

d(Ax,By) ≤ ψ(max{d(x, y), d(x,Ax), d(y,By),
d(x,By) + d(y,Ax)

4
}),

for all x, y ∈ X. Then, A and B have a common fixed point.

We provide the following example.

Example 2.15. Take X = [0,∞) endowed with the complete b-metric-like d(x, y) = (x3 + y3)2. Consider
the mappings A,B : X → X given by

Ax =

{
x
6√3

if x ∈ [0, 1]

2x− 2 if x > 1
, Bx =

{
x
6√3

if x ∈ [0, 1]

x if x > 1.

Define the mapping α : X ×X → [0,∞) by

α(x, y) =

{
1 if x, y ∈ [0, 1]

0 otherwise.
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Let ψ(t) = 1
3 t. Note that (A,B) is an α-admissible pair. In fact, let x, y ∈ X such that α(x, y) ≥ 1. By

definition of α, this implies that x, y ∈ [0, 1]. Thus,

α(Ax,By) = α(
x
6
√

3
,
y
6
√

3
) = 1 and α(By,Ax) = α(

y
6
√

3
,
x
6
√

3
) = 1.

Then, (A,B) is an α-admissible pair.

Now, we show that (A,B) is an (α,ψ)-contraction. Let x, y ∈ X such that α(x, y) ≥ 1. So, x, y ∈ [0, 1].
We have

d(Ax,By) = ((Ax)3 + (By)3)2 = ((
x
6
√

3
)3 + (

y
6
√

3
)3)2

= (
1
6
√

3
)6(x3 + y3)2 = ψ(d(x, y)) ≤ ψ(M(x, y)).

Now, we show that (H) is verified. Let {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 and
α(xn+1, xn+) ≥ 1 for all n and xn → u in (X, d). Then, {xn} ⊂ [0, 1] and xn → u in (X, |.|), where |.| is the
standard metric on X. Thus, xn, u ∈ [0, 1] and so α(xn, u) = α(u, xn) = 1 for all n. Moreover, there exists
x0 ∈ X such that α(x0, Ax0) ≥ 1 and α(Ax0, x0) ≥ 1. In fact, for x0 = 1, we have α(1, A1) = α(1, 1

6√3
) = 1

and α(A1, 1) = α( 1
6√3
, 1) = 1.

Thus, all hypotheses of Theorem 2.9 are verified. Here, {0, 2} is the set of common fixed points of A and
B.

The mappings considered in above example have two common fixed points which are 0 and 2. Note that
α(0, 2) = 0, which is not greater than 1. So for the uniqueness, we need the following additional condition.

(U) For all x, y ∈ CF (A,B), we have α(x, y) ≥ 1, where CF (A,B) denotes the set of common fixed points
of A and B.

Theorem 2.16. Adding condition (U) to the hypotheses of Theorem 2.2 (resp. Theorem 2.9, with ψ(t) < t
2s

for all t > 0), we obtain that u is the unique common fixed point of A and B.

Proof. In Theorem 2.2, mention that ψ(t) < t
2s2

implies ψ(t) < t
2s . We argue by contradiction, that is,

there exist u, v ∈ X such that u = Au = Bu and v = Av = Bv with u 6= v. By assumption (U), we have
α(u, v) ≥ 1. So by (2.1) and since ψ(t) < t

2s , we have

d(u, v) = d(Au,Bv) ≤ ψ(M(u, v))) ≤ ψ(max{d(u, v), d(u, u), d(v, v),
d(u, v)

2s
})

= ψ(max{d(u, v), d(u, u), d(v, v)})
≤ ψ(max{d(u, v), 2sd(u, v)}) = ψ(2sd(u, v)) < d(u, v),

which is a contradiction. Hence, u = v.

Corollary 2.17. Let (X, d) be a complete b-metric-like space, ψ ∈ Ψs and A,B : X → X be given mappings.
Suppose that

d(Ax,By) ≤ ψ(M(x, y)), (2.30)

for all x, y ∈ X, where M(x, y) is defined by (2.2). If ψ(t) < t
2s for all t > 0, then A and B have a unique

common fixed point.

Proof. It suffices to take α(x, y) = 1 in Corollary 2.11. The uniqueness of u follows from Theorem 2.16.
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Corollary 2.18. Let (X, d) be a complete b-metric-like space and A,B : X → X be given mappings. Suppose
there exists k ∈ [0, 1

2s) such that
d(Ax,By) ≤ kM(x, y), (2.31)

for all x, y ∈ X, where M(x, y) is defined by (2.2). Then, A and B have a unique common fixed point.

Proof. It suffices to take ψ(t) = kt in Corollary 2.17. The uniqueness of u follows from Theorem 2.16.

The following example illustrates Theorem 2.2 where A and B have a unique common fixed point.

Example 2.19. Take X = [0, 32 ] endowed with the complete b-metric-like d(x, y) = x2 + y2 + (x− y)2 with
s = 2. Consider the mappings A,B : X → X given by

Ax =

{
ln(1 + x

3 ) if x ∈ [0, 1]

x− 1 + ln 4
3 if x ∈ (1, 32 ]

, Bx =

{
ln(1 + x

3 ) if x ∈ [0, 1]

x+ ln(1 + x
3 )− 1 if x ∈ (1, 32 ].

Define the mapping α : X ×X → [0,∞) by

α(x, y) =

{
1 if x, y ∈ [0, 1]

0 otherwise.

Let ψ(t) = 1
9 t. It is obvious that

(i) (A,B) is an α-admissible pair;

(ii) there exists x0 ∈ X such that α(x0, Ax0) ≥ 1 and α(Ax0, x0) ≥ 1;

(iii) A and B are continuous on (X, d);

(iv) ψ(t) < t
2s2
.

Now, we shall show that (A,B) is an (α,ψ)-contraction. Let x, y ∈ X such that α(x, y) ≥ 1. So,
x, y ∈ [0, 1].

We have

d(Ax,By) = (Ax)2 + (By)2 + (Ax−By)2

= (ln(1 +
x

3
))2 + (ln(1 +

y

3
))2 + (ln(1 +

x

3
)− ln(1 +

y

3
))2

≤ (
x

3
)2 + (

y

3
)2 +

1

9
(x− y)2 =

1

9
[x2 + y2 + (x− y)2] =

1

9
d(x, y) ≤ ψ(M(x, y)).

Thus, all hypotheses of Theorem 2.2 are verified. Here, 0 is the unique common fixed points of A and
B.

3. Fixed Point Theorems for generalized cyclic contractions

In 2003, Kirk et al. [22] introduced the concepts of cyclic mappings and cyclic contractions. For papers
dealing with cyclic contractions, see [7, 10, 25]. We recall some definitions from [22].

Definition 3.1 ([22]). Let F and G be nonempty subsets of a space X. A mapping T : F ∪G→ F ∪G is
called cyclic if T (F ) ⊂ G and T (G) ⊂ F.

Definition 3.2 ([22]). Let F and G be nonempty subsets of a metric space (X, d). A mapping T : F ∪G→
F ∪G is called a cyclic contraction if there exists k ∈ [0, 1) such that

d(Tx, Ty) ≤ kd(x, y), (3.1)

for all x ∈ F and y ∈ G.
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Now, we introduce the concept of new generalized cyclic contractive pairs in the setting of b-metric-like
spaces.

Definition 3.3. Let F and G be nonempty closed subsets of a b-metric-like space (X, d), α : X × X →
[0,∞), ψ ∈ Ψs and A,B : X → X be mappings. The pair (A,B) is called a cyclic (α,ψ, F,G)-contraction
pair if

(i) F ∪G has a cyclic representation w.r.t. the pair (A,B), that is, A(F ) ⊂ G and B(G) ⊂ F ;

(ii)
d(Ax,By) ≤ ψ(M(x, y)), (3.2)

for all x ∈ F and y ∈ G satisfying α(x, y) ≥ 1 or α(y, x) ≥ 1, where

M(x, y) = max{d(x, y), d(x,Ax), d(y,By),
d(x,By) + d(y,Ax)

4s
}.

Now, we state and prove the following results.

Theorem 3.4. Let (X, d) be a complete b-metric-like space and F and G be nonempty closed subsets of X.
Suppose that A,B : X → X is a cyclic (α,ψ, F,G)-contraction pair and the following conditions hold:

(i) α(Ax,BAx) ≥ 1 for all x ∈ F and α(Bx,ABx) ≥ 1 for all x ∈ G;

(ii) A or B is continuous on (X, d);

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ≥ 0 and xn → z as n → ∞, then
α(z, z) ≥ 1;

(iv) ψ(t) < t
2s3+s

for each t > 0.

Then, A and B have a common fixed point in F ∩G.

Proof. Let x0 ∈ F and x1 = Ax0. Since A(F ) ⊂ G, then x1 ∈ G. Also, let x2 = Bx1 = BAx0. Since
B(G) ⊂ F, then x2 ∈ F. Continuing in this fashion, we can construct a sequence {xn} in X such that

x2n+2 = Bx2n+1 ∈ F, x2n+1 = Ax2n ∈ G, ∀n ≥ 0.

By condition (i), we have α(x1, x2) = α(Ax0, BAx0) ≥ 1 and α(x2, x3) = α(Bx1, ABx1) ≥ 1. Continuing
this process, we get

α(xn, xn+1) ≥ 1, ∀n ≥ 0.

Following the proof of Theorem 2.2, we know that the sequence {xn} is Cauchy in (X, d) and converges
to some u ∈ X with d(u, u) = 0. We shall show that u is a common fixed point of A and B in F ∩G.
Since {x2n} is a sequence in the closed set F and {x2n} converges to u, then u ∈ F. Also, {x2n+1} is a
sequence in the closed set G and {x2n+1} converges to u, then u ∈ G. We deduce that u ∈ F ∩G.

First, assume that A is continuous on (X, d). Since {x2n} converges to u, so {x2n+1 = Ax2n} converges
to Au.

On the other hand, lim
n→∞

d(xn, u) = 0 = d(u, u) and by Lemma 1.9, we have

1

s
d(u,Au) ≤ d(Au,Au) ≤ sd(u,Au).

If d(Au,Bu) = 0, then Au = Bu. Moreover, the fact that d(u,Au) ≤ sd(Au,Au) implies

0 ≤ d(u,Au) ≤ sd(Au,Au) ≤ 2s2d(Au,Bu) = 0,

and so Au = u. Then, Bu = Au = u and so u is a common fixed point of A and B.
Suppose by contradiction that d(Au,Bu) > 0. Since u ∈ F ∩G and by (iii), it follows that α(u, u) ≥ 1,

so that
d(Au,Bu) ≤ ψ(M(u, u)),
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where

M(u, u) = max{d(u, u), d(u,Au), d(u,Bu),
d(u,Bu) + d(u,Au)

4s
)}

= max{0, d(u,Au), d(u,Bu),
d(u,Bu) + d(u,Au)

4s
)}

= max{d(u,Au), d(u,Bu)} ≤ max{d(u,Au), sd(u,Au) + sd(Au,Bu)}
= sd(u,Au) + sd(Au,Bu) ≤ 2s3d(Au,Bu) + sd(Au,Bu) = (2s3 + s)d(Au,Bu).

Then
d(Au,Bu) ≤ ψ((2s3 + s)d(Au,Bu)) < d(Au,Bu),

which is a contradiction.
The proof is similar when B is assumed to be continuous on (X, d).

Theorem 3.5. Let (X, d) be a complete b-metric-like space and F and G be nonempty closed subsets of X.
Suppose that A,B : X → X is a cyclic (α,ψ, F,G)-contraction pair and the following conditions hold:

(i) α(Ax,BAx) ≥ 1 for all x ∈ F and α(Bx,ABx) ≥ 1 for all x ∈ G;

(ii) A and B are continuous on (X, d);

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ≥ 0 and xn → z as n → ∞, then
α(z, z) ≥ 1;

(iv) ψ(t) < t
2s2

for each t > 0.

Then, A and B have a common fixed point in F ∩G.

Proof. The proof is similar to the proofs of Theorem 3.4 and Theorem 2.2.

Theorem 3.4 and Theorem 3.5 can be proved without assuming the continuity of A or the continuity of
B. For this instance, we suppose that X has the following property:

(R) If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n and xn → x ∈ X as n→∞, then there
exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k.

This statement is given as follows.

Theorem 3.6. Let (X, d) be a complete b-metric-like space and F and G be nonempty closed subsets of X.
Suppose that A,B : X → X is a cyclic (α,ψ, F,G)-contraction pair and the following conditions hold:

(i) α(Ax,BAx) ≥ 1 for all x ∈ F and α(Bx,ABx) ≥ 1 for all x ∈ G;

(ii) (R) holds;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ≥ 0 and xn → z as n → ∞, then
α(z, z) ≥ 1;

(iv) ψ(t) < t
s for each t > 0.

Then, A and B have a common fixed point in F ∩G.

Proof. The proof is similar to that of Theorem 3.4 and Theorem 2.9.

Taking A = B in Theorem 3.5 and Theorem 3.6, we state the followings results.
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Corollary 3.7. Let (X, d) be a complete b-metric-like space and F and G be nonempty closed subsets of X.
Suppose that ψ ∈ Ψs, α : X ×X → X and A : X → X such that

d(Ax,Ay) ≤ ψ(max{d(x, y), d(x,Ax), d(y,Ay),
d(Ax, y) + d(x,Ay)

4s
})

for all x ∈ F and y ∈ G satisfying α(x, y) ≥ 1 or α(y, x) ≥ 1.
Also, suppose the following conditions hold:

(i) α(Ax,AAx) ≥ 1 for all x ∈ F ∩G;

(ii) A is a cyclic mapping;

(ii) A is continuous on (X, d);

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ≥ 0 and xn → z as n → ∞, then
α(z, z) ≥ 1;

(iv) ψ(t) < t
2s2

for each t > 0.

Then, A has a fixed point in F ∩G.

Corollary 3.8. Let (X, d) be a complete b-metric-like space and F and G be nonempty closed subsets of X.
Suppose that ψ ∈ Ψs, α : X ×X → X and A : X → X a mapping such that

d(Ax,Ay) ≤ ψ(max{d(x, y), d(x,Ax), d(y,Ay),
d(Ax, y) + d(x,Ay)

4s
}),

for all x ∈ F and y ∈ G satisfying α(x, y) ≥ 1 or α(y, x) ≥ 1.
Also, suppose the following conditions hold:

(i) α(Ax,AAx) ≥ 1 for all x ∈ F ∩G;

(ii) A is a cyclic mapping;

(ii) (R) holds;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ≥ 0 and xn → z as n → ∞, then
α(z, z) ≥ 1;

(iv) ψ(t) < t
s for each t > 0.

Then, A has a fixed point in F ∩G.

Now, we give an example to illustrate Theorem 3.6.

Example 3.9. Let X = {0, 1, 2} and d : X ×X → [0,∞) defined by

d(0, 0) = 9, d(1, 1) = 0, d(2, 2) = 0, d(0, 1) = d(1, 0) = 16,

d(0, 2) = d(2, 0) = 9 and d(1, 2) = d(2, 1) = 49.

Then, (X, d) is a complete b−metric-like space with coefficient s = 2. Let F = {0, 1} and G = {1, 2}. Note
that F and G are nonempty closed subsets of X. Consider the mappings A,B : X → X and α : X×X → X
as follows:

A0 = 2, A1 = 1, A2 = 0, B0 = 0, B1 = 1 and B2 = 1

and {
α(1, 1) = α(2, 1) = 1;

α(x, y) = 0 otherwise.

Now, we show that all the conditions of Theorem 3.6 are satisfied.
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We show that condition (i) of Theorem 3.6 is verified. Let x ∈ F, then

α(Ax,BAx) =

{
α(2, 1) = 1 if x = 0;

α(1, 1) = 1 if x = 1.

Also, let x ∈ G, then

α(Bx,ABx) =

{
α(1, 1) = 1 if x = 1;

α(1, 1) = 1 if x = 2.

Then, α(Ax,BAx) ≥ 1 for all x ∈ F and α(Bx,ABx) ≥ 1 for all x ∈ G.
It is clear that A(F ) ⊂ G and B(G) ⊂ F.
Now, we sow that (A,B) is a cyclic (α,ψ, F,G)-contraction pair.
Let x ∈ F and y ∈ G such that α(x, y) ≥ 1 or α(y, x) ≥ 1. It follows from definition of α that (x = y = 1)

or (x = 1, y = 2). We have for (x = y = 1) or (x = 1, y = 2)

d(Ax,By) = d(1, 1) = 0 ≤ ψ(M(x, y)),

for all ψ ∈ Ψs such that ψ(t) < t
s for all t > 0. Then, (A,B) is a cyclic (α,ψ, F,G)-contraction pair.

It is easy to show that X satisfies the property (R). Moreover, condition (iii) of Theorem 3.6 holds.
Hence, all conditions of Theorem 3.6 are verified. Here, 1 is the unique common fixed point of A and B.

4. Fixed Point Theorems for generalized contractions in partially ordered b-metric-like spaces

Now, we give some fixed points results on partially ordered b-metric-like spaces as consequences of our
results presented in the last section.

Definition 4.1. Let X be a nonempty set. We say that (X, d,�) is a partially ordered b-metric-like space
if (X, d) is a b-metric-like space and (X,�) is a partially ordered set.

Definition 4.2. Let F and G be nonempty closed subsets of a partially ordered b-metric-like space (X, d,�
), ψ ∈ Ψs and A,B : X → X be mappings. The pair (A,B) is called a cyclic (ψ,F,G)-contraction pair if

(i) F ∪G has a cyclic representation w.r.t. the pair (A,B);

(ii)
d(Ax,By) ≤ ψ(M(x, y)), (4.1)

for all x ∈ F and y ∈ G satisfying x � y or y � x, where

M(x, y) = max{d(x, y), d(x,Ax), d(y,By),
d(x,By) + d(y,Ax)

4s
}.

Definition 4.3. Let (X, d,�) a partially ordered b-metric-like space and F,G be nonempty closed subsets
of X with X = F ∪ G. Let A,B : X → X be mappings. We say that the pair (A,B) is (F,G)-weakly
increasing if Ax � BAx for all x ∈ F and Bx � ABx for all x ∈ G.

Now, we state and prove the following results.

Theorem 4.4. (X, d,�) be a complete partially ordered b-metric-like space and F,G be nonempty closed
subsets of X. Suppose that A,B : X → X is a cyclic (ψ,F,G)-contraction pair and the following conditions
hold:

(i) (A,B) is (F,G)-weakly increasing;

(ii) A or B is continuous on (X, d);

(iii) ψ(t) < t
2s3+s

for each t > 0.



H. Aydi, A. Felhi, S. Sahmim, J. Nonlinear Sci. Appl. 9 (2016), 2492–2510 2509

Then, A and B have a common fixed point in F ∩G.

Proof. Let the function α : X ×X → X such that

α(x, y) =

{
1 if x � y;

0 otherwise.

Then, all hypotheses of Theorem 3.4 are satisfied and hence A and B have a common fixed point in
F ∩G.

Also, by using the same technique, we have the following results.

Theorem 4.5. (X, d,�) be a complete partially ordered b-metric-like space and F,G be nonempty closed
subsets of X. Suppose that A,B : X → X is a cyclic (ψ,F,G)-contraction pair and the following conditions
hold:

(i) (A,B) is (F,G)-weakly increasing;

(ii) A and B are continuous on (X, d);

(iii) ψ(t) < t
2s2

for each t > 0.

Then, A and B have a common fixed point in F ∩G.

Theorem 4.6. (X, d,�) be a complete partially ordered b-metric-like space and F,G be nonempty closed
subsets of X. Suppose that A,B : X → X is a cyclic (ψ,F,G)-contraction pair and the following conditions
hold:

(i) (A,B) is (F,G)-weakly increasing;

(ii) for a sequence {xn} ⊂ X with xn � xn+1, for all n ∈ N and xn → z in (X, d), then there exists a
subsequence {xn(k)} of {xn} such that xn(k) � z, for all k ∈ N;

(iv) ψ(t) < t
s for each t > 0.

Then, A and B have a common fixed point in F ∩G.
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