On common fixed points for (α, ψ)-contractions and generalized cyclic contractions in b-metric-like spaces and consequences

Hassen Aydia ${ }^{\text {a,b,* }}$, Abdelbasset Felhic ${ }^{\text {c }}$, Slah Sahmim ${ }^{\text {c }}$
${ }^{a}$ University of Dammam, Department of Mathematics. College of Education of Jubail, P.O: 12020, Industrial Jubail 31961, Saudi Arabia.
${ }^{b}$ Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.

Communicated by P. Kumam

Abstract

In this paper, using the concept of α-admissible pairs of mappings, we prove several common fixed point results in the setting of b-metric-like spaces. We also introduce the notion of generalized cyclic contraction pairs and establish some common fixed results for such pairs in b-metric-like spaces. Some examples are presented making effective the new concepts and results. Moreover, as consequences we prove some common fixed point results for generalized contraction pairs in partially ordered b-metric-like spaces. © 2016 All rights reserved.

Keywords: Common fixed point, b-metric-like space, cyclic contraction, admissible mapping. 2010 MSC: 47H10, 54H25.

1. Introduction and Preliminaries

The concept of b-metric spaces and related fixed point theorems have been investigated by a number of authors; see for example [5, 8, 11, 12, 14, 15, 23, 28]. In 2013, Alghamdi et al. [2] generalized the notion of a b-metric by introduction of the concept of a b-metric-like and proved some related fixed point results. After that, Chen et al. [13] and Hussain et al. [16] proved some fixed point theorems in the setting of b-metric-like spaces.

First, we recall some basic concepts and notations on b-metric-like concept.

[^0]Definition 1.1. Let X be a non-empty and $s \geq 1$. Let $d: X \times X \rightarrow[0, \infty)$ be a function such that:
$(d 1) d(x, y)=0$ implies $x=y$,
$(d 2) d(x, y)=d(y, x)$,
$(d 3) d(x, y) \leq s[d(x, z)+d(z, y)]$ for all $x, y, z \in X$.
Then, d is called a b-metric-like and the pair (X, d) is called a b-metric-like space. The number s is called the coefficient of (X, d).

In the following, some examples of a b-metric-like which is nor a b-metric neither a metric-like.
Example 1.2. Let $X=\{0,1,2\}$ and $d: X \times X \rightarrow[0, \infty)$ be defined by

$$
\begin{gathered}
d(0,0)=0, \quad d(1,1)=d(2,2)=2 \\
d(0,1)=4, \quad d(1,2)=1 \text { and } d(2,0)=2
\end{gathered}
$$

with $d(x, y)=d(y, x)$ for all $x, y \in X$. Then, (X, d) is a b-metric-like space with coefficient $s=2$, but is nor a b-metric, neither a metric-like since $d(0,1)=4>3=d(0,2)+d(2,1)=2+1$.
Example 1.3. Let $X=\mathbb{R}$ and $p>1$ be a real number. Define the function $d: X \times X \rightarrow[0, \infty)$ by

$$
d(x, y)=(|x|+|y|)^{p} \quad \forall x, y \in X
$$

Then, (X, d) is a b-metric-like space with coefficient $s=2^{p-1}$, but is neither a b-metric space since $d(1,1)=2^{p}$ nor a metric-like space since $d(-1,1)=2^{p}>2=1+1=d(-1,0)+d(0,1)$.
Example 1.4. Let $X=[0, \infty)$ and $d: X \times X \rightarrow[0, \infty)$ be defined by

$$
d(x, y)=\left(x^{3}+y^{3}\right)^{2}, \quad \forall x, y \in X
$$

Then (X, d) is a b-metric-like space with coefficient $s=2$, but is nor a b-metric space since $d(1,1)=4$ neither a metric-like space since $d(1,2)=81>65=1+64=d(1,0)+d(0,2)$.

Definition 1.5. Let (X, d) be a b-metric-like space, $\left\{x_{n}\right\}$ be a sequence in X, and $x \in X$. The sequence $\left\{x_{n}\right\}$ converges to x if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=d(x, x) \tag{1.1}
\end{equation*}
$$

Remark 1.6. In a b-metric-like space, the limit for a convergent sequence is not unique in general.
Definition 1.7. Let (X, d) be a b-metric-like space and $\left\{x_{n}\right\}$ be a sequence in X. We say that $\left\{x_{n}\right\}$ is Cauchy if and only if $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)$ exists and is finite.

Definition 1.8. Let (X, d) be a b-metric-like space. We say that (X, d) is complete if and only if each Cauchy sequence in X is convergent.

Lemma 1.9. Let (X, d) be a b-metric-like space and $\left\{x_{n}\right\}$ be a sequence that converges to u with $d(u, u)=0$. Then, for each $z \in X$ one has

$$
\frac{1}{s} d(u, z) \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, z\right) \leq \limsup _{n \rightarrow \infty} d\left(x_{n}, z\right) \leq s d(u, z)
$$

Lemma 1.10. Let (X, d) be a b-metric-like space and $T: X \rightarrow X$ be a given mapping. Suppose that T is continuous at $u \in X$. Then, for all sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow u$, we have $T x_{n} \rightarrow T u$, that is,

$$
\lim _{n \rightarrow \infty} d\left(T x_{n}, T u\right)=d(T u, T u)
$$

Let (X, d) be a b-metric-like space. We need in the sequel the following trivial inequality:

$$
\begin{equation*}
d(x, x) \leq 2 \operatorname{sd}(x, y), \quad \text { for all } x, y \in X \tag{1.2}
\end{equation*}
$$

In 2012, Samet et al. 27] introduced the concept of α-admissible maps.

Definition $1.11([27)$. For a nonempty set X, let $T: X \rightarrow X$ and $\alpha: X \times X \rightarrow[0, \infty)$ be mappings. We say that the self-mapping T on X is α-admissible if for all $x, y \in X$, we have,

$$
\begin{equation*}
\alpha(x, y) \geq 1 \Longrightarrow \alpha(T x, T y) \geq 1 \tag{1.3}
\end{equation*}
$$

Many papers dealing with above notion have been considered to prove some (common) fixed point results, for example see [1, 3, 6, 9, 17, 18, 19, 20, 21, 24, 26.

Very recently, Aydi [4] generalized Definition 1.11 to a pair of mappings.
Definition 1.12. For a nonempty set X, let $A, B: X \rightarrow X$ and $\alpha: X \times X \rightarrow[0, \infty)$ be mappings. We say that (A, B) is an α-admissible pair if for all $x, y \in X$, we have

$$
\alpha(x, y) \geq 1 \Longrightarrow \alpha(A x, B y) \geq 1 \quad \text { and } \alpha(B y, A x) \geq 1
$$

The following examples illustrate Definition 1.12 ,
Example 1.13. Let $X=\mathbb{R}$ and $\alpha: X \times X \rightarrow[0, \infty)$ be defined by

$$
\alpha(x, y)= \begin{cases}1 & \text { if } x, y \in[0,1] \\ 0 \text { otherwise }\end{cases}
$$

Consider the mappings $A, B: X \rightarrow X$ given by

$$
A x=\frac{x}{2} \quad \text { and } B x=x^{2}, \quad \forall x \in X
$$

Then, (A, B) is an α-admissible pair. In fact, let $x, y \in X$ such that $\alpha(x, y) \geq 1$. By definition of α, this implies that $x, y \in[0,1]$. Thus,

$$
\alpha(A x, B y)=\alpha\left(\frac{x}{2}, y^{2}\right)=1 \quad \text { and } \quad \alpha(B y, A x)=\alpha\left(y^{2}, \frac{x}{2}\right)=1
$$

Then, (A, B) is an α-admissible pair.
Example 1.14. Let $X=\mathbb{R}$ and $\alpha: X \times X \rightarrow[0, \infty)$ be defined by

$$
\alpha(x, y)=e^{x y} \quad \forall x, y \in X
$$

Consider the mappings $A, B: X \rightarrow X$ given by

$$
A x=x^{3} \quad \text { and } B x=x^{5}, \quad \forall x \in X
$$

Then, (A, B) is an α-admissible pair. In fact, let $x, y \in X$ such that $\alpha(x, y) \geq 1$. By definition of α, this implies that $x y \geq 0$. Thus,

$$
\alpha(A x, B y)=\alpha(B y, A x)=e^{x^{3} y^{5}} \geq 1
$$

because $x^{3} y^{5}=x^{2} y^{4} x y \geq 0$. Then, (A, B) is an α-admissible pair.
Take $s \geq 1$. Denote \mathbb{N} the set of positive integers and Ψ_{s} the set of functions $\psi:[0, \infty) \rightarrow[0, \infty)$ satisfying:
$\left(\psi_{1}\right) \psi$ is nondecreasing;
$\left(\psi_{2}\right) \sum_{n} s^{n} \psi^{n}(t)<\infty$ for each $t \in \mathbb{R}^{+}$, where ψ^{n} is the $n t h$ iterate of ψ.
Remark 1.15. It is easy to see that if $\psi \in \Psi_{s}$, then $\psi(t)<t$ for any $t>0$.
In this paper, we provide some common fixed point results for generalized contractions (including cyclic contractions and contractions with a partial order) via α-admissible pair of mappings on b-metric-like spaces. As consequences of our obtained results, we prove some existing known fixed point results on metric-like spaces and on b-metric spaces. Our results will be illustrated by some concrete examples.

2. Fixed Point Theorems for (α, ψ)-contractions

First, we introduce the concept of α-contractive pair of mappings in the setting of b-metric-like spaces.
Definition 2.1. Let (X, d) be a b-metric-like space, $\psi \in \Psi_{s}$ and $\alpha: X \times X \rightarrow[0, \infty)$. A pair $A, B: X \rightarrow X$ is called an (α, ψ)-contraction pair if

$$
\begin{equation*}
d(A x, B y) \leq \psi(M(x, y)) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$ satisfying $\alpha(x, y) \geq 1$, where

$$
\begin{equation*}
M(x, y)=\max \left\{d(x, y), d(x, A x), d(y, B y), \frac{d(x, B y)+d(y, A x)}{4 s}\right\} \tag{2.2}
\end{equation*}
$$

Our first main result is
Theorem 2.2. Let (X, d) be a complete b-metric-like space and $A, B: X \rightarrow X$ be an (α, ψ)-contraction pair. Suppose that
(i) (A, B) is an α-admissible pair;
(ii) there exists $x_{0} \in X$ such that $\min \left\{\alpha\left(x_{0}, A x_{0}\right), \alpha\left(A x_{0}, x_{0}\right)\right\} \geq 1$;
(iii) A and B are continuous on (X, d);
(iv) $\alpha(z, z) \geq 1$ for every z satisfying the conditions

$$
\begin{equation*}
d(z, z)=0, d(z, A z) \leq s d(A z, A z) \leq s^{2} d(z, A z) \text { and } d(z, B z) \leq s d(B z, B z) \leq s^{2} d(z, B z) \tag{2.3}
\end{equation*}
$$

(v) $\psi(t)<\frac{t}{2 s^{2}}$ for each $t>0$.

Then, A and B admit a common fixed point, i.e. there exists $u \in X$ such that

$$
\begin{equation*}
A u=u=B u \tag{2.4}
\end{equation*}
$$

Proof. Choose $x_{1}=A x_{0}$ and $x_{2}=B x_{1}$. By induction, we can construct a sequence $\left\{x_{n}\right\}$ in X such that

$$
\begin{equation*}
x_{2 n+1}=A x_{2 n} \text { and } x_{2 n+2}=B x_{2 n+1} \tag{2.5}
\end{equation*}
$$

for all $n \geq 0$. We split the proof into several steps.
Step 1: $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ and $\alpha\left(x_{n+1}, x_{n}\right) \geq 1$ for all $n \geq 0$.
By condition (ii) and the fact that the pair (A, B) is α-admissible,

$$
\alpha\left(x_{0}, x_{1}\right) \geq 1 \Rightarrow\left\{\begin{array}{l}
\alpha\left(x_{1}, x_{2}\right)=\alpha\left(A x_{0}, B x_{1}\right) \geq 1 \text { and } \\
\alpha\left(x_{2}, x_{1}\right)=\alpha\left(B x_{1}, A x_{0}\right) \geq 1
\end{array}\right.
$$

Again

$$
\alpha\left(x_{2}, x_{1}\right) \geq 1 \Rightarrow\left\{\begin{array}{l}
\alpha\left(x_{3}, x_{2}\right)=\alpha\left(A x_{2}, B x_{1}\right) \geq 1 \text { and } \\
\alpha\left(x_{2}, x_{3}\right)=\alpha\left(B x_{1}, A x_{2}\right) \geq 1
\end{array}\right.
$$

By induction, we may obtain $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ and $\alpha\left(x_{n+1}, x_{n}\right) \geq 1$ for all $n \geq 0$.
Step 2: We will show that

$$
\begin{equation*}
\text { if for some } n, \quad d\left(x_{2 n}, x_{2 n+1}\right)=0, \quad \text { then } \quad A x_{2 n}=x_{2 n}=B x_{2 n} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { if for some } n, \quad d\left(x_{2 n+1}, x_{2 n+2}\right)=0, \quad \text { then } \quad A x_{2 n+1}=x_{2 n+1}=B x_{2 n+1} \tag{2.7}
\end{equation*}
$$

Suppose for some n that $d\left(x_{2 n}, x_{2 n+1}\right)=0$. We shall prove that $d\left(x_{2 n+1}, x_{2 n+2}\right)=0$. We argue by contradiction. For this, assume that

$$
d\left(x_{2 n+1}, x_{2 n+2}\right)>0
$$

Then, by Step 1 and 2.1 ,

$$
d\left(x_{2 n+1}, x_{2 n+2}\right)=d\left(A x_{2 n}, B x_{2 n+1}\right) \leq \psi\left(M\left(x_{2 n}, x_{2 n+1}\right)\right)
$$

where

$$
\begin{aligned}
M\left(x_{2 n}, x_{2 n+1}\right)= & \max \left\{d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n}, A x_{2 n}\right), d\left(x_{2 n+1}, B x_{2 n+1}\right)\right. \\
& \left.\frac{d\left(x_{2 n}, B x_{2 n+1}\right)+d\left(x_{2 n+1}, A x_{2 n}\right)}{4 s}\right\} \\
= & \max \left\{0, d\left(x_{2 n+1}, x_{2 n+2}\right), \frac{1}{4 s}\left(d\left(x_{2 n}, x_{2 n+2}\right)+d\left(x_{2 n+1}, x_{2 n+1}\right)\right)\right\} \\
= & d\left(x_{2 n+1}, x_{2 n+2}\right)
\end{aligned}
$$

because

$$
\begin{aligned}
d\left(x_{2 n+1}, x_{2 n+1}\right) & \leq 2 s d\left(x_{2 n+1}, x_{2 n+2}\right) \quad \text { and } \\
d\left(x_{2 n}, x_{2 n+2}\right) & \leq s d\left(x_{2 n}, x_{2 n+1}\right)+s d\left(x_{2 n+1}, x_{2 n+2}\right)=s d\left(x_{2 n+1}, x_{2 n+2}\right)
\end{aligned}
$$

Consequently,

$$
d\left(x_{2 n+1}, x_{2 n+2}\right) \leq \psi\left(d\left(x_{2 n+1}, x_{2 n+2}\right)\right)
$$

Since $\psi(t)<t$, so we get

$$
d\left(x_{2 n+1}, x_{2 n+2}\right) \leq \psi\left(d\left(x_{2 n+1}, x_{2 n+2}\right)\right)<d\left(x_{2 n+1}, x_{2 n+2}\right)
$$

a contradiction. Thus, if $d\left(x_{2 n}, x_{2 n+1}\right)=0$, then $d\left(x_{2 n+1}, x_{2 n+2}\right)=0$. We deduce that $x_{2 n}=x_{2 n+1}=x_{2 n+2}$, so that

$$
\begin{aligned}
& x_{2 n}=x_{2 n+1}=A x_{2 n} \quad \text { and } \\
& x_{2 n}=x_{2 n+2}=B x_{2 n+1}=B\left(A x_{2 n}\right)=B x_{2 n}
\end{aligned}
$$

that is $x_{2 n}$ is a common fixed point of A and B.
Similarly, one shows that

$$
d\left(x_{2 n+1}, x_{2 n+2}\right)=0 \Rightarrow d\left(x_{2 n+2}, x_{2 n+3}\right)=0
$$

and so $x_{2 n+1}=x_{2 n+2}=x_{2 n+3}$, which implies

$$
\begin{aligned}
& x_{2 n+1}=x_{2 n+2}=B x_{2 n+1} \quad \text { and } \\
& x_{2 n+1}=x_{2 n+3}=A x_{2 n+2}=A\left(B x_{2 n+1}\right)=A x_{2 n+1}
\end{aligned}
$$

that is $x_{2 n+1}$ is a common fixed point of A and B.
By (2.6) and (2.7), the proof is completed in the case when $d\left(x_{k}, x_{k+1}\right)=0$ for some $k \geq 0$. From now on, we assume that

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right)>0, \quad \forall n \geq 0 \tag{2.8}
\end{equation*}
$$

Step 3. We will show that

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \psi^{n}\left(d\left(x_{0}, x_{1}\right)\right) \quad \text { for all } n \geq 0 \tag{2.9}
\end{equation*}
$$

By Step $1, \alpha\left(x_{2 n}, x_{2 n-1}\right) \geq 1$, then

$$
d\left(x_{2 n+1}, x_{2 n}\right)=d\left(A x_{2 n}, B x_{2 n-1}\right) \leq \psi\left(M\left(x_{2 n}, x_{2 n-1}\right)\right)
$$

where

$$
\begin{aligned}
M\left(x_{2 n}, x_{2 n-1}\right)= & \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n-1}, x_{2 n}\right)\right. \\
& \left.\frac{d\left(x_{2 n}, x_{2 n}\right)+d\left(x_{2 n-1}, x_{2 n+1}\right)}{4 s}\right\} \\
= & \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), \frac{1}{4 s}\left(d\left(x_{2 n-1}, x_{2 n+1}\right)+d\left(x_{2 n}, x_{2 n}\right)\right)\right\} \\
= & \max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right)\right\}
\end{aligned}
$$

because

$$
\begin{aligned}
d\left(x_{2 n}, x_{2 n}\right) & \leq 2 s d\left(x_{2 n}, x_{2 n+1}\right) \quad \text { and } \\
d\left(x_{2 n-1}, x_{2 n+1}\right) & \leq s d\left(x_{2 n-1}, x_{2 n}\right)+s d\left(x_{2 n}, x_{2 n+1}\right)
\end{aligned}
$$

If $\max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right)\right\}=d\left(x_{2 n}, x_{2 n+1}\right)$ for some $n \geq 1$, then

$$
0<d\left(x_{2 n+1}, x_{2 n}\right) \leq \psi\left(d\left(x_{2 n}, x_{2 n+1}\right)\right)
$$

Taking into account $\psi(t)<t$, one obtains a contradiction. It follows that

$$
\max \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right)\right\}=d\left(x_{2 n}, x_{2 n-1}\right)
$$

for all $n \geq 1$. Then

$$
\begin{equation*}
d\left(x_{2 n}, x_{2 n+1}\right) \leq \psi\left(d\left(x_{2 n}, x_{2 n-1}\right)\right) \tag{2.10}
\end{equation*}
$$

A similar reasoning shows that

$$
\begin{equation*}
d\left(x_{2 n+1}, x_{2 n+2}\right) \leq \psi\left(d\left(x_{2 n}, x_{2 n+1}\right)\right) \tag{2.11}
\end{equation*}
$$

Consequently, by (2.10 and 2.11),

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \psi\left(d\left(x_{n-1}, x_{n}\right)\right) \quad \forall n \geq 1 \tag{2.12}
\end{equation*}
$$

Therefore

$$
d\left(x_{n}, x_{n+1}\right) \leq \psi^{n}\left(d\left(x_{0}, x_{1}\right)\right), \quad \forall n \geq 1
$$

Step 4. We shall show that $\left\{x_{n}\right\}$ is a Cauchy sequence. Using (d3), we have

$$
\begin{aligned}
d\left(x_{n}, x_{n+2}\right) & \leq s d\left(x_{n}, x_{n+1}\right)+s d\left(x_{n+1}, x_{n+2}\right) \\
& \leq s d\left(x_{n}, x_{n+1}\right)+s^{2} d\left(x_{n+1}, x_{n+2}\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
d\left(x_{n}, x_{n+3}\right) & \leq s d\left(x_{n}, x_{n+1}\right)+s d\left(x_{n+1}, x_{n+3}\right) \\
& \leq s d\left(x_{n}, x_{n+1}\right)+s^{2} d\left(x_{n+1}, x_{n+2}\right)+s^{3} d\left(x_{n+2}, x_{n+3}\right) .
\end{aligned}
$$

By induction, we get for all $m>n$

$$
d\left(x_{n}, x_{m}\right) \leq \sum_{i=n}^{m-1} s^{i-n+1} d\left(x_{i}, x_{i+1}\right) \leq \sum_{i=n}^{m-1} s^{i} d\left(x_{i}, x_{i+1}\right) \leq \sum_{i=n}^{\infty} s^{i} \psi^{i}\left(d\left(x_{0}, x_{1}\right)\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

which leads to

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0 \tag{2.13}
\end{equation*}
$$

that is, $\left\{x_{n}\right\}$ is a Cauchy sequence. Since (X, d) is a complete b-metric-like space, then there exists $u \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, u\right)=d(u, u)=\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0 \tag{2.14}
\end{equation*}
$$

Step 5. u satisfies the condition (2.3.).
By the continuity of A, we have $A x_{n} \rightarrow A u$ in (X, d), that is $\lim _{n \rightarrow \infty} d\left(x_{n}, A u\right)=d(A u, A u)$, so that

$$
\lim _{n \rightarrow \infty} d\left(x_{2 n+1}, A u\right)=\lim _{n \rightarrow \infty} d\left(A x_{2 n}, A u\right)=d(A u, A u)
$$

On the other side, $\lim _{n \rightarrow \infty} d\left(x_{n}, u\right)=0=d(u, u)$ and so by Lemma 1.9 ,

$$
\frac{1}{s} d(u, A u) \leq \lim _{n \rightarrow \infty} d\left(x_{2 n+1}, A u\right) \leq s d(u, A u)
$$

This yields that

$$
\begin{equation*}
\frac{1}{s} d(u, A u) \leq d(A u, A u) \leq s d(u, A u) \tag{2.15}
\end{equation*}
$$

Similarly, one shows that

$$
\begin{equation*}
\frac{1}{s} d(u, B u) \leq d(B u, B u) \leq s d(u, B u) \tag{2.16}
\end{equation*}
$$

Suppose by contradiction that $d(A u, B u)>0$. Since u satisfies (2.3), it follows from (iv) that $\alpha(u, u) \geq 1$, so by (2.1),

$$
d(A u, B u) \leq \psi(M(u, u))
$$

where

$$
\begin{aligned}
M(u, u) & \left.=\max \left\{d(u, u), d(u, A u), d(u, B u), \frac{d(u, B u)+d(u, A u)}{4 s}\right)\right\} \\
& \left.=\max \left\{0, d(u, A u), d(u, B u), \frac{d(u, B u)+d(u, A u)}{4 s}\right)\right\} \\
& =\max \{d(u, A u), d(u, B u)\}
\end{aligned}
$$

By using 2.15 and 2.16, we get

$$
M(u, u) \leq \max \left\{2 s^{2} d(A u, B u), 2 s^{2} d(A u, B u)\right\}=2 s^{2} d(A u, B u)
$$

Again, by condition (v), we have

$$
d(A u, B u) \leq \psi\left(2 s^{2} d(A u, B u)\right)<d(A u, B u)
$$

which is a contradiction. Thus, $d(A u, B u)=0$. In this case, the fact that $d(u, A u) \leq s d(A u, A u)$ implies

$$
0 \leq d(u, A u) \leq s d(A u, A u) \leq 2 s^{2} d(A u, B u)=0
$$

and so $A u=u$. Therefore, $B u=A u=u$. The proof is completed.

In the following, we state some consequences and corollaries of our obtained result.
Corollary 2.3. Let (X, d) be a complete b-metric-like space, $\psi \in \Psi_{s}$ and $A, B: X \rightarrow X$ be given mappings. Suppose there exists a function $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\alpha(x, y) d(A x, B y) \leq \psi(M(x, y)) \tag{2.17}
\end{equation*}
$$

for all $x, y \in X$, where $M(x, y)$ is defined by 2.2 .
Also, Suppose that
(i) (A, B) is an α-admissible pair;
(ii) there exists $x_{0} \in X$ such that $\min \left\{\alpha\left(x_{0}, A x_{0}\right), \alpha\left(A x_{0}, x_{0}\right)\right\} \geq 1$;
(iii) A and B are continuous on (X, d);
(iv) $\alpha(z, z) \geq 1$ for every z satisfying the conditions

$$
\begin{equation*}
d(z, z)=0, d(z, A z) \leq s d(A z, A z) \leq s^{2} d(z, A z) \text { andd }(z, B z) \leq s d(B z, B z) \leq s^{2} d(z, B z) \tag{2.18}
\end{equation*}
$$

(v) $\psi(t)<\frac{t}{2 s^{2}}$, for each $t>0$.

Then, A and B have a common fixed point.
Proof. Let $x, y \in X$ such that $\alpha(x, y) \geq 1$. Then, if 2.17 holds, we have

$$
d(A x, B y) \leq \alpha(x, y) d(A x, B y) \leq \psi(M(x, y))
$$

Then, the proof is concluded by Theorem 2.2 .

Corollary 2.4. Let (X, d) be a complete b-metric-like space, $\psi \in \Psi_{s}$ and $A, B: X \rightarrow X$ be continuous mappings satisfying

$$
\begin{equation*}
d(A x, B y) \leq \psi(M(x, y)) \tag{2.19}
\end{equation*}
$$

for all $x, y \in X$, where $M(x, y)$ is defined by 2.2 .
If $\psi(t)<\frac{t}{2 s^{2}}$ for each $t>0$, then A and B have a common fixed point.
Proof. It suffices to take $\alpha(x, y)=1$ in Corollary 2.3 .

Corollary 2.5. Let (X, d) be a complete b-metric-like space and $A, B: X \rightarrow X$ be continuous mappings. Suppose there exists $k \in\left[0, \frac{1}{2 s^{2}}\right)$ such that

$$
\begin{equation*}
d(A x, B y) \leq k M(x, y) \tag{2.20}
\end{equation*}
$$

for all $x, y \in X$, where $M(x, y)$ is defined by 2.2 . Then, A and B have a common fixed point.
Proof. It suffices to take $\psi(t)=k t$ for all $t \geq 0$ in Corollary 2.4 .
Corollary 2.6. Let (X, d) be a complete b-metric-like space and $A, B: X \rightarrow X$ be continuous mappings. Suppose there exists $k \in\left[0, \frac{1}{2 s^{2}}\right)$ such that

$$
\begin{equation*}
d(A x, B y) \leq k d(x, y) \tag{2.21}
\end{equation*}
$$

for all $x, y \in X$. Then, A and B have a common fixed point.
In the setting of b-metric spaces, we have,

Corollary 2.7. Let (X, d) be a complete b-metric space, $\psi \in \Psi_{s}$ and $A, B: X \rightarrow X$ be given mappings. Suppose there exists a function $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\alpha(x, y) d(A x, B y) \leq \psi(M(x, y)) \tag{2.22}
\end{equation*}
$$

for all $x, y \in X$, where $M(x, y)$ is defined by 2.2 .
Also, Suppose that
(i) (A, B) is an α-admissible pair;
(ii) there exists $x_{0} \in X$ such that $\min \left\{\alpha\left(x_{0}, A x_{0}\right), \alpha\left(A x_{0}, x_{0}\right)\right\} \geq 1$;
(iii) A and B are continuous on (X, d).

Then, A and B have a common fixed point.
Proof. Following the proof of Theorem 2.2, we know that the sequence $\left\{x_{n}\right\}$ is Cauchy in (X, d) and converges to some $u \in X$. We show that u is a common fixed point of A and B. Using the continuity of A and B and Lemma 1.9, we obtain $A u=B u=u$.

In metric-like spaces (the case $s=1$), we may state the following result.
Corollary 2.8. Let (X, d) be a complete metric-like space, $\psi \in \Psi_{1}$ and $A, B: X \rightarrow X$ such that

$$
d(A x, B y) \leq \psi\left(\max \left\{d(x, y), d(x, A x), d(y, B y), \frac{d(x, B y)+d(y, A x)}{4}\right\}\right)
$$

for all $x, y \in X$ satisfying $\alpha(x, y) \geq 1$.
Also, Suppose that
(i) (A, B) is an α-admissible pair;
(ii) there exists $x_{0} \in X$ such that $\min \left\{\alpha\left(x_{0}, A x_{0}\right), \alpha\left(A x_{0}, x_{0}\right)\right\} \geq 1$;
(iii) A and B are continuous on (X, d);
(iv) $\alpha(z, z) \geq 1$ for every z satisfying the conditions

$$
\begin{equation*}
d(z, z)=0, d(z, A z)=d(A z, A z) \text { andd }(z, B z)=d(B z, B z) \tag{2.23}
\end{equation*}
$$

(v) $\psi(t)<\frac{t}{2}$ for each $t>0$.

Then, A and B have a common fixed point.
Theorem 2.2 remains true if we replace the continuity hypothesis by the following property:
(H) If $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ and $\alpha\left(x_{n+1}, x_{n}\right) \geq 1$ for all n and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, x\right) \geq 1$ and $\alpha\left(x, x_{n(k)}\right) \geq 1$ for all k.

The statement is given as follows.
Theorem 2.9. Let (X, d) be a complete b-metric-like space and $A, B: X \rightarrow X$ an (α, ψ)-contraction pair. Suppose that
(i) (A, B) is an α-admissible pair;
(ii) there exists $x_{0} \in X$ such that $\min \left\{\alpha\left(x_{0}, A x_{0}\right), \alpha\left(A x_{0}, x_{0}\right)\right\} \geq 1$;
(iii) (H) holds;
(iv) $\psi(t)<\frac{t}{s}$ for each $t>0$.

Then, A and B admit a common fixed point.

Proof. Following the proof of Theorem 2.2, we know that the sequence $\left\{x_{n}\right\}$ is Cauchy in (X, d) and converges to some $u \in X$. We show that u is a common fixed point of A and B.

Suppose on the contrary that $A u \neq u$ or $B u \neq u$. Assume that $d(u, A u)>0$.
By assumption (iii) (that is, $\alpha\left(u, x_{2 n(k)-1}\right) \geq 1$), we have

$$
\left.d\left(A u, x_{2 n(k)}\right)=d\left(A u, B x_{2 n(k)-1}\right)\right) \leq \psi\left(M\left(u, x_{2 n(k)-1}\right)\right)
$$

where

$$
\begin{aligned}
\left.M\left(u, x_{2 n(k)-1}\right)\right)= & \max \left\{d\left(u, x_{2 n(k)-1}\right), d(u, A u), d\left(x_{2 n(k)-1}, x_{2 n(k)-1}\right)\right. \\
& \left.\frac{d\left(u, B x_{2 n(k)-1}\right)+d\left(x_{2 n(k)-1}, A u\right)}{4 s}\right\} \\
= & \max \left\{d\left(u, x_{2 n(k)-1}\right), d(u, A u), d\left(x_{2 n(k)-1}, x_{2 n(k)}\right)\right. \\
& \left.\frac{d\left(u, x_{2 n(k)}\right)+d\left(x_{2 n(k)-1}, A u\right)}{4 s}\right\} \\
\leq & \max \left\{d\left(u, x_{2 n(k)-1}\right), d(u, A u), d\left(x_{2 n(k)-1}, x_{2 n(k)}\right)\right. \\
& \left.\frac{d\left(u, x_{2 n(k)}\right)+s d\left(x_{2 n(k)-1}, u\right)+s d(u, A u)}{4 s}\right\} .
\end{aligned}
$$

We know that

$$
\lim _{n \rightarrow \infty} d\left(u, x_{2 n(k)-1}\right)=\lim _{n \rightarrow \infty} d\left(x_{2 n(k)-1}, x_{2 n(k)}\right)=\lim _{n \rightarrow \infty} d\left(u, x_{2 n(k)}\right)=0
$$

Then, there exists $N \in \mathbb{N}$ such that for all $k \geq N$,

$$
\left.M\left(u, x_{2 n(k)-1}\right)\right) \leq d(u, A u)
$$

Then, by $\left(\psi_{1}\right)$, we obtain for all $k \geq N$,

$$
\begin{equation*}
d\left(A u, x_{2 n(k)}\right) \leq \psi(d(u, A u)) \tag{2.24}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
d(A u, u) \leq s d\left(A u, x_{2 n(k)}\right)+s d\left(x_{2 n(k)}, u\right), \quad \forall k \geq 0 \tag{2.25}
\end{equation*}
$$

Combining 2.24 and 2.25, we get for all $k \geq N$,

$$
\begin{equation*}
d(A u, u) \leq s \psi(d(u, A u))+s d\left(x_{2 n(k)}, u\right) \tag{2.26}
\end{equation*}
$$

Having in mind $\psi(t)<\frac{t}{s}$, so letting $k \rightarrow \infty$ in 2.26 , we get

$$
0<d(u, A u) \leq s \psi(d(u, A u))<d(u, A u)
$$

which is a contradiction. Similarly, if $d(u, B u)>0$ we get a contradiction. Hence, $A u=u=B u$ and so u is a common fixed point of A and B.

Analogously, we can derive the following results.
Corollary 2.10. Let (X, d) be a complete b-metric-like space, $\psi \in \Psi_{s}$ and $A, B: X \rightarrow X$ be given mappings. Suppose there exists a function $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\alpha(x, y) d(A x, B y) \leq \psi(M(x, y)) \tag{2.27}
\end{equation*}
$$

for all $x, y \in X$, where $M(x, y)$ is defined by 2.2 .
Also, Suppose that
(i) (A, B) is an α-admissible pair;
(ii) $\exists x_{0} \in X$ such that $\min \left\{\alpha\left(x_{0}, A x_{0}\right), \alpha\left(A x_{0}, x_{0}\right)\right\} \geq 1$;
(iii) (H) holds;
(iv) $\psi(t)<\frac{t}{s}$ for each $t>0$.

Then, A and B have a common fixed point.
Corollary 2.11. Let (X, d) be a complete b-metric-like space, $\psi \in \Psi_{s}$ and $A, B: X \rightarrow X$ be given mappings. Suppose that

$$
\begin{equation*}
d(A x, B y) \leq \psi(M(x, y)) \tag{2.28}
\end{equation*}
$$

for all $x, y \in X$, where $M(x, y)$ is defined by 2.2 .
If $\psi(t)<\frac{t}{s}$ for each $t>0$, then A and B have a common fixed point.
Corollary 2.12. Let (X, d) be a complete b-metric-like space and $A, B: X \rightarrow X$ be given mappings. Suppose there exists $k \in\left[0, \frac{1}{s}\right)$ such that

$$
\begin{equation*}
d(A x, B y) \leq k M(x, y) \tag{2.29}
\end{equation*}
$$

for all $x, y \in X$, where $M(x, y)$ is defined by 2.2 . Then, A and B have a common fixed point.
In the case $s=1$, we have the two following corollaries.
Corollary 2.13. Let (X, d) be a complete metric-like space, $\psi \in \Psi_{1}$ and $A, B: X \rightarrow X$ such that

$$
d(A x, B y) \leq \psi\left(\max \left\{d(x, y), d(x, A x), d(y, B y), \frac{d(x, B y)+d(y, A x)}{4}\right\}\right)
$$

for all $x, y \in X$ satisfying $\alpha(x, y) \geq 1$.
Also, Suppose that
(i) (A, B) is an α-admissible pair;
(ii) there exists $x_{0} \in X$ such that $\min \left\{\alpha\left(x_{0}, A x_{0}\right), \alpha\left(A x_{0}, x_{0}\right)\right\} \geq 1$;
(iii) (H) holds.

Then, A and B have a common fixed point.
Corollary 2.14. Let (X, d) be a complete metric-like space, $\psi \in \Psi_{1}$ and $A, B: X \rightarrow X$ such that

$$
d(A x, B y) \leq \psi\left(\max \left\{d(x, y), d(x, A x), d(y, B y), \frac{d(x, B y)+d(y, A x)}{4}\right\}\right)
$$

for all $x, y \in X$. Then, A and B have a common fixed point.
We provide the following example.
Example 2.15. Take $X=[0, \infty)$ endowed with the complete b-metric-like $d(x, y)=\left(x^{3}+y^{3}\right)^{2}$. Consider the mappings $A, B: X \rightarrow X$ given by

$$
A x=\left\{\begin{array}{l}
\frac{x}{\sqrt[6]{3}} \text { if } x \in[0,1] \\
2 x-2 \text { if } \quad x>1
\end{array} \quad, \quad B x=\left\{\begin{array}{l}
\frac{x}{\sqrt[6]{3}} \text { if } x \in[0,1] \\
x \text { if } x>1
\end{array}\right.\right.
$$

Define the mapping $\alpha: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)= \begin{cases}1 & \text { if } x, y \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Let $\psi(t)=\frac{1}{3} t$. Note that (A, B) is an α-admissible pair. In fact, let $x, y \in X$ such that $\alpha(x, y) \geq 1$. By definition of α, this implies that $x, y \in[0,1]$. Thus,

$$
\alpha(A x, B y)=\alpha\left(\frac{x}{\sqrt[6]{3}}, \frac{y}{\sqrt[6]{3}}\right)=1 \quad \text { and } \quad \alpha(B y, A x)=\alpha\left(\frac{y}{\sqrt[6]{3}}, \frac{x}{\sqrt[6]{3}}\right)=1
$$

Then, (A, B) is an α-admissible pair.
Now, we show that (A, B) is an (α, ψ)-contraction. Let $x, y \in X$ such that $\alpha(x, y) \geq 1$. So, $x, y \in[0,1]$. We have

$$
\begin{aligned}
d(A x, B y) & =\left((A x)^{3}+(B y)^{3}\right)^{2}=\left(\left(\frac{x}{\sqrt[6]{3}}\right)^{3}+\left(\frac{y}{\sqrt[6]{3}}\right)^{3}\right)^{2} \\
& =\left(\frac{1}{\sqrt[6]{3}}\right)^{6}\left(x^{3}+y^{3}\right)^{2}=\psi(d(x, y)) \leq \psi(M(x, y))
\end{aligned}
$$

Now, we show that (H) is verified. Let $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ and $\alpha\left(x_{n+1}, x_{n+}\right) \geq 1$ for all n and $x_{n} \rightarrow u$ in (X, d). Then, $\left\{x_{n}\right\} \subset[0,1]$ and $x_{n} \rightarrow u$ in $(X,|\cdot|)$, where $|$.$| is the$ standard metric on X. Thus, $x_{n}, u \in[0,1]$ and so $\alpha\left(x_{n}, u\right)=\alpha\left(u, x_{n}\right)=1$ for all n. Moreover, there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, A x_{0}\right) \geq 1$ and $\alpha\left(A x_{0}, x_{0}\right) \geq 1$. In fact, for $x_{0}=1$, we have $\alpha(1, A 1)=\alpha\left(1, \frac{1}{\sqrt[6]{3}}\right)=1$ and $\alpha(A 1,1)=\alpha\left(\frac{1}{\sqrt[6]{3}}, 1\right)=1$.

Thus, all hypotheses of Theorem 2.9 are verified. Here, $\{0,2\}$ is the set of common fixed points of A and B.

The mappings considered in above example have two common fixed points which are 0 and 2 . Note that $\alpha(0,2)=0$, which is not greater than 1 . So for the uniqueness, we need the following additional condition.
(U) For all $x, y \in C F(A, B)$, we have $\alpha(x, y) \geq 1$, where $C F(A, B)$ denotes the set of common fixed points of A and B.

Theorem 2.16. Adding condition (U) to the hypotheses of Theorem 2.2 (resp. Theorem 2.9, with $\psi(t)<\frac{t}{2 s}$ for all $t>0$), we obtain that u is the unique common fixed point of A and B.
Proof. In Theorem 2.2, mention that $\psi(t)<\frac{t}{2 s^{2}}$ implies $\psi(t)<\frac{t}{2 s}$. We argue by contradiction, that is, there exist $u, v \in X$ such that $u=A u=B u$ and $v=A v=B v$ with $u \neq v$. By assumption (U), we have $\alpha(u, v) \geq 1$. So by 2.1 and since $\psi(t)<\frac{t}{2 s}$, we have

$$
\begin{aligned}
d(u, v) & =d(A u, B v) \leq \psi(M(u, v))) \leq \psi\left(\max \left\{d(u, v), d(u, u), d(v, v), \frac{d(u, v)}{2 s}\right\}\right) \\
& =\psi(\max \{d(u, v), d(u, u), d(v, v)\}) \\
& \leq \psi(\max \{d(u, v), 2 s d(u, v)\})=\psi(2 s d(u, v))<d(u, v)
\end{aligned}
$$

which is a contradiction. Hence, $u=v$.
Corollary 2.17. Let (X, d) be a complete b-metric-like space, $\psi \in \Psi_{s}$ and $A, B: X \rightarrow X$ be given mappings. Suppose that

$$
\begin{equation*}
d(A x, B y) \leq \psi(M(x, y)) \tag{2.30}
\end{equation*}
$$

for all $x, y \in X$, where $M(x, y)$ is defined by 2.2 . If $\psi(t)<\frac{t}{2 s}$ for all $t>0$, then A and B have a unique common fixed point.

Proof. It suffices to take $\alpha(x, y)=1$ in Corollary 2.11. The uniqueness of u follows from Theorem 2.16 .

Corollary 2.18. Let (X, d) be a complete b-metric-like space and $A, B: X \rightarrow X$ be given mappings. Suppose there exists $k \in\left[0, \frac{1}{2 s}\right)$ such that

$$
\begin{equation*}
d(A x, B y) \leq k M(x, y) \tag{2.31}
\end{equation*}
$$

for all $x, y \in X$, where $M(x, y)$ is defined by (2.2). Then, A and B have a unique common fixed point.
Proof. It suffices to take $\psi(t)=k t$ in Corollary 2.17. The uniqueness of u follows from Theorem 2.16.
The following example illustrates Theorem 2.2 where A and B have a unique common fixed point.
Example 2.19. Take $X=\left[0, \frac{3}{2}\right]$ endowed with the complete b-metric-like $d(x, y)=x^{2}+y^{2}+(x-y)^{2}$ with $s=2$. Consider the mappings $A, B: X \rightarrow X$ given by

$$
A x=\left\{\begin{array}{l}
\ln \left(1+\frac{x}{3}\right) \text { if } x \in[0,1] \\
x-1+\ln \frac{4}{3} \text { if } x \in\left(1, \frac{3}{2}\right]
\end{array} \quad, \quad B x=\left\{\begin{array}{l}
\ln \left(1+\frac{x}{3}\right) \text { if } x \in[0,1] \\
x+\ln \left(1+\frac{x}{3}\right)-1 \text { if } x \in\left(1, \frac{3}{2}\right]
\end{array}\right.\right.
$$

Define the mapping $\alpha: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)= \begin{cases}1 & \text { if } x, y \in[0,1] \\ 0 \text { otherwise }\end{cases}
$$

Let $\psi(t)=\frac{1}{9} t$. It is obvious that
(i) (A, B) is an α-admissible pair;
(ii) there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, A x_{0}\right) \geq 1$ and $\alpha\left(A x_{0}, x_{0}\right) \geq 1$;
(iii) A and B are continuous on (X, d);
(iv) $\psi(t)<\frac{t}{2 s^{2}}$.

Now, we shall show that (A, B) is an (α, ψ)-contraction. Let $x, y \in X$ such that $\alpha(x, y) \geq 1$. So, $x, y \in[0,1]$.

We have

$$
\begin{aligned}
d(A x, B y) & =(A x)^{2}+(B y)^{2}+(A x-B y)^{2} \\
& =\left(\ln \left(1+\frac{x}{3}\right)\right)^{2}+\left(\ln \left(1+\frac{y}{3}\right)\right)^{2}+\left(\ln \left(1+\frac{x}{3}\right)-\ln \left(1+\frac{y}{3}\right)\right)^{2} \\
& \leq\left(\frac{x}{3}\right)^{2}+\left(\frac{y}{3}\right)^{2}+\frac{1}{9}(x-y)^{2}=\frac{1}{9}\left[x^{2}+y^{2}+(x-y)^{2}\right]=\frac{1}{9} d(x, y) \leq \psi(M(x, y))
\end{aligned}
$$

Thus, all hypotheses of Theorem 2.2 are verified. Here, 0 is the unique common fixed points of A and B.

3. Fixed Point Theorems for generalized cyclic contractions

In 2003 , Kirk et al. [22] introduced the concepts of cyclic mappings and cyclic contractions. For papers dealing with cyclic contractions, see [7, 10, 25]. We recall some definitions from [22].

Definition $3.1([22])$. Let F and G be nonempty subsets of a space X. A mapping $T: F \cup G \rightarrow F \cup G$ is called cyclic if $T(F) \subset G$ and $T(G) \subset F$.

Definition $3.2([22])$. Let F and G be nonempty subsets of a metric space (X, d). A mapping $T: F \cup G \rightarrow$ $F \cup G$ is called a cyclic contraction if there exists $k \in[0,1)$ such that

$$
\begin{equation*}
d(T x, T y) \leq k d(x, y) \tag{3.1}
\end{equation*}
$$

for all $x \in F$ and $y \in G$.

Now, we introduce the concept of new generalized cyclic contractive pairs in the setting of b-metric-like spaces.

Definition 3.3. Let F and G be nonempty closed subsets of a b-metric-like space $(X, d), \alpha: X \times X \rightarrow$ $[0, \infty), \psi \in \Psi_{s}$ and $A, B: X \rightarrow X$ be mappings. The pair (A, B) is called a cyclic (α, ψ, F, G)-contraction pair if
(i) $F \cup G$ has a cyclic representation w.r.t. the pair (A, B), that is, $A(F) \subset G$ and $B(G) \subset F$;
(ii)

$$
\begin{equation*}
d(A x, B y) \leq \psi(M(x, y)) \tag{3.2}
\end{equation*}
$$

for all $x \in F$ and $y \in G$ satisfying $\alpha(x, y) \geq 1$ or $\alpha(y, x) \geq 1$, where

$$
M(x, y)=\max \left\{d(x, y), d(x, A x), d(y, B y), \frac{d(x, B y)+d(y, A x)}{4 s}\right\}
$$

Now, we state and prove the following results.
Theorem 3.4. Let (X, d) be a complete b-metric-like space and F and G be nonempty closed subsets of X. Suppose that $A, B: X \rightarrow X$ is a cyclic (α, ψ, F, G)-contraction pair and the following conditions hold:
(i) $\alpha(A x, B A x) \geq 1$ for all $x \in F$ and $\alpha(B x, A B x) \geq 1$ for all $x \in G$;
(ii) A or B is continuous on (X, d);
(iii) if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \geq 0$ and $x_{n} \rightarrow z$ as $n \rightarrow \infty$, then $\alpha(z, z) \geq 1 ;$
(iv) $\psi(t)<\frac{t}{2 s^{3}+s}$ for each $t>0$.

Then, A and B have a common fixed point in $F \cap G$.
Proof. Let $x_{0} \in F$ and $x_{1}=A x_{0}$. Since $A(F) \subset G$, then $x_{1} \in G$. Also, let $x_{2}=B x_{1}=B A x_{0}$. Since $B(G) \subset F$, then $x_{2} \in F$. Continuing in this fashion, we can construct a sequence $\left\{x_{n}\right\}$ in X such that

$$
x_{2 n+2}=B x_{2 n+1} \in F, \quad x_{2 n+1}=A x_{2 n} \in G, \quad \forall n \geq 0
$$

By condition (i), we have $\alpha\left(x_{1}, x_{2}\right)=\alpha\left(A x_{0}, B A x_{0}\right) \geq 1$ and $\alpha\left(x_{2}, x_{3}\right)=\alpha\left(B x_{1}, A B x_{1}\right) \geq 1$. Continuing this process, we get

$$
\alpha\left(x_{n}, x_{n+1}\right) \geq 1, \quad \forall n \geq 0
$$

Following the proof of Theorem 2.2 , we know that the sequence $\left\{x_{n}\right\}$ is Cauchy in (X, d) and converges to some $u \in X$ with $d(u, u)=0$. We shall show that u is a common fixed point of A and B in $F \cap G$.
Since $\left\{x_{2 n}\right\}$ is a sequence in the closed set F and $\left\{x_{2 n}\right\}$ converges to u, then $u \in F$. Also, $\left\{x_{2 n+1}\right\}$ is a sequence in the closed set G and $\left\{x_{2 n+1}\right\}$ converges to u, then $u \in G$. We deduce that $u \in F \cap G$.

First, assume that A is continuous on (X, d). Since $\left\{x_{2 n}\right\}$ converges to u, so $\left\{x_{2 n+1}=A x_{2 n}\right\}$ converges to $A u$.

On the other hand, $\lim _{n \rightarrow \infty} d\left(x_{n}, u\right)=0=d(u, u)$ and by Lemma 1.9, we have

$$
\frac{1}{s} d(u, A u) \leq d(A u, A u) \leq s d(u, A u)
$$

If $d(A u, B u)=0$, then $A u=B u$. Moreover, the fact that $d(u, A u) \leq s d(A u, A u)$ implies

$$
0 \leq d(u, A u) \leq s d(A u, A u) \leq 2 s^{2} d(A u, B u)=0
$$

and so $A u=u$. Then, $B u=A u=u$ and so u is a common fixed point of A and B.
Suppose by contradiction that $d(A u, B u)>0$. Since $u \in F \cap G$ and by (iii), it follows that $\alpha(u, u) \geq 1$, so that

$$
d(A u, B u) \leq \psi(M(u, u))
$$

where

$$
\begin{aligned}
M(u, u) & \left.=\max \left\{d(u, u), d(u, A u), d(u, B u), \frac{d(u, B u)+d(u, A u)}{4 s}\right)\right\} \\
& \left.=\max \left\{0, d(u, A u), d(u, B u), \frac{d(u, B u)+d(u, A u)}{4 s}\right)\right\} \\
& =\max \{d(u, A u), d(u, B u)\} \leq \max \{d(u, A u), s d(u, A u)+s d(A u, B u)\} \\
& =s d(u, A u)+s d(A u, B u) \leq 2 s^{3} d(A u, B u)+s d(A u, B u)=\left(2 s^{3}+s\right) d(A u, B u)
\end{aligned}
$$

Then

$$
d(A u, B u) \leq \psi\left(\left(2 s^{3}+s\right) d(A u, B u)\right)<d(A u, B u)
$$

which is a contradiction.
The proof is similar when B is assumed to be continuous on (X, d).

Theorem 3.5. Let (X, d) be a complete b-metric-like space and F and G be nonempty closed subsets of X. Suppose that $A, B: X \rightarrow X$ is a cyclic (α, ψ, F, G)-contraction pair and the following conditions hold:
(i) $\alpha(A x, B A x) \geq 1$ for all $x \in F$ and $\alpha(B x, A B x) \geq 1$ for all $x \in G$;
(ii) A and B are continuous on (X, d);
(iii) if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \geq 0$ and $x_{n} \rightarrow z$ as $n \rightarrow \infty$, then $\alpha(z, z) \geq 1$;
(iv) $\psi(t)<\frac{t}{2 s^{2}}$ for each $t>0$.

Then, A and B have a common fixed point in $F \cap G$.
Proof. The proof is similar to the proofs of Theorem 3.4 and Theorem 2.2 .

Theorem 3.4 and Theorem 3.5 can be proved without assuming the continuity of A or the continuity of B. For this instance, we suppose that X has the following property:
(R) If $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all n and $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n(k)}, x\right) \geq 1$ for all k.

This statement is given as follows.
Theorem 3.6. Let (X, d) be a complete b-metric-like space and F and G be nonempty closed subsets of X. Suppose that $A, B: X \rightarrow X$ is a cyclic (α, ψ, F, G)-contraction pair and the following conditions hold:
(i) $\alpha(A x, B A x) \geq 1$ for all $x \in F$ and $\alpha(B x, A B x) \geq 1$ for all $x \in G$;
(ii) (R) holds;
(iii) if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \geq 0$ and $x_{n} \rightarrow z$ as $n \rightarrow \infty$, then $\alpha(z, z) \geq 1$;
(iv) $\psi(t)<\frac{t}{s}$ for each $t>0$.

Then, A and B have a common fixed point in $F \cap G$.
Proof. The proof is similar to that of Theorem 3.4 and Theorem 2.9 ,
Taking $A=B$ in Theorem 3.5 and Theorem 3.6, we state the followings results.

Corollary 3.7. Let (X, d) be a complete b-metric-like space and F and G be nonempty closed subsets of X. Suppose that $\psi \in \Psi_{s}, \alpha: X \times X \rightarrow X$ and $A: X \rightarrow X$ such that

$$
d(A x, A y) \leq \psi\left(\max \left\{d(x, y), d(x, A x), d(y, A y), \frac{d(A x, y)+d(x, A y)}{4 s}\right\}\right)
$$

for all $x \in F$ and $y \in G$ satisfying $\alpha(x, y) \geq 1$ or $\alpha(y, x) \geq 1$.
Also, suppose the following conditions hold:
(i) $\alpha(A x, A A x) \geq 1$ for all $x \in F \cap G$;
(ii) A is a cyclic mapping;
(ii) A is continuous on (X, d);
(iii) if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \geq 0$ and $x_{n} \rightarrow z$ as $n \rightarrow \infty$, then $\alpha(z, z) \geq 1 ;$
(iv) $\psi(t)<\frac{t}{2 s^{2}}$ for each $t>0$.

Then, A has a fixed point in $F \cap G$.
Corollary 3.8. Let (X, d) be a complete b-metric-like space and F and G be nonempty closed subsets of X. Suppose that $\psi \in \Psi_{s}, \alpha: X \times X \rightarrow X$ and $A: X \rightarrow X$ a mapping such that

$$
d(A x, A y) \leq \psi\left(\max \left\{d(x, y), d(x, A x), d(y, A y), \frac{d(A x, y)+d(x, A y)}{4 s}\right\}\right)
$$

for all $x \in F$ and $y \in G$ satisfying $\alpha(x, y) \geq 1$ or $\alpha(y, x) \geq 1$.
Also, suppose the following conditions hold:
(i) $\alpha(A x, A A x) \geq 1$ for all $x \in F \cap G$;
(ii) A is a cyclic mapping;
(ii) (R) holds;
(iii) if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \geq 0$ and $x_{n} \rightarrow z$ as $n \rightarrow \infty$, then $\alpha(z, z) \geq 1$;
(iv) $\psi(t)<\frac{t}{s}$ for each $t>0$.

Then, A has a fixed point in $F \cap G$.
Now, we give an example to illustrate Theorem 3.6.
Example 3.9. Let $X=\{0,1,2\}$ and $d: X \times X \rightarrow[0, \infty)$ defined by

$$
\begin{array}{r}
d(0,0)=9, d(1,1)=0, d(2,2)=0, d(0,1)=d(1,0)=16 \\
d(0,2)=d(2,0)=9 \text { and } d(1,2)=d(2,1)=49
\end{array}
$$

Then, (X, d) is a complete b-metric-like space with coefficient $s=2$. Let $F=\{0,1\}$ and $G=\{1,2\}$. Note that F and G are nonempty closed subsets of X. Consider the mappings $A, B: X \rightarrow X$ and $\alpha: X \times X \rightarrow X$ as follows:

$$
A 0=2, A 1=1, A 2=0, \quad B 0=0, B 1=1 \text { and } B 2=1
$$

and

$$
\left\{\begin{array}{l}
\alpha(1,1)=\alpha(2,1)=1 \\
\alpha(x, y)=0 \text { otherwise }
\end{array}\right.
$$

Now, we show that all the conditions of Theorem 3.6 are satisfied.

We show that condition (i) of Theorem 3.6 is verified. Let $x \in F$, then

$$
\alpha(A x, B A x)=\left\{\begin{array}{l}
\alpha(2,1)=1 \text { if } x=0 \\
\alpha(1,1)=1 \text { if } x=1
\end{array}\right.
$$

Also, let $x \in G$, then

$$
\alpha(B x, A B x)=\left\{\begin{array}{l}
\alpha(1,1)=1 \text { if } x=1 \\
\alpha(1,1)=1 \text { if } x=2
\end{array}\right.
$$

Then, $\alpha(A x, B A x) \geq 1$ for all $x \in F$ and $\alpha(B x, A B x) \geq 1$ for all $x \in G$.
It is clear that $A(F) \subset G$ and $B(G) \subset F$.
Now, we sow that (A, B) is a cyclic (α, ψ, F, G)-contraction pair.
Let $x \in F$ and $y \in G$ such that $\alpha(x, y) \geq 1$ or $\alpha(y, x) \geq 1$. It follows from definition of α that $(x=y=1)$ or $(x=1, y=2)$. We have for $(x=y=1)$ or $(x=1, y=2)$

$$
d(A x, B y)=d(1,1)=0 \leq \psi(M(x, y))
$$

for all $\psi \in \Psi_{s}$ such that $\psi(t)<\frac{t}{s}$ for all $t>0$. Then, (A, B) is a cyclic (α, ψ, F, G)-contraction pair.
It is easy to show that X satisfies the property (R). Moreover, condition (iii) of Theorem 3.6 holds. Hence, all conditions of Theorem 3.6 are verified. Here, 1 is the unique common fixed point of A and B.

4. Fixed Point Theorems for generalized contractions in partially ordered b-metric-like spaces

Now, we give some fixed points results on partially ordered b-metric-like spaces as consequences of our results presented in the last section.

Definition 4.1. Let X be a nonempty set. We say that (X, d, \preceq) is a partially ordered b-metric-like space if (X, d) is a b-metric-like space and (X, \preceq) is a partially ordered set.

Definition 4.2. Let F and G be nonempty closed subsets of a partially ordered b-metric-like space (X, d, \preceq), $\psi \in \Psi_{s}$ and $A, B: X \rightarrow X$ be mappings. The pair (A, B) is called a cyclic (ψ, F, G)-contraction pair if
(i) $F \cup G$ has a cyclic representation w.r.t. the pair (A, B);
(ii)

$$
\begin{equation*}
d(A x, B y) \leq \psi(M(x, y)) \tag{4.1}
\end{equation*}
$$

for all $x \in F$ and $y \in G$ satisfying $x \preceq y$ or $y \preceq x$, where

$$
M(x, y)=\max \left\{d(x, y), d(x, A x), d(y, B y), \frac{d(x, B y)+d(y, A x)}{4 s}\right\}
$$

Definition 4.3. Let (X, d, \preceq) a partially ordered b-metric-like space and F, G be nonempty closed subsets of X with $X=F \cup G$. Let $A, B: X \rightarrow X$ be mappings. We say that the pair (A, B) is (F, G)-weakly increasing if $A x \preceq B A x$ for all $x \in F$ and $B x \preceq A B x$ for all $x \in G$.

Now, we state and prove the following results.
Theorem 4.4. (X, d, \preceq) be a complete partially ordered b-metric-like space and F, G be nonempty closed subsets of X. Suppose that $A, B: X \rightarrow X$ is a cyclic (ψ, F, G)-contraction pair and the following conditions hold:
(i) (A, B) is (F, G)-weakly increasing;
(ii) A or B is continuous on (X, d);
(iii) $\psi(t)<\frac{t}{2 s^{3}+s}$ for each $t>0$.

Then, A and B have a common fixed point in $F \cap G$.
Proof. Let the function $\alpha: X \times X \rightarrow X$ such that

$$
\alpha(x, y)=\left\{\begin{array}{l}
1 \text { if } x \preceq y \\
0 \text { otherwise }
\end{array}\right.
$$

Then, all hypotheses of Theorem 3.4 are satisfied and hence A and B have a common fixed point in $F \cap G$.

Also, by using the same technique, we have the following results.
Theorem 4.5. (X, d, \preceq) be a complete partially ordered b-metric-like space and F, G be nonempty closed subsets of X. Suppose that $A, B: X \rightarrow X$ is a cyclic (ψ, F, G)-contraction pair and the following conditions hold:
(i) (A, B) is (F, G)-weakly increasing;
(ii) A and B are continuous on (X, d);
(iii) $\psi(t)<\frac{t}{2 s^{2}}$ for each $t>0$.

Then, A and B have a common fixed point in $F \cap G$.
Theorem 4.6. (X, d, \preceq) be a complete partially ordered b-metric-like space and F, G be nonempty closed subsets of X. Suppose that $A, B: X \rightarrow X$ is a cyclic (ψ, F, G)-contraction pair and the following conditions hold:
(i) (A, B) is (F, G)-weakly increasing;
(ii) for a sequence $\left\{x_{n}\right\} \subset X$ with $x_{n} \preceq x_{n+1}$, for all $n \in \mathbb{N}$ and $x_{n} \rightarrow z$ in (X, d), then there exists a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n(k)} \preceq z$, for all $k \in \mathbb{N}$;
(iv) $\psi(t)<\frac{t}{s}$ for each $t>0$.

Then, A and B have a common fixed point in $F \cap G$.

Acknowledgements

The authors acknowledge the support from the Deanship of Scientific Research (DSR) at King Faisal University (KFU) during this research (Project No: 160041).

References

[1] R. P. Agarwal, P. Kumam, W. Sintunavarat, PPF dependent fixed point theorems for an α_{c}-admissible non-self mapping in the Razumikhin class, Fixed Point Theory Appl., 2013 (2013), 14 pages. 1
[2] M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl., 2013 (2013), 25 pages. 1
[3] M. U. Ali, T. Kamran, E. Karapinar, On (α, ψ, η)-contractive multivalued mappings, Fixed Point Theory Appl., 2014 (2014), 8 pages. 1
[4] H. Aydi, α-implicit contractive pair of mappings on quasi b-metric spaces and application to integral equations, Accepted in J. Nonlinear Convex Anal., October (2015). 1
[5] H. Aydi, M.-F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak ϕ-contractions on b-metric spaces, Fixed Point Theory, 13 (2012), 337-346. 1
[6] H. Aydi, M. Jellali, E. Karapinar, Common fixed points for generalized α-implicit contractions in partial metric spaces: Consequences and application, consequences and application. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, 109 (2015), 367-384. 1
[7] H. Aydi, E. Karapinar, A fixed point result for Boyd-Wong cyclic contractions in partial metric spaces, Int. J. Math. Math. Sci., 2012 (2012), 11 pages. 3
[8] H. Aydi, E. Karapinar, M.-F. Bota, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 2012 (2012), 8 pages. 1
[9] H. Aydi, E. Karapinar, B. Samet, Fixed points for generalized (α, ψ - contractions on generalized metric spaces, J. Inequal. Appl., 2014 (2014), 16 pages. 1
[10] H. Aydi, C. Vetro, W. Sintunavarat, P. Kumam, Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces, Fixed Point Theory Appl., 2012 (2012), 18 pages. 3
[11] M. Boriceanu, A. Petrusel, I. A. Rus, Fixed point theorems for some multivalued generalized contractions in b-metric spaces, Int. J. Math. Stat., 6 (2010), 65-76. 1
[12] M. Bota, Dynamical aspects in the theory of multivalued operators, Cluj University Press, Cluj, (2010). 1
[13] Ch. Chen, J. Dong, Ch. Zhu, Some fixed point theorems in b-metric-like spaces, Fixed Point Theory Appl., 2015 (2015), 10 pages. 1
[14] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11. 1
[15] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263-276. 1
[16] N. Hussain, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed points of contractive mappings in b-metric-like spaces, Sci. World J., 2014 (2014), 15 pages. 1
[17] M. Jleli, E. Karapınar, B. Samet, Best proximity points for generalized $\alpha-\psi$-proximal contractive type mappings, J. Appl. Math., 2013 (2013), 10 pages. 1
[18] M. Jleli, E. Karapınar, B. Samet, Fixed point results for $\alpha-\psi_{\lambda}$ contractions on gauge spaces and applications, Abstr. Appl. Anal., 2013 (2013), 7 pages. 1
[19] E. Karapinar, Discussion on (α, ψ)-contractions on generalized metric spaces, Abstr. Appl. Anal., 2014 (2014), 7 pages. 1
[20] E. Karapinar, P. Kumam, P. Salimi, On $\alpha-\psi$-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), 12 pages. 1
[21] E. Karapinar, B. Samet, Generalized $\alpha-\psi$-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 17 pages. 1
[22] W. A. Kirk, P. S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), 79-89. 3, 3.1 3.2
[23] P. Kumam, N. V. Dung, V. Th. Le Hang, some equivalences between cone b-metric spaces and b-metric spaces, Abstr. Appl. Anal., 2013 (2013), 8 pages. 1
[24] B. Mohammadi, Sh. Rezapour, N. Shahzad, Some results on fixed points of $\alpha-\psi$-Ciric generalized multifunctions, Fixed Point Theory Appl., 2013 (2013), 10 pages. 1
[25] C. Mongkolkeha, P. Kumam, Best proximity point theorems for generalized cyclic contractions in ordered metric spaces, J. Optim. Theory Appl., 155 (2012), 215-226. 3
[26] O. Popescu, Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2014 (2014), 12 pages. 1
[27] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. 1, 1.11
[28] S. L. Singh, S. Czerwik, K. Krol, A. Singh, Coincidences and fixed points of hybrid contractions, Tamsui Oxf. J. Math. Sci., 24 (2008), 401-416. 1

[^0]: *Corresponding author
 Email addresses: hmaydi@uod.edu.sa (Hassen Aydi), afelhi@kfu.edu.sa (Abdelbasset Felhi), ssahmim@kfu.edu.sa (Slah Sahmim)

