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1. Introduction

A very interesting problem in diverse areas of physics and mathematics consists of trying to find a
special solution. This problem is referred to as the convex feasibility problem. It can be described as follows:
D1, D2, · · · , DN , where N denotes some positive integer, are finitely many closed convex nonempty subsets of
a Hilbert space with D := ∩Ni=1Di 6= ∅. Convex feasibility problem is to find a solution in D. Closely related
subjects of the problem are variational inequality problems, zero point problems, fixed point problems and
equilibrium problem; see [1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 23, 24, 26, 27, 28, 29, 30] and
the references therein.

Many problems of convex programming can be reduced to that of finding a zero point x of a maximal
monotone operator B on a Hilbert space H; see [21, 22, 26]. A fundamental technique for solving a zero
point equation involving a monotone operator is the proximal point algorithm. The resolvent Js = (I +
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sB)−1, where I stands for the identity mapping and s is some positive real number has many important
properties that make it a central tool in monotone operator theory and its applications. Especially, it is firmly
nonexpansive. In the context of monotone operator theory, what is known as the Douglas-Rachford algorithm
is a splitting scheme initially proposed in [12] for finding a zero of the sum of two monotone operators.
Splitting algorithms for problems involving the sum of two monotone operators give some applications
to the obstacle problems and minimization problems. In this paper, we investigate a convex feasibility
problem based on a splitting method. Strong convergence theorems are established without the aid of
metric projections in the framework of real Hilbert spaces.

2. Preliminaries

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖ and let C be a nonempty
closed convex subset of H.

Let S : C → C be a mapping. F (S) stands for the fixed point set of S. Recall that S is said to be
contractive iff there exits a constant α ∈ (0, 1) such that

‖Sx− Sy‖ ≤ α‖x− y‖, ∀x, y ∈ C.

S is said to be nonexpansive iff
‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

S is said to be firmly nonexpansive iff ‖Sx−Sy‖2 ≤ 〈Sx−Sy, x−y〉; S is said to be strictly pseudocontractive
iff there exists a constant κ ∈ [0, 1) such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + κ‖(x− Sx)− (y − Sy)‖2, ∀x, y ∈ C.

The class of strictly pseudocontractive mappings was introduced by Browder and Petryshyn [6]. It is clear
that nonexpansive mappings are strictly pseudocontractive mappings with κ = 0.

Let F : C × C → R be a bifunction, where R denotes the set of real numbers. Consider the following
equilibrium problem in the terminology of Blum and Oettli [5]

Find x ∈ C such that F (x, y) ≥ 0, ∀y ∈ C. (2.1)

In this paper, the solution set of problem (2.1) is denoted by EP (F ).
To study equilibrium problem (2.1), we may assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, lim supt↓0 F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semi-continuous.

Let A : C → H be a mapping. Recall that A is said to be monotone iff

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

A is said to be strongly monotone iff there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C.

A is said to be inverse-strongly monotone iff there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.
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It is clear that A is inverse-strongly monotone if and only if the inverse of A is strongly monotone.
A set-valued mapping B : H → 2H is said to be monotone if for all x, y ∈ H, f ∈ Bx and g ∈ By

imply 〈x − y, f − g〉 ≥ 0. A monotone mapping B : H → 2H is maximal if the graph G(B) of B is not
properly contained in the graph of any other monotone mapping. It is known that a monotone mapping B
is maximal if and only if, for any (x, f) ∈ H ×H, 〈x − y, f − g〉 ≥ 0 for all (y, g) ∈ G(B) implies f ∈ Bx.
Next, we use D(B) to denote the domain of B. If B is maximal monotone, we may define a single-valued
operator Jr = (I + rB)−1 : H → H, where r is some positive constant. The single-valued operator is called
the resolvent of B for the constant r.

In order to prove our main results, we also need the following lemmas.

Lemma 2.1 ([2]). Let C be a closed convex subset of a real Hilbert space H and let A be a maximal monotone

operator on H. For any λ > 0 and µ > 0, we have Jλx = Jµ

(
µ
λx +

(
1 − µ

λ

)
Jλx

)
, where Jλ = (I + λA)−1

and Jµ = (I + µA)−1.

Lemma 2.2 ([6]). Let C be a closed convex subset of a real Hilbert space H and let S : C → C be a strictly
pseudocontractive mapping. Then I − S is demiclosed at zero.

Lemma 2.3 ([5]). Let C be a closed convex subset of a real Hilbert space H and let F : C × C → R be a
bifunction satisfying (A1)-(A4). Then, for any r > 0 and x ∈ H, there exists z ∈ C such that

rF (z, y) + 〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, define
Trx = {z ∈ C : rF (z, y) + 〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all r > 0 and x ∈ H. Then, the following hold:

(a) Tr is single-valued;

(b) ‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;

(c) F (Tr) = EP (F );

(d) EP (F ) is closed and convex.

Lemma 2.4 ([6]). Let C be a closed convex subset of a real Hilbert space H and let S : C → H be a strictly
pseudocontractive mapping with the constant κ. Define a mapping T by T = δI + (1 − δ)S, where δ is a
constant in [0, 1]. If δ ∈ [κ, 1) then T is nonexpansive with F (T ) = F (S).

Lemma 2.5 ([25]). Let {xn} and {yn} be bounded sequences in a Hilbert space H and let {βn} be a sequence
in (0, 1) with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = (1 − βn)yn + βnxn for all integers
n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.6 ([16]). Assume that {αn} is a sequence of nonnegative real numbers such that αn+1 ≤ (1 −
γn)αn + δn + en, where {γn} is a sequence in (0, 1), {en} and {δn} are sequences such that

(i)
∑∞

n=1 γn =∞,
∑∞

n=1 en <∞;

(ii) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| <∞.

Then limn→∞ αn = 0.

Lemma 2.7 ([3]). Let C be a closed convex subset of a real Hilbert space H. Let A : C → H be a
mapping and let B be a maximal monotone operator on H. Then F

(
Js(I − sA)

)
= (A + B)−1(0), where

Js = (I + sB)−1.
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3. Main results

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let A : C → H be an inverse-
strongly monotone mapping with the positive constant α and let B be a maximal monotone operator such
that D(B) ⊂ C. Let F be a bifunction from C × C to R which satisfies (A1)-(A4). Let S : C → H be a
strictly pseudocontractive mapping with the constant κ ∈ [0, 1) and let f be a contractive mapping on H with
the constant β ∈ (0, 1). Assume that Ω = F (S)∩ (A+B)−1(0)∩EP (F ) is nonempty. Let {rn} and {sn} be
positive real number sequences. Let {αn}, {βn}, {γn} and {δn} be real number sequences in (0, 1) such that
αn+βn+γn = 1. Let {xn} be a sequence generated in the process: x1 ∈ H, yn = (I+snB)−1(zn−snAzn+en),
xn+1 = αnf(xn) + βnxn + γnδnyn + (1 − δn)γnSyn, where {en} is a sequence in H and {zn} is a sequence
in C such that F (zn, z) + 1

rn
〈z − zn, zn − xn〉 ≥ 0,∀z ∈ C. Assume that the control sequences satisfy

the following conditions: limn→∞ αn = 0 and
∑∞

n=1 αn = ∞; 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;∑∞
n=1 ‖en‖ <∞, limn→∞ |δn+1−δn| = 0 and κ ≤ δn ≤ δ < 1; limn→∞ |rn+1−rn| = 0 and lim infn→∞ rn > 0;

limn→∞ |sn+1 − sn| = 0, and 0 < s ≤ sn ≤ s′ < 2α, where δ, s, s′ are real constants. Then {xn} converges
strongly to q = PΩf(q).

Proof. By using the conditions imposed on {sn}, we find that

‖(I − snA)x− (I − snA)y‖2 ≤ ‖x− y‖2 − sn(2α− sn)‖Ax−Ay‖2.

This implies that I− snA is nonexpansive. Put Jsn = (I+ snB)−1 and Sn = δnI+ (1− δn)S. It follows from
Lemma 2.4 that Sn is nonexpansive with F (Sn) = F (S) and Jsn is firmly nonexpansive. Letting p ∈ Ω be
fixed arbitrarily, we have

‖yn − p‖ ≤ ‖(zn − snAzn + en)− (p− snAp)‖
≤ ‖Trnxn − p‖+ ‖en‖
≤ ‖xn − p‖+ ‖en‖.

It follows that

‖xn+1 − p‖ ≤ αn‖f(xn)− p‖+ βn‖xn − p‖+ γn‖Snyn − p‖
≤ αnβ‖xn − p‖+ αn‖f(p)− p‖+ βn‖xn − p‖+ γn‖yn − p‖
≤ αnβ‖xn − p‖+ αn‖f(p)− p‖+ βn‖xn − p‖+ γn(‖xn − p‖+ ‖en‖)
≤ (1− αn(1− β))‖xn − p‖+ αn‖f(p)− p‖+ ‖en‖

≤ max{‖xn − p‖,
‖f(p)− p‖

1− β
}+ ‖en‖.

It follows that

‖xn − p‖ ≤ max{‖x1 − p‖,
‖f(p)− p‖

1− β
}+

∞∑
n=1

‖en‖.

This shows that {xn} is bounded. Since the mapping PΩf is contractive, there exists an unique fixed point.
Next, we denote the unique fixed point by q. Now, we are in a position to show lim supn→∞〈f(q)−q, xn−q〉 ≤
0. To show it, we can choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈f(q)− q, xn − q〉 = lim
i→∞
〈f(q)− q, xni − q〉.

Since {xni} is bounded, we can choose a subsequence {xnij
} of {xni} which converges weakly some point x.

We may assume, without loss of generality, that {xni} converges weakly to x.
In view of zn = Trnxn, one has F (zn, z) + 1

rn
〈z − zn, zn − xn〉 ≥ 0,∀z ∈ C and F (zn+1, z) + 1

rn+1
〈z −

zn+1, zn+1 − xn+1〉 ≥ 0, ∀z ∈ C. Hence, one has F (zn, zn+1) + 1
rn
〈zn+1 − zn, zn − xn〉 ≥ 0 and F (zn+1, zn) +
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1
rn+1
〈zn − zn+1, zn+1 − xn+1〉 ≥ 0,∀z ∈ C. From the monotonicity of F , one has 〈zn+1 − zn,

zn−xn
rn

−
zn+1−xn+1

rn+1
〉 ≥ 0. It follows that

‖zn+1 − zn‖ ≤ ‖xn+1 − xn‖+
|rn+1 − rn|

rn+1
‖Trn+1xn − xn+1‖.

Putting ρn = zn − snAzn + en, we find that

‖ρn+1 − ρn‖ ≤ ‖zn+1 − zn‖+ ‖Azn‖|sn+1 − sn|+ ‖en+1 − en‖

≤ ‖xn+1 − xn‖+
|rn+1 − rn|

rn+1
‖Trn+1xn − xn+1‖+ ‖Azn‖|sn+1 − sn|+ ‖en+1 − en‖.

On the other hand, we find from Lemma 2.1 that

‖yn+1 − yn‖ =
∥∥∥Jsn( sn

sn+1
ρn+1 +

(
1− sn

sn+1

)
Jsn+1ρn+1

)
− Jsnρn

∥∥∥
≤
∥∥∥ sn
sn+1

(ρn+1 − ρn) +
(
1− sn

sn+1

)
(Jsn+1ρn+1 − ρn)

∥∥∥
≤ ‖ρn+1 − ρn‖+

|sn+1 − sn|
s

‖Jsn+1ρn+1 − ρn+1‖

≤ ‖xn+1 − xn‖+
|rn+1 − rn|

rn+1
‖Trn+1xn − xn+1‖+ ‖Azn‖|sn+1 − sn|

+ ‖en+1 − en‖+
|sn+1 − sn|

s
‖Jsn+1ρn+1 − ρn+1‖.

(3.1)

Putting λn = xn+1−βnxn
1−βn , we have

‖λn+1 − λn‖ ≤
αn+1‖f(xn+1)− Sn+1yn+1‖

1− βn+1
+
αn‖f(xn)− Snyn‖

1− βn
+ ‖Sn+1yn+1 − Snyn‖

≤ αn+1‖f(xn+1)− Sn+1yn+1‖
1− βn+1

+
αn‖f(xn)− Snyn‖

1− βn
+ ‖yn+1 − yn‖+ |δn+1 − δn|‖yn − Syn‖.

(3.2)

Combining (3.1) with (3.2) finds that

‖λn+1 − λn‖ − ‖xn+1 − xn‖ ≤
αn+1‖f(xn+1)− Sn+1yn+1‖

1− βn+1
+
αn‖f(xn)− Snyn‖

1− βn

+
|rn+1 − rn|

rn+1
‖Trn+1xn − xn+1‖+ ‖Azn‖|sn+1 − sn|

+ ‖en+1 − en‖+
|sn+1 − sn|

s
‖Jsn+1ρn+1 − ρn+1‖

+ |δn+1 − δn|‖yn − Syn‖.

By using conditions imposed on the control sequences, one has

lim sup
n→∞

(‖λn+1 − λn‖ − ‖xn+1 − xn‖) ≤ 0.

It follows from Lemma 2.5 that limn→∞ ‖λn − xn‖ = 0, which in turn implies that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.3)
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Since Trn is firmly nonexpansive, we find that

‖zn − p‖2 = ‖Trnxn − Trnp‖2,

≤ 1

2

(
‖xn − p‖2 + ‖zn − p‖2 − ‖xn − zn‖2

)
.

That is, ‖zn − p‖2 ≤ ‖xn − p‖2 − ‖xn − zn‖2. It follows that

‖xn+1 − p‖2 ≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖Snyn − p‖2

≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖yn − p‖2

≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn
(
‖zn − p‖2 + ‖en‖(‖en‖+ 2‖zn − p‖)

)
≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 − γn‖xn − zn‖2 + ‖en‖(‖en‖+ 2‖zn − p‖),

which implies that

γn‖xn − zn‖2 ≤ αn‖f(xn)− p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖
+ ‖en‖(‖en‖+ 2‖zn − p‖).

By using conditions imposed on the control sequences, we find from (3.3) that

lim
n→∞

‖zn − xn‖ = 0. (3.4)

Hence, {zni} converges weakly to x ∈ C.
Next, we show x ∈ EP (F ). Notice that

F (zn, z) +
1

rn
〈z − zn, zn − xn〉 ≥ 0, ∀z ∈ C.

By using the monotonicity of F , we see that 1
rn
〈z − zn, zn − xn〉 ≥ F (z, zn), ∀z ∈ C. Replacing n by ni,

we arrive at 〈z − zni ,
zni−xni
rni

〉 ≥ F (z, zni), ∀z ∈ C. It follows from (3.4) that 0 ≥ F (z, x). For each t with

0 < t ≤ 1, let zt = tz + (1− t)x, where z ∈ C. It follows that zt ∈ C. Hence, we have hence F (zt, x) ≤ 0. It
follows that

0 = F (zt, zt) ≤ tF (zt, z) + (1− t)F (zt, x) ≤ tF (zt, z),

which yields that F (zt, z) ≥ 0, ∀z ∈ C. Letting t ↓ 0, we obtain that F (x, z) ≥ 0, ∀z ∈ C. This implies that
x ∈ EP (F ).

Since A is inverse-strongly monotone, we have

‖xn+1 − p‖2 ≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖Snyn − p‖2,
≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn

(
‖(zn − snAzn)− (p− snAp)‖2

+ ‖en‖(‖en‖+ 2‖zn − p‖)
)

≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn
(
‖zn − p‖2 − sn(2α− sn)‖Azn −Ap‖2

+ ‖en‖(‖en‖+ 2‖zn − p‖)
)

≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 − sn(2α− sn)γn‖Azn −Ap‖2

+ ‖en‖(‖en‖+ 2‖zn − p‖).

This yields that

sn(2α− sn)γn‖Azn −Ap‖2 ≤ αn‖f(xn)− p‖2 + (‖xn − p‖2 + ‖xn+1 − p‖)‖xn+1 − xn‖
+ ‖en‖(‖en‖+ 2‖zn − p‖).
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In view of conditions imposed on the control sequences that

lim
n→∞

‖Azn −Ap‖ = 0. (3.5)

Since Jsn is firmly nonexpansive, one has

‖yn − p‖2 ≤ 〈(I − snA)zn + en − (I − snA)p, yn − p〉

=
1

2
{‖(I − snA)zn + en − (I − snA)p‖2 + ‖yn − p‖2

− ‖(I − snA)zn + en − (I − snA)p− (yn − p)‖2}

≤ 1

2
{‖zn − p‖2 + Ln + ‖yn − p‖2 − ‖zn − yn −

(
sn(Azn −Ap)− en

)
‖2}

≤ 1

2
{‖xn − p‖2 + Ln + ‖yn − p‖2 − ‖zn − yn‖2

+ 2‖zn − yn‖‖sn(Azn −Ap)− en‖ − ‖sn(Azn −Ap)− en‖2},

where Ln = ‖en‖(‖en‖+ 2‖zn − p‖). This yields that

‖yn − p‖2 ≤ ‖xn − p‖2 + Ln − ‖zn − yn‖2 + 2sn‖zn − yn‖‖Azn −Ap‖
+ 2‖zn − yn‖‖en‖.

Therefore, we have

‖xn+1 − p‖2 ≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖Snyn − p‖2

≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖yn − p‖2

≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 + Ln − γn‖zn − yn‖2

+ 2snγn‖zn − yn‖‖Azn −Ap‖+ 2‖zn − yn‖‖en‖.

It follows that

γn‖zn − yn‖2 ≤ αn‖f(xn)− p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖+ Ln

+ 2snγn‖zn − yn‖‖Azn −Ap‖+ 2‖zn − yn‖‖en‖.

By using (3.3) and (3.5), we find that
lim
n→∞

‖zn − yn‖ = 0. (3.6)

Hence, {yni} converges weakly to x ∈ C.
Now, we show that x ∈ (A+B)−1(0). In view of yn = Jsn(zn−snAzn+en), one has zn−yn+en

sn
−Azn ∈ Byn.

Since B is maximal monotone, we get, for any (µ, ν) ∈ B,〈
yn − µ,

zn − yn + en
sn

−Azn − ν
〉
≥ 0.

Replacing n by ni and letting i→∞, we get from (3.6) that

〈x− µ,−Ax− ν〉 ≥ 0.

This gives −Ax ∈ Bx, that is, 0 ∈ (A+B)(x). This show that x ∈ (A+B)−1(0).
Next, we show x ∈ F (S). Notice that

‖xn − Snyn‖ ≤ ‖xn − xn+1‖+ αn‖f(xn)− Snyn‖+ βn‖xn − Snyn‖.

By using (3.3) one has
lim
n→∞

‖xn − Snyn‖ = 0. (3.7)
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It follows that
‖Snxn − xn‖ ≤ ‖xn − zn‖+ ‖zn − yn‖+ ‖Snyn − xn‖.

By using (3.4), (3.6) and (3.7), one has

lim
n→∞

‖xn − Snxn‖ = 0. (3.8)

Notice that
‖Sxn − xn‖ ≤ ‖Sxn −

(
δnxn + (1− δn)Sxn

)
‖+ ‖Snxn − xn‖

≤ δn‖Sxn − xn‖+ ‖Snxn − xn‖.

This implies from (3.8), one has
lim
n→∞

‖xn − Sxn‖ = 0.

By using Lemma 2.2, we find x ∈ F (S). This completes the proof that x ∈ Ω. It follows that

lim sup
n→∞

〈f(q)− q, xn − q〉 ≤ 0.

This implies from (3.3) that
lim sup
n→∞

〈f(q)− q, xn+1 − q〉 ≤ 0.

Notice that

‖xn+1 − q‖2 ≤ αn〈f(xn)− q, xn+1 − q〉+ βn‖xn − q‖‖xn+1 − q‖+ γn‖Snyn − q‖‖xn+1 − q‖
≤ αn〈f(xn)− f(q), xn+1 − q〉+ αn〈f(q)− q, xn+1 − q〉+ βn‖xn − q‖‖xn+1 − q‖

+ γn‖(zn − snAzn + en)− (p− snAp)‖‖xn+1 − q‖
≤ αn‖f(xn)− f(q)‖‖xn+1 − q‖+ αn〈f(q)− q, xn+1 − q〉+ βn‖xn − q‖‖xn+1 − q‖

+ γn‖zn − p‖‖xn+1 − q‖+ ‖en‖‖xn+1 − q‖
≤
(
1− α(1− β)

)
‖xn − q‖‖xn+1 − q‖+ αn〈f(q)− q, xn+1 − q〉+ ‖en‖‖xn+1 − q‖.

It follows that

‖xn+1 − q‖2 ≤
(
1− αn(1− β)

)
‖xn − q‖2 + 2αn〈f(q)− q, xn+1 − q〉+ 2‖en‖‖xn+1 − q‖.

By using Lemma 2.6, we find that limn→∞ ‖xn − q‖ = 0. This completes the proof.

Remark 3.2. Let C be a nonempty closed and convex subset of H and A : C → H be a mapping. Recall
that the classical variational inequality is to find an x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (3.9)

Projection methods have been recently investigated for solving variational inequality (3.9). It is known that
x is a solution to (3.9) iff x is a fixed point of the mapping ProjC(I − rA), where I denotes the identity
on H. If A is strongly monotone and Lipschitz, then problem (3.9) has a unique solution. If A is inverse-
strongly monotone, then ProjC(I−rA) is nonexpansive. Moreover, if C is bounded, closed and convex, then
the existence of solutions of the variational inequality is guaranteed by the nonexpansivity of the mapping
ProjC(I − rA). Let iC be a function defined by iC(x) = 0, x ∈ C, iC(x) =∞, x /∈ C. It is easy to see that
iC is a proper lower and semicontinuous convex function on H, and the subdifferential ∂iC of iC is maximal
monotone. Define the resolvent Js := (I + s∂iC)−1 of the subdifferential operator ∂iC . Letting x = Jsy, we
find that

y ∈ x+ s∂iCx⇐⇒ y ∈ x+ sNCx

⇐⇒ 〈y − x, v − x〉 ≤ 0, ∀v ∈ C
⇐⇒ x = ProjCy,

where NCx := {e ∈ H : 〈e, v − x〉, ∀v ∈ C}.
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Putting B = ∂iC in Theorems 3.1, we find the following result.

Corollary 3.3. Let C be a closed convex subset of a real Hilbert space H. Let A : C → H be an inverse-
strongly monotone mapping with the positive constant α and let F be a bifunction from C × C to R which
satisfies (A1)-(A4). Let S : C → H be a strictly pseudocontractive mapping with the constant κ ∈ [0, 1) and
let f be a contractive mapping on H with the constant β ∈ (0, 1). Assume that Ω = F (S)∩V I(C,A)∩EP (F )
is nonempty. Let {rn} and {sn} be positive real number sequences. Let {αn}, {βn}, {γn} and {δn} be real
number sequences in (0, 1) such that αn + βn + γn = 1. Let {xn} be a sequence generated in the process:
x1 ∈ H, yn = PC(zn − snAzn + en), xn+1 = αnf(xn) + βnxn + γnδnyn + (1 − δn)γnSyn, where {en}
is a sequence in H and {zn} is a sequence in C such that F (zn, z) + 1

rn
〈z − zn, zn − xn〉 ≥ 0,∀z ∈ C.

Assume that the control sequences satisfy the following conditions: limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

∑∞
n=1 ‖en‖ < ∞, limn→∞ |δn+1 − δn| = 0 and κ ≤ δn ≤ δ < 1;

limn→∞ |rn+1 − rn| = 0 and lim infn→∞ rn > 0; limn→∞ |sn+1 − sn| = 0, 0 < s ≤ sn ≤ s′ < 2α, where δ, s, s′

are real constants. Then {xn} converges strongly to q ∈ Ω, which is also a unique solution to the variational
inequality 〈f(x)− x, x− y〉 ≥ 0, ∀y ∈ C.

Putting δn = 0 and S = I, we have the following results.

Corollary 3.4. Let C be a closed convex subset of a real Hilbert space H. Let A : C → H be an inverse-
strongly monotone mapping with the positive constant α and let B be a maximal monotone operator on H.
Let F be a bifunction from C × C to R which satisfies (A1)-(A4). Let f be a contractive mapping on H
with the constant β ∈ (0, 1). Assume that Ω = (A + B)−1(0) ∩ EP (F ) is nonempty. Let {rn} and {sn}
be positive real number sequences. Let {αn}, {βn} and {γn} be real number sequences in (0, 1) such that
αn + βn + γn = 1. Let {xn} be a sequence generated in the process: x1 ∈ H, yn = (I + snB)−1(zn −
snAzn + en), xn+1 = αnf(xn) + βnxn + γnyn, where {en} is a sequence in H and {zn} is a sequence in C
such that F (zn, z) + 1

rn
〈z − zn, zn − xn〉 ≥ 0,∀z ∈ C. Assume that the control sequences satisfy the following

conditions: limn→∞ αn = 0 and
∑∞

n=1 αn = ∞; 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
∑∞

n=1 ‖en‖ < ∞;
limn→∞ |rn+1 − rn| = 0 and lim infn→∞ rn > 0; limn→∞ |sn+1 − sn| = 0, 0 < s ≤ sn ≤ s′ < 2α, where δ, s, s′

are real constants. Then {xn} converges strongly to q = PΩf(q).

Corollary 3.5. Let C be a closed convex subset of a real Hilbert space H. Let F be a bifunction from
C × C to R which satisfies (A1)-(A4). Let S : C → H be a strictly pseudocontractive mapping with the
constant κ ∈ [0, 1) and let f be a contractive mapping on H with the constant β ∈ (0, 1). Assume that
Ω = F (S) ∩ EP (F ) is nonempty. Let {rn} be a positive real number sequence. Let {αn}, {βn}, {γn} and
{δn} be real number sequences in (0, 1) such that αn + βn + γn = 1. Let {xn} be a sequence generated in the
process: x1 ∈ H, xn+1 = αnf(xn) +βnxn +γnδnzn + (1− δn)γnSzn, where {zn} is a sequence in C such that
F (zn, z)+ 1

rn
〈z−zn, zn−xn〉 ≥ 0,∀z ∈ C. Assume that the control sequences satisfy the following conditions:

limn→∞ αn = 0 and
∑∞

n=1 αn = ∞; 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1; limn→∞ |δn+1 − δn| = 0 and
κ ≤ δn ≤ δ < 1; limn→∞ |rn+1 − rn| = 0 and lim infn→∞ rn > 0; , where δ is a real constant. Then {xn}
converges strongly to q = PΩf(q).

Put rn = 1 and F (x, y) = 0 for any x, y ∈ C. By taking the initial in C, we find the following result.

Corollary 3.6. Let C be a closed convex subset of a real Hilbert space H. Let A : C → H be an inverse-
strongly monotone mapping with the positive constant α and let B be a maximal monotone operator such
that D(B) ⊂ C. Let S be a strictly pseudocontractive mapping on C with the constant κ ∈ [0, 1) and let
f be a contractive mapping on C with the constant β ∈ (0, 1). Assume that Ω = F (S) ∩ (A + B)−1(0) is
nonempty. Let {sn} be a positive real number sequence. Let {αn}, {βn}, {γn} and {δn} be real number
sequences in (0, 1) such that αn + βn + γn = 1. Let {xn} be a sequence generated in the process: x1 ∈ C,
yn = (I + snB)−1(xn − snAxn + en), xn+1 = αnf(xn) + βnxn + γnδnyn + (1 − δn)γnSyn, where {en} is
a sequence in H. Assume that the control sequences satisfy the following conditions: limn→∞ αn = 0 and∑∞

n=1 αn = ∞; 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
∑∞

n=1 ‖en‖ < ∞, limn→∞ |δn+1 − δn| = 0 and
κ ≤ δn ≤ δ < 1; limn→∞ |sn+1 − sn| = 0, 0 < s ≤ sn ≤ s′ < 2α, where δ, s, s′ are real constants. Then {xn}
converges strongly to q = PΩf(q).
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Remark 3.7. Minimize the following l1-least square problem: minx∈R3 ‖x‖1 + 1
2‖x‖

2
2 + (1, 2, 3)x − 5, where

x = (x1, x2, x3)T . Let f(x) = 1
2‖x‖

2
2 + (1, 2, 3)x − 5 and Bx = ‖x‖1. Then ∇f is 1-inverse-strongly

monotone and ∇ = (x1 + 1, x2 + 2, x3 + 3)T . Suppose that Q ∈ R64×64 is a positive semidefinite matrix that
the maximum eigenvalue κmax of Q is positive and that b ∈ R64. Define a quadratic function f : R64 → R
by f(x) = 1

2〈x,Qx〉+ 〈b, x〉, ∀x ∈ R
64. Then ∇f(·) = Q(·)+ b is κmax-Lipschitz continuous and 1

κmax
-inverse-

strongly monotone. For firmly nonexpansive mappings (I+ κ
(n+1)aB)−1 : R64 → R64, applying the algorithm,

we find the following method: x1 ∈ R64 and x1 ∈ R64, and yn = (I + κ
(n+1)aB)−1(zn − κ

(n+1)aAzn + κ
(n+1)a ),

xn+1 = αnf(xn) +βnxn +γnδnyn + (1− δn)γnSyn, where κ > 0, a ∈ [1,∞) and {zn} is a sequence in C such
that F (zn, z) + 1

rn
〈z − zn, zn − xn〉 ≥ 0, ∀z ∈ C.
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