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Abstract

In this paper, we establish new sharpened versions of Mitrinović-Adamović and Lazarević’s inequalities.
Further, we provide an application of our results to the improvements of Wilker’s inequality for trigonometric
and hyperbolic functions. We show that the coefficient assigned to each of these sharpened inequalities is
best possible. c©2016 All rights reserved.
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1. Introduction

Mitrinović and Adamović [6] proved that the inequality

cosx <

(
sinx

x

)3

(1.1)

holds for all x ∈ (0, π/2), and showed that the exponent 3 is the largest possible.
A hyperbolic analogue of inequality (1.1) was presented by Lazarević [5], which is stated as follows:
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coshx <

(
sinhx

x

)3

, (1.2)

where x 6= 0, and the exponent 3 is the least possible.
A number of generalizations, improvements and applications relating to Mitrinović-Adamović’s inequality

(1.1) and Lazarević’s inequality (1.2) can be found in the literature [4, 7, 9, 12, 15, 19, 20, 21, 22, 26]. Among
these investigations, we remark here that Wu and Baricz [15] dealt with the generalizations of inequalities
(1.1) and (1.2) and obtained two excellent results, as follows:

Theorem 1.1. If 0 < x < π
2 , then the inequality

1− λ

3
+
λ

3
cosx <

(
sinx

x

)λ
(1.3)

holds if and only if λ < 0 or λ ≥ λ0, where λ0 ≈ 1.420330769 is the root of the equation λ/3+(2/π)λ−1 = 0.

Theorem 1.2. If x 6= 0, then the inequality

1− λ

3
+
λ

3
coshx <

(
sinhx

x

)λ
(1.4)

holds if and only if λ < 0 or λ ≥ 7/5.

The main purpose of this paper is to establish new sharpened versions of Mitrinović-Adamović’s in-
equality (1.1) and Lazarević’s inequality (1.2). Moreover, we provide an application of our results to the
improvements of Wilker’s inequality for trigonometric and hyperbolic functions.

2. Sharpening of Mitrinović-Adamović and Lazarević’s Inequalities

Theorem 2.1. If 0 < x < π
2 , then the inequality

cosx <

(
sinx

x

)3(
1− 12

5

(
1− x

sinx

)2)
(2.1)

holds, where the coefficient 12
5 is the best possible.

Proof. By the Taylor expansions of sinx and cosx

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− · · ·+ (−1)k

x2k

(2k)!
+ (−1)k+1 (cos θx)

(2k + 2)!
x2k+2,

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·+ (−1)k−1

x2k−1

(2k − 1)!
+ (−1)k

(cos θx)

(2k + 1)!
x2k+1,

where 0 < θ < 1, it is easy to observe that

cosx < 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
(2.2)

and

1− x2

3!
+
x4

5!
− x6

7!
<

sinx

x
< 1− x2

3!
+
x4

5!
(2.3)
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for 0 < x < π
2 . Using inequalities (2.2) and (2.3) together with a simple calculation, it follows that

cosx−
(

sinx

x

)3(
1− 12

5

(
1− x

sinx

)2)
= cosx+

7

5

(
sinx

x

)3

− 24

5

(
sinx

x

)2

+
12

5

(
sinx

x

)
< 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
+

7

5

(
1− x2

3!
+
x4

5!

)3
− 24

5

(
1− x2

3!
+
x4

5!
− x6

7!

)2
+

12

5

(
1− x2

3!
+
x4

5!

)
=

1

423360000
x6
(
263x6 − 13860x4 + 270060x2 − 1820 000

)
<

1

423360000
x6
(
263× 22x4 − 13860x4 + 270060× 22 − 1820000

)
=

1

423360000
x6(−12808x4 − 739760)

< 0.

This proves the desired inequality (2.1).

Next, we need to show that the coefficient 12
5 is the best possible in inequality (2.1) in the strong sense.

Consider inequality (2.1) in a general form as

cosx <

(
sinx

x

)3(
1− α

(
1− x

sinx

)2)

⇐⇒ α <
( sinxx )3 − cosx

(1− x
sinx)2( sinxx )3

. (2.4)

Taking the limit in (2.4) as x→ 0, we get

α ≤ lim
x→0

( sinxx )3 − cosx

(1− x
sinx)2( sinxx )3

=
12

5
.

Consequently, the coefficient α = 12
5 is the best possible in inequality (2.1). This completes the proof of

Theorem 2.1.

Theorem 2.2. For all nonzero real numbers x, the inequality

coshx <

(
sinhx

x

)3

− 12

5

(
1− x

sinhx

)2
(2.5)

holds, where the coefficient 12
5 is the best possible.

Proof. We begin by recalling the result asserted by Theorem 1.2 in the introduction section, i.e.,

1− λ

3
+
λ

3
coshx <

(
sinhx

x

)λ
, λ ∈

(
−∞, 0

)
∪
[ 7

5
,+∞

)
.

Choosing λ = 7
5 in the above inequality gives

coshx <
15

7

(
sinhx

x

) 7
5

− 8

7
(x 6= 0). (2.6)
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Let
(
sinhx
x

) 1
5 = t. Clearly, we have t > 1 in light of the Lazarević’s inequality

1 < coshx <

(
sinhx

x

)3

(x 6= 0).

Using inequality (2.6) together with a straightforward computation, it follows that

coshx−
(

sinhx

x

)3

+
12

5

(
1− x

sinhx

)2
<

15

7

(
sinhx

x

) 7
5

− 8

7
−
(

sinhx

x

)3

+
12

5

(
1− x

sinhx

)2
=

15

7
t7 − 8

7
− t15 +

12

5

(
1− t−5

)2
= −(t− 1)3

t10

(
t22 + 3t21 + 6t20 + 10t19 + 15t18 + 21t17 + 28t16

+ 36t15 +
300

7
t14 +

340

7
t13 +

372

7
t12 +

396

7
t11 +

412

7
t10 + 60t9

+ 60t8 +
288

5
t7 +

264

5
t6 +

228

5
t5 + 36t4 + 24t3 +

72

5
t2 +

36

5
t+

12

5

)
< 0.

Hence

coshx <

(
sinhx

x

)3

− 12

5

(
1− x

sinhx

)2
.

Next, we shall explain why the coefficient 12
5 is the best possible in inequality (2.5).

Consider inequality (2.5) in a general form as

coshx <

(
sinhx

x

)3

− β
(

1− x

sinhx

)2
⇐⇒ β <

( sinhxx )3 − coshx

(1− ( x
sinhx))2

, (2.7)

we deduce that

β ≤ lim
x→0

( sinhxx )3 − coshx

(1− ( x
sinhx))2

=
12

5
.

Hence, the coefficient β = 12
5 is the best possible in inequality (2.5). The proof of Theorem 2.2 is thus

completed.

3. Application to the Improvements of Wilker’s Inequality

The inequality (
sinx

x

)2

+
tanx

x
> 2

(
0 < x <

π

2

)
(3.1)

is called in the literature as Wilker’s inequality (see [8]). This beautiful inequality has evoked the interest
of many authors, and has motivated a lot of research papers involving its proofs, generalizations, variants
and improvements (see [1, 2, 3, 10, 11, 13, 14, 16, 17, 23, 24] and the references therein).
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In 2007, an inequality of Wilker-type for hyperbolic functions was presented by Zhu [25](
sinhx

x

)2

+
tanhx

x
> 2

(
x 6= 0

)
. (3.2)

Recently, Wu et al. [18] gave a sharpening of hyperbolic Wilker-type inequality as follows:(
sinhx

x

)2

+
tanhx

x
> 2

√
1 +

( x

sinhx

)3 ∣∣∣∣cosx−
(sinx

x

)3∣∣∣∣ (
x 6= 0

)
. (3.3)

In this section, we establish new sharpened versions of Wilker’s inequality for trigonometric and hyper-
bolic functions.

Theorem 3.1. If 0 < x < π
2 , then we have the inequality(

sinx

x

)2

+
tanx

x
> 2 +

32

5

(
1− x

sinx

)2
, (3.4)

where the coefficient 32
5 is the best possible.

Proof. In order to prove inequality (3.4), it suffices to prove that the following inequality(
sinx
x

)2
+ sinx

x cosx − 2(
1− x

sinx

)2 >
32

5

holds for 0 < x < π
2 .

By using the result of Theorem 2.1

cosx <

(
sinx

x

)3(
1− 12

5

(
1− x

sinx

)2)
, x ∈

(
0,
π

2

)
,

we obtain

(
sinx
x

)2
+ sinx

x cosx − 2(
1− x

sinx

)2 >

(
sinx
x

)2
+
(
sinx
x

) ((
sinx
x

)3 (
1− 12

5

(
1− x

sinx

)2))−1 − 2(
1− x

sinx

)2 . (3.5)

Let sinx
x = t. We conclude 2

π < t < 1 by virtue of the Jordan’s inequality (see [7])

2

π
<

sinx

x
< 1, x ∈

(
0,
π

2

)
.

A direct calculation gives(
sinx
x

)2
+
(
sinx
x

) ((
sinx
x

)3 (
1− 12

5

(
1− x

sinx

)2))−1 − 2(
1− x

sinx

)2
=
t2 + t

(
t3
(

1− 12
5

(
1− 1

t

)2))−1 − 2(
1− 1

t

)2
=

7t4 − 10t3 − 29t2

7t2 − 24t+ 12
.

Consider the function

f(t) =
7t4 − 10t3 − 29t2

7t2 − 24t+ 12
, t ∈

( 2

π
, 1
)
.
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Differentiating f(t) with respect to t gives

f ′(t) =
2t
(
168t+ 408t2 − 287t3 + 49t4 − 348

)
(7t2 − 24t+ 12)2

=
−2t

(
(7t (27− 7t) + 19) (t− 1)2 + 319(1− t) + 10

)
(7t2 − 24t+ 12)2

< 0,

where 2
π < t < 1.

It follows that f(t) is decreasing on ( 2
π , 1). Consequently,

f(t) > f(1) =
32

5
for t ∈

( 2

π
, 1
)
,

that is, (
sinx
x

)2
+
(
sinx
x

) ((
sinx
x

)3 (
1− 12

5

(
1− x

sinx

)2))−1 − 2(
1− x

sinx

)2 >
32

5
.

By inequality (3.5), we get (
sinx
x

)2
+ sinx

x cosx − 2(
1− x

sinx

)2 >
32

5
,

which implies the desired inequality (3.4).
Next, we shall prove the assertion that the coefficient 32

5 is the best possible in inequality (3.4).
Consider inequality (3.4) in a general form as(

sinx

x

)2

+
tanx

x
> 2 + γ

(
1− x

sinx

)2

⇐⇒ γ <
( sinxx )2 + tanx

x − 2

(1− x
sinx)2

. (3.6)

Taking the limit in (3.6) as x→ 0, we obtain

γ ≤ lim
x→0

( sinxx )2 + tanx
x − 2

(1− x
sinx)2

=
32

5
.

Consequently, the coefficients γ = 32
5 is the best possible in inequality (3.4). This completes the proof

of Theorem 3.1.

Theorem 3.2. For all nonzero real numbers x, the following inequality holds(
sinhx

x

)2

+
tanhx

x
> 2 +

8

5

(
1−

( x

sinhx

)2)2

, (3.7)

where the coefficient 8
5 is the best possible.

Proof. To prove inequality (3.7), it is enough to prove that the following inequality

( sinhxx )2 + tanhx
x − 2

(1− x2

sinh2 x
)2

>
8

5
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holds for x 6= 0.
By appealing to inequality (2.6) mentioned in Section 2, i.e.,

coshx <
15

7

(
sinhx

x

) 7
5

− 8

7
(x 6= 0),

we obtain

(
sinhx
x

)2
+ tanhx

x − 2(
1− x2

sinh2 x

)2 − 8

5
>

(
sinhx
x

)2
+
(
sinhx
x

)(
15
7

(
sinhx
x

) 7
5 − 8

7

)−1
− 2(

1− x2

sinh2 x

)2 − 8

5
.

Let
(
sinhx
x

) 1
5

= t. Obviously, one has t > 1 in light of Lazarević’s inequality

1 < coshx <

(
sinhx

x

)3

(x 6= 0).

Then, we have

(
sinhx
x

)2
+
(
sinhx
x

)(
15
7

(
sinhx
x

) 7
5 − 8

7

)−1
− 2(

1− x2

sinh2 x

)2 − 8

5

=
t10 + t5

(
15
7 t

7 − 8
7

)−1 − 2

(1− t−10)2
− 8

5

=
75t37 − 40t30 − 270t27 + 35t25 + 144t20 + 240t17 − 128t10 − 120t7 + 64

5 (t10 − 1)2 (15t7 − 8)
.

Define a function g(t) by

g(t) = 75t37 − 40t30 − 270t27 + 35t25 + 144t20 + 240t17 − 128t10 − 120t7 + 64, t ∈ (1,+∞).

Differentiating g(t) with respect to t gives

g′(t) = 5t6(555t30 − 240t23 − 1458t20 + 175t18 + 576t13 + 816t10 − 256t3 − 168)

= 5t6g1(t).

where g1(t) = 555t30 − 240t23 − 1458t20 + 175t18 + 576t13 + 816t10 − 256t3 − 168.
Now, computing the derivative of g1(t) gives

g′1(t) = 2t2(8325t27 − 2760t20 − 14580t17 + 1575t15 + 3744t10 + 4080t7 − 384)

= 2t2g2(t).

Similarly, we have

g′2(t) = 15t6(14985t20 − 3680t13 − 16524t10 + 1575t8 + 2496t3 + 1904)

= 15t6g3(t).

g′3(t) = 4t2
(
74925t17 − 11960t10 − 41310t7 + 3150t5 + 1872

)
= 4t2

(
11960t10(t7 − 1) + 41310t7(t10 − 1) + 21655t17 + 3150t5 + 1872

)
> 0.
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From g′3(t) > 0 for t ∈ (1,+∞) and g3(1) = 756 > 0, we conclude that the function g3 is increasing on
(1,+∞), and deduce that g3(t) > g3(1) > 0 for t ∈ (1,+∞).

Similar to the discussions made above, by using the functional relationships

g′2(t) = 15t6g3(t), g′1(t) = 2t2g2(t), g′(t) = 5t6g1(t),

together with g2(1) = g1(1) = g(1) = 0, we deduce that each of the functions g3, g2, g1, g is increasing on
(1,+∞), and conclude that, for t ∈ (1,+∞),

g3(t) > 0, g2(t) > 0, g1(t) > 0, g(t) > 0.

Hence, we have

(
sinhx
x

)2
+ tanhx

x − 2(
1− x2

sinh2 x

)2 − 8

5
>

(
sinhx
x

)2
+
(
sinhx
x

)(
15
7

(
sinhx
x

) 7
5 − 8

7

)−1
− 2(

1− x2

sinh2 x

)2 − 8

5

=
g (t)

5 (t10 − 1)2 (15t7 − 8)

> 0.

Inequality (3.7) is proved.
Next, we need to verify that the coefficient 8

5 is the best possible in inequality (3.7). For this, we consider
the general form of inequality (3.7), i.e.,(

sinhx

x

)2

+
tanhx

x
> 2 + µ

(
1− x2

sinh2 x

)2

⇐⇒ µ <
( sinhxx )2 + tanhx

x − 2

(1− x2

sinh2 x
)2

. (3.8)

Taking the limit in (3.8) as x→ 0, we obtain

µ ≤ lim
x→0

( sinhxx )2 + tanhx
x − 2

(1− x2

sinh2 x
)2

=
8

5
.

Thus, the coefficients 8
5 is the best possible in inequality (3.7), that is, it cannot be replaced by a larger

constant. The proof of Theorem 3.2 is completed.
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