
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 2753–2765

Research Article

On common solutions: gradient algorithms, strong
convergence theorems and their applications

Qing Yuana, Zunwei Fub,∗

aDepartment of Mathematics, Linyi University, Linyi 276000, China.
bDepartment of Mathematics, The University of Suwon, Suwon P. O. Box 77, Korea.

Communicated by X. Qin

Abstract
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1. Introduction

Variational inequalities has emerged as an important tool in studying a wide class of real world problems
arising in several branches of pure and applied sciences in a unified and general framework. This field is
dynamics and is experiencing an explosive growth in both theory and applications.

Recently, several numerical techniques including the Wiener-Hopf equations, resolvents, gradient pro-
jections, auxiliary principle, decomposition and descent are being developed for solving various classes of
variational inequalities and related optimization problems; see [1, 2, 5, 6, 15, 25, 26, 27, 28] and the references
therein. Projection methods and its variants forms represent important tools for finding the approximate
solutions of variational inequalities. The main idea in this technique is to establish the equivalence between
the variational inequalities and the fixed-point problem of nonlinear operators by using the concept of pro-
jection; see [10, 17, 19, 20, 21, 22, 31] and the references therein. This alternative formulation has played a
significant part in developing various projection methods for solving variational inequalities. Inspired and
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motivated by the research going on in this direction, we suggest and analyze a modified projection method
based on the mean valued techniques.

We organize this article in the following way. In Section 2, we give definitions, remarks and lemmas
which are essential in this work. In Section 3, we give the gradient algorithm and established the convergence
results. We also present the applications of the main results in this section.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space, whose norm and inner product are
denoted by ‖ · ‖ and 〈·, ·〉, respectively. Let C be a convex and closed subset of H and ProjC be the metric
projection from H onto C.

Let T be a mapping on C. Next, we denote by F (T ) the set of fixed points of T . Recall that T is said
to be contractive iff there exists α ∈ (0, 1) such that

‖Tx− Ty‖ ≤ α‖x− y‖, ∀x, y ∈ C.

We also say T is an α-contractive mapping. Recall that T is said to be nonexpansive iff

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Iterative methods for nonexpansive mappings have recently been applied to solve convex minimization
problems; see, [10, 11, 17, 18] and the references therein. A typical problem is to minimize a quadratic
function over the set of the fixed points of a nonexpansive mapping on a real Hilbert space H:

min
x∈F (T )

1

2
〈Bx, x〉 − 〈x, y〉,

where B is a linear bounded operator on H, and y is a given point in H.
In [29], it is proved that sequence {xn} defined by the iterative algorithm below, with the initial guess

x0 ∈ H chosen arbitrarily,
xn+1 = αny + (I − αnB)Sxn, ∀n ≥ 0

converges strongly to the unique solution of the minimization problem provided the sequence {αn} satisfies
certain conditions.

Recently, Hao and Shang [10] introduced a general iterative algorithm by the viscosity approximation
method. They proved that the strong convergence of the iterative algorithm; see [10] and the references
therein.

Recall that a mapping A : C → H is said to be inverse-strongly monotone if there exists a positive real
number µ such that

〈Ax−Ay, x− y〉 ≥ µ‖Ax−Ay‖2, ∀x, y ∈ C.

For such a case, A is also said to be µ-inverse-strongly monotone.
Recall that a mapping A : C → H is said to be strongly monotone if there exists a positive real number

µ such that
〈Ax−Ay, x− y〉 ≥ µ‖x− y‖2, ∀x, y ∈ C.

For such a case, A is also said to be µ-strongly monotone.
The classical variational inequality problem is to find u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C.

We denoted by V I(C,A) the set of solutions of the variational inequality. For a given z ∈ H,u ∈ C satisfies
the inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ C,
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if and only if u = ProjCz. It is known that projection operator PC is firmly nonexpansive. It is also known
that ProjCx is characterized by the property: ProjCx ∈ C and 〈x−ProjCx, ProjCx−y〉 ≥ 0 for all y ∈ C.

One can see that the variational inequality problem is equivalent to a fixed point problem, that is, an
element u ∈ C is a solution of the variational inequality if and only if u ∈ C is a fixed point of the mapping
ProjC(I − λA), where λ > 0 is a constant and I is the identity mapping. Recently, variational inequality
and fixed point problems have been considered by many authors; see, e.g., [3, 7, 12, 13, 14, 30, 31] and the
references therein.

Concerning a family of nonexpansive mappings has been considered by many authors; see, e.g., [4, 10,
17, 24] and the references therein. The well-known convex feasibility problem reduces to finding a point
in the intersection of the fixed point sets of a family of nonlinear mappings. The problem of finding an
optimal point that minimizes a given cost function over the common set of fixed points of a family of
nonexpansive mappings is of wide interdisciplinary interest and practical importance; see e.g., [8] and the
references therein. A simple algorithmic solution to the problem of minimizing a quadratic function over the
common set of fixed points of a family of nonexpansive mappings is of extreme value in many applications
including set theoretic signal estimation; see, e.g., [9] and [11].

In this paper, we consider the mapping Wn defined by

Un,n+1 = I,

Un,n = γnTnUn,n+1 + (1− γn)I,

Un,n−1 = γn−1Tn−1Un,n + (1− γn−1)I,

...

Un,k = γkTkUn,k+1 + (1− γk)I,
Un,k−1 = γk−1Tk−1Un,k + (1− γk−1)I,

...

Un,2 = γ2T2Un,3 + (1− γ2)I,

Wn = Un,1 = γ1T1Un,2 + (1− γ1)I,

(2.1)

where γ1, γ2, . . . are real numbers such that 0 ≤ γn ≤ 1 and T1, T2, · · · be an infinite family of mappings of
C into itself. Nonexpansivity of each Ti ensures the nonexpansivity of Wn.

Concerning Wn, we have the following lemmas which are important to prove our main results.

Lemma 2.1 ([24]). Let C be a nonempty closed convex subset of a strictly convex Banach space E. Let
T1, T2, · · · be nonexpansive mappings of C into itself such that ∩∞n=1F (Tn) 6= ∅ and γ1, γ2, · · · be real numbers
such that 0 < γn ≤ b < 1 for any n ≥ 1. Then, for all x ∈ C and k ∈ N , the limit limn→∞ Un,kx exists.

Using Lemma 2.1, one can define the mapping W of C into itself as follows.

Wx = lim
n→∞

Wnx = lim
n→∞

Un,1x, ∀x ∈ C. (2.2)

Such a mapping W is called the W -mapping generated by T1, T2, · · · and γ1, γ2, · · · .
Remark 2.2. Throughout this paper, we shall always assume that 0 < γi ≤ b < 1 for all i ≥ 1.

Lemma 2.3 ([24]). Let C be a convex and closed subset of a Hilbert space H. Let T1, T2, · · · be nonexpansive
mappings of C into itself such that ∩∞n=1F (Tn) 6= ∅ and γ1, γ2, · · · be real numbers such that 0 < γn ≤ b < 1
for any n ≥ 1. Then F (W ) = ∩∞n=1F (Tn).

Lemma 2.4 ([4]). Let C be a convex and closed subset of a Hilbert space H. Let T1, T2, · · · be nonexpansive
mappings of C into itself such that ∩∞n=1F (Tn) 6= ∅ and γ1, γ2, · · · be a real sequence such that 0 < γn ≤ b < 1
for all n ≥ 1. If K is any bounded subset of C, then

lim
n→∞

sup
x∈K
‖Wx−Wnx‖ = 0.
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The following lemmas are also essential to prove our main results.

Lemma 2.5 ([18]). Assume that B is a strong positive linear bounded operator on a Hilbert space H with
coefficient γ̄ > 0 and ‖B‖−1 ≥ ρ > 0. Then ‖I − ρB‖ ≤ 1− ργ̄.

Lemma 2.6 ([18]). Let H be a Hilbert space, B be a strongly positive linear bounded self-adjoint operator
on H with the coefficient γ̄ > 0. Assume that γ̄/α > γ > 0. Let T : H → H be a nonexpansive mapping
with a fixed point xt of the contraction x 7→ (I − tB)Tx+ tγf(x). Then {xt} converges strongly as t→ 0 to
a fixed point x̄ of T , which solves the variational inequality:

〈x̄− z, f(x̄)− Bx̄

γ
〉 ≥ 0, ∀z ∈ F (T ).

Lemma 2.7 ([16]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn + δn + en,

where {γn} is a sequence in (0, 1), {en} and {δn} are sequences such that

(i)
∑∞

n=1 γn =∞;

(ii)
∑∞

n=1 en <∞;

(iii) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| <∞.

Then limn→∞ αn = 0.

Lemma 2.8 ([10]). Let H be a Hilbert space, C a closed convex subset of H, f : C → C a contraction with
the coefficient α ∈ (0, 1) and B a strongly positive linear bounded operator with the coefficient γ̄ > 0. Then,
for any 0 < γ < γ̄

α ,

〈x− y, (B − γf)x− (B − γf)y〉 ≥ (γ̄ − γα)‖x− y‖2, ∀x, y ∈ C.

That is, B − γf is strongly monotone with coefficient γ̄ − αγ.

Lemma 2.9 ([23]). Let {xn} and {yn} be bounded sequences in a Banach space X and let βn be a sequence
in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = (1 − βn)yn + βnxn for all integers
n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

3. Main results

Now, we are in a position to give our main results in this paper.

Theorem 3.1. Let H be a real Hilbert space and let C be a nonempty convex closed subset of H. Let
{Ti}∞i=1 be a sequence of nonexpansive self mappings on C with a common fixed points. Let f : C → C be
an α-contraction and Let B be a strongly positive linear bounded self-adjoint operator of C into itself with
the coefficient γ̄ > 0. Let A : C → H be a µ-inverse-strongly monotone mapping. Assume that γ̄ > αγ > 0
and F = ∩∞i=1F (Ti) ∩ V I(C,A) 6= ∅. Let {xn} be a sequence generated in the following manner

x1 ∈ C,
yn = WnProjC

(
xn − λnAxn + en

)
,

xn+1 = ProjC

(
(1− αn)βnγf(yn) + αnxn + (1− αn)(I − βnB)yn

)
, ∀n ≥ 1,
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where the mapping Wn is generated in (2.1), {αn}, {βn} are sequences in (0, 1) and {λn} is a sequence in
(0, 2µ) and {en} is a sequence in H. Assume that {αn}, {βn}, {en} and {λn} satisfy 1 > lim supn→∞ αn ≥
lim infn→∞ αn > 0,

∑∞
n=1 βn = ∞,

∑∞
n=1 ‖en‖ < ∞, limn→∞ βn = 0, limn→∞ |λn+1 − λn| = 0, {λn} ⊂

[λ, λ′] for some λ, λ′ with 0 < λ ≤ λ′ < 2µ. Then sequence {xn} converges strongly to some q ∈ F , which
uniquely solves the following variation inequality:

〈Bq − γf(q), q − p〉 ≤ 0, ∀p ∈ F. (3.1)

Equivalently, we have q = ProjF (γf + I −B)q.

Proof. First, we show that mappings I − λnA is nonexpansive. For ∀x, y ∈ C, we have

‖x− y‖2 ≥ ‖x− y‖2 + λn(λn − 2µ)‖Ax−Ay‖2

= ‖x− y‖2 − 2λnµ‖Ax−Ay‖2 + λ2
n‖Ax−Ay‖2

≥ ‖x− y‖2 − 2λn〈Ax−Ay, x− y〉+ λ2
n‖Ax−Ay‖2

= ‖(I − λnA)x− (I − λnA)y‖2, ∀x, y ∈ C.

This shows that I − λnA are nonexpansive. Set

zn = (I − βnB)yn + βnγf(yn).

Without loss of generality, we may that βn ≤ ‖B‖−1 for all n ≥ 1. From Lemma 2.5, we know that, if
0 < βn ≤ ‖B‖−1 for all n ≥ 1, then ‖I − βnB‖ ≤ 1− βnγ̄.

Now, we are in a position to show that sequence {xn} is bounded. Letting p ∈ F , we have

‖yn − p‖ ≤‖ProjC
(
xn − λnAxn + en

)
− p‖

≤‖
(
xn − λnAxn

)
−
(
p− λnAp

)
+ en‖

≤‖xn − p‖+ ‖en‖.

Putting zn = βnγf(yn) + (I − βnB)yn, one has xn+1 = ProjC

(
αnxn + (1− αn)zn

)
. It follows that

‖zn − p‖ =‖βn(γf(yn)−Bp) + (I − βnB)(yn − p)‖
≤βn‖γf(yn)−Bp‖+ ‖I − βnB‖‖yn − p‖
≤βn[γ‖f(yn)− f(p)‖+ ‖γf(p)−Bp‖] + (1− βnγ̄)‖yn − p‖
≤βn[γ‖f(yn)− f(p)‖+ ‖γf(p)−Bp‖] + (1− βnγ̄)‖xn − p‖+ en

≤[1− (γ̄ − γα)βn]‖xn − p‖+ βn‖γf(p)−Bp‖+ en,

which yields that
‖xn+1 − p‖ ≤ αn‖xn − p‖+ (1− αn)‖zn − p‖

≤ αn‖xn − p‖+ (1− αn)[1− (γ̄ − γα)βn]‖xn − p‖
+ (1− αn)βn‖γf(p)−Bp‖+ en.

Since
∑∞

n=1 ‖en‖ <∞, we find from the mathematical induction that sequence {xn} is bounded.
Next, we show that limn→∞ ‖xn+1 − xn‖ = 0. Letting ξn = ProjC

(
xn − λnAxn + en

)
, one finds that

‖ξn+1 − ξn‖ ≤ ‖
(
xn+1 − λn+1Axn+1 + en+1

)
−
(
xn − λnAxn + en

)
‖

≤ ‖
(
xn+1 − λn+1Axn+1 + en+1

)
−
(
xn − λn+1Axn + en

)
‖

+ ‖
(
xn − λn+1Axn + en

)
−
(
xn − λnAxn + en

)
‖

≤ ‖xn+1 − xn‖+ ‖en+1 − en‖+ ‖Axn‖|λn+1 − λn|.

(3.2)
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It follows that

‖yn+1 − yn‖ ≤ ‖Wn+1ξn+1 −Wn+1ξn‖+ ‖Wn+1ξn −Wnξn‖
≤ ‖ξn+1 − ξn‖+ ‖Wn+1ξn −Wnξn‖
≤ ‖xn+1 − xn‖+ ‖en+1 − en‖+ ‖Axn‖|λn+1 − λn|+ ‖Wn+1ξn −Wnξn‖.

(3.3)

Hence, one has

‖zn+1 − zn‖ ≤ ‖I − βn+1B‖‖yn+1 − yn‖+ |βn − βn+1|‖Byn‖
+ βn+1γ‖f(yn+1)− f(yn)‖+ γ|βn+1 − βn|‖f(yn)‖
≤
(
1− βn+1(γ̄ − γα)

)
‖yn+1 − yn‖+ |βn − βn+1|(‖Byn‖+ γ‖f(yn)‖).

(3.4)

Since Ti and Un,i are nonexpansive, we see from (2.1) that

‖Wn+1ξn −Wnξn‖ = ‖γ1T1Un+1,2ξn − γ1T1Un,2ξn‖
≤ γ1‖Un+1,2ξn − Un,2ξn‖
= γ1‖γ2T2Uu+1,3ξn − γ2T2Un,3ξn‖
≤ γ1γ2‖Uu+1,3ξn − Un,3ξn‖
...

≤ γ1γ2 · · · γn‖Un+1,n+1ξn − Un,n+1ξn‖

≤M
n∏
i=1

γi,

(3.5)

where M = supn≥1{‖Un+1,n+1ξn − Un,n+1ξn‖}. Combing (3.3), (3.4) and (3.5), one finds that

‖zn+1 − zn‖ ≤
(
1− βn+1(γ̄ − γα)

)
‖xn+1 − xn‖+ ‖en+1 − en‖+ ‖Axn‖|λn+1 − λn|

+ ‖Wn+1ξn −Wnξn‖+ |βn − βn+1|(‖Byn‖+ γ‖f(yn)‖),
≤
(
1− βn+1(γ̄ − γα)

)
‖xn+1 − xn‖+ ‖en+1 − en‖+ ‖Axn‖|λn+1 − λn|

+M
n∏
i=1

γi + |βn − βn+1|(‖Byn‖+ γ‖f(yn)‖).

(3.6)

This implies

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ ‖en+1 − en‖+ ‖Axn‖|λn+1 − λn|

+M

n∏
i=1

γi + |βn − βn+1|(‖Byn‖+ γ‖f(yn)‖).

Using the restriction imposed on the control sequences, one finds that

lim sup
n→∞

(‖zn − zn+1‖ − ‖xn+1 − xn‖) ≤ 0.

By virtue of Lemma 2.9, we obtain that

lim
n→∞

‖zn − xn‖ = 0. (3.7)

On the other hand, we have ‖xn+1 − xn‖ ≤ (1− αn)‖xn − zn‖. This implies from (3.7) that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.8)
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Notice that ‖zn − yn‖ = βn‖γf(yn)−Byn‖. Since βn → 0 as n→∞, one finds that

lim
n→∞

‖zn − yn‖ = 0. (3.9)

For all p ∈ F , we have

‖ξn − p‖2 = ‖ProjC
(
xn − λnAxn + en

)
− ProjC

(
p− λnAp

)
‖2

≤ ‖(xn − p)− λn(Axn −Ap)‖2 + ‖en‖2 + 2‖en‖‖(xn − p)− λn(Axn −Ap)‖
≤ ‖(xn − p)− λn(Axn −Ap)‖2 + ‖en‖2 + 2‖en‖‖xn − p‖
≤ ‖xn − p‖2 − λn(2µ− λn)‖Axn −Ap‖2 + ‖en‖2 + 2‖en‖‖xn − p‖.

(3.10)

It follows that

‖xn+1 − p‖2 ≤ ‖αn(xn − p) + (1− αn)(zn − p)‖2

= αn‖xn − p‖2 + (1− αn)‖βn(γf(yn)−Bp) + (I − βnB)(yn − p)‖2

≤ αn‖xn − p‖2 + (1− αn)(βn‖γf(yn)−Bp‖+ (1− βnγ̄)‖yn − p‖)2

≤ αn‖xn − p‖2 + (1− αn)βn‖γf(yn)−Bp‖2 + (1− αn)(1− βnγ̄)‖yn − p‖2

+ 2(1− αn)βn‖γf(yn)−Bp‖‖yn − p‖
≤ αn‖xn − p‖2 + (1− αn)βn‖γf(yn)−Bp‖2 + (1− αn)(1− βnγ̄)‖yn − p‖2

+ 2(1− αn)βn‖γf(yn)−Ap‖‖ξn − p‖
≤ ‖xn − p‖2 − (1− αn)(1− βnγ̄)λn(2µ− λn)‖Axn −Ap‖2 + ‖en‖2 + 2‖en‖‖xn − p‖

+ 2βn‖γf(yn)−Ap‖‖ξn − p‖+ βn‖γf(yn)−Bp‖2.

Hence, one has

(1− αn)(1− βnγ̄)λn(2µ− λn)‖Axn −Ap‖2 ≤ (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖
+ ‖en‖2 + 2‖en‖‖xn − p‖
+ 2βn‖γf(yn)−Ap‖‖ξn − p‖+ βn‖γf(yn)−Bp‖2.

This yields that
lim
n→∞

‖Axn −Ap‖ = 0. (3.11)

On the other hand, we have

‖ξn − p‖2 = ‖ProjC(xn − λnAxn + en)− ProjC(p− λnAp)‖2

≤ 〈(xn − λnAxn + en)− (p− λnAp), ξn − p〉

=
1

2

(
‖(I − λnA)xn − (I − λnA)p+ en‖2 + ‖ξn − p‖2

− ‖(I − λnA)xn − (I − λnA)p− (ξn − p) + en‖2
)

≤ 1

2

(
‖(I − λnA)xn − (I − λnA)p‖2 + ‖en‖2 + 2‖en‖‖(I − λnA)xn − (I − λnA)p‖

+ ‖ξn − p‖2 − ‖(xn − ξn)− λn(Axn −Ap) + en‖2
)

≤ 1

2

(
‖xn − p‖2 + 2‖en‖‖xn − p‖+ ‖ξn − p‖2

− ‖xn − ξn‖2 − λ2
n‖Axn −Ap‖2 + 2λn‖xn − ξn‖‖Axn −Ap‖

+ 2‖en‖‖(xn − ξn)− λn(Axn −Ap)‖
)
,
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which yields that

‖ξn − p‖2 ≤ ‖xn − p‖2 + 2‖en‖‖xn − p‖ − ‖xn − ξn‖2 + 2λn‖xn − ξn‖‖Axn −Ap‖
+ 2‖en‖‖(xn − ξn)− λn(Axn −Ap)‖.

(3.12)

Note that

‖xn+1 − p‖2 ≤ ‖αn(xn − p) + (1− αn)(zn − p)‖2

≤ αn‖xn − p‖2 + (1− αn)(βn‖γf(yn)−Bp‖+ (1− βnγ̄)‖yn − p‖)2

≤ αn‖xn − p‖2 + (1− αn)βn‖γf(yn)−Bp‖2 + (1− αn)(1− βnγ̄)‖yn − p‖2

+ 2(1− αn)βn‖γf(yn)−Bp‖‖yn − p‖
≤ αn‖xn − p‖2 + (1− αn)βn‖γf(yn)−Bp‖2 + (1− αn)(1− βnγ̄)‖ξn − p‖2

+ 2(1− αn)βn‖γf(yn)−Ap‖‖ξn − p‖.

(3.13)

Combining (3.12) and (3.13), one has

‖xn+1 − p‖2 ≤ ‖xn − p‖2 + βn‖γf(yn)−Bp‖2 + 2‖en‖‖xn − p‖
− (1− αn)(1− βnγ̄)‖xn − ξn‖2 + 2λn‖xn − ξn‖‖Axn −Ap‖
+ 2‖en‖‖(xn − ξn)− λn(Axn −Ap)‖+ 2βn‖γf(yn)−Ap‖‖ξn − p‖.

Therefore, one has

(1− αn)(1− βnγ̄)‖xn − ξn‖2 ≤ (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖
+ βn‖γf(yn)−Bp‖2 + 2‖en‖‖xn − p‖
+ 2λn‖xn − ξn‖‖Axn −Ap‖+ 2‖en‖‖(xn − ξn)− λn(Axn −Ap)‖
+ 2βn‖γf(yn)−Ap‖‖ξn − p‖.

In view of the restrictions, one obtains
lim
n→∞

‖xn − ξn‖ = 0. (3.14)

Using (3.7), (3.9) and (3.14), one finds

lim
n→∞

‖Wnξn − ξn‖ = 0. (3.15)

Since ‖Wξn − ξn‖ ≤ ‖Wξn −Wnξn‖+ ‖Wnξn − ξn‖, one finds from Lemma 2.4 and (3.15) that

lim
n→∞

‖ξn −Wξn‖ = 0. (3.16)

Next, we prove that the uniqueness of the solution of variational inequality (3.1), which is indeed a
consequence of the strong monotonicity of B − γf . Suppose that x∗ ∈ F and x∗∗ ∈ F both are solutions to
(3.1). Then we have

〈(B − γf)x∗, x∗ − x∗∗〉 ≤ 0

and
〈(B − γf)x∗∗, x∗∗ − x∗〉 ≤ 0.

Adding up the two inequalities, we see that

〈(B − γf)x∗ − (B − γf)x∗∗, x∗ − x∗∗〉 ≤ 0.

The strong monotonicity of B − γf (see Lemma 2.8) implies that x∗ = x∗∗ and the uniqueness is proved.
Let x∗ be the unique solution of (3.1). That is, x∗ = PF (γf + (I −B))x∗.
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Next, we show that lim supn→∞〈γf(q) − Bq, xn − q〉 ≤ 0, where q = PF (γf + (I − B))(q). To see this,
we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈γf(q)−Bq, xn − q〉 = lim
i→∞
〈γf(q)−Bq, xni − q〉. (3.17)

Since {ξni} is bounded, there exists a subsequence {ξnij
} of {ξni} which converges weakly to w. Without

loss of generality, we can assume that ξni ⇀ w.
On the other hand, we see that w ∈ F (W ) = ∩∞i=1F (Ti). If w 6= Ww, then we have the following. Since

Hilbert spaces are Opial′s spaces, we find from (3.16) that

lim inf
i→∞

‖ξni − w‖ < lim inf
i→∞

‖ξni −Ww‖

= lim inf
i→∞

‖ξni −Wξni +Wξni −Ww‖

≤ lim inf
i→∞

‖Wξni −Ww‖

≤ lim inf
i→∞

‖ξni − w‖,

which derives a contradiction. Thus, we have w ∈ ∩∞i=1F (Ti). Now, we are in a position to show that
w ∈ V I(C,A). Put Sξ = NC + Aξ, ξ ∈ C and Sξ = ∅, ξ /∈ C. Since A is a monotone operator, we see that
S is also a maximal monotone operator. Let (ξ, ξ′) ∈ Graph(S). Since ξ′ −Aξ ∈ NCξ and ξn ∈ C, we have

〈ξ − ξn, ξ′ −Aξ〉 ≥ 0.

On the other hand, we have from ξn = ProjC(xn − λnAxn + en) that

〈ξ − ξn, ξn − (I − λnA)xn − en〉 ≥ 0.

That is,

〈ξ − ξn,
ξn − xn
λn

+Axn −
en
λn
〉 ≥ 0.

It follows from the above that

〈ξ − ξni , ξ
′〉 ≥ 〈ξ − ξni , Aξ〉

≥ 〈ξ − ξni , Aξ −
ξni − xni

λni

−Axni +
eni

λni

〉

= 〈ξ − ξni , Aξ −Aξni〉+ 〈ξ − ξni , Aξni −Axni〉

− 〈ξ − ξni ,
ξni − xni

λni

− eni

λni

〉

≥ 〈ξ − ξni , Aξni −Axni〉 − 〈ξ − ξni ,
ξni − xni

λni

− eni

λni

〉,

which implies from (3.14) that 〈ξ−w, ξ′〉 ≥ 0. We have w ∈ S−10 and hence w ∈ V I(C,A). This completes
the proof w ∈ F. Using (3.17), one gets that

lim sup
n→∞

〈γf(q)−Bq, xn − q〉 ≤ 0. (3.18)

Note that
‖yn − q‖2 ≤ ‖ProjC

(
xn − λnAxn + en

)
− q‖2

≤ (‖
(
xn − λnAxn

)
−
(
q − λnAq

)
‖+ ‖en‖)2

≤ ‖xn − q‖2 + νn,
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where νn = ‖en‖(‖en‖+ 2‖xn − q‖). It follows that

‖zn − q‖2 = ‖(I − βnB)(yn − q) + βn(γf(yn)−Bq)‖2

≤ ‖(I − βnB)(yn − q)‖2 + 2βn〈γf(yn)−Bq, zn − q〉
≤ (1− βnγ̄)2(‖xn − q‖2 + νn) + 2βn〈γf(yn)−Bq, zn − q〉
≤ (1− βnγ̄)2‖xn − q‖2 + 2βnγ〈f(yn)− f(q), zn − q〉

+ 2βn〈γf(q)−Bq, zn − q〉+ νn

≤ (1− βnγ̄)2‖xn − q‖2 + 2βnγα‖yn − q‖‖zn − q‖
+ 2βn〈γf(q)−Bq, zn − q〉+ νn

≤ (1− βnγ̄)2‖xn − q‖2 + βnγα(‖yn − q‖2 + ‖zn − q‖2)

+ 2βn〈γf(q)−Bq, zn − q〉+ νn

≤ (1− βnγ̄)2‖xn − q‖2 + βnγα(‖xn − q‖2 + ‖zn − q‖2)

+ 2βn〈γf(q)−Bq, zn − q〉+ νn(1 + βnγα),

which implies that

‖zn − q‖2 ≤
(1− βnγ̄)2 + βnγα

1− βnγα
‖xn − q‖2 +

2βn
1− βnγα

〈γf(q)−Bq, zn − q〉+ νn(1 + βnγα)

=
(1− 2βnγ̄ + βnαγ)

1− βnγα
‖xn − q‖2 +

β2
nγ̄

2

1− βnγα
‖xn − q‖2

+
2βn

1− βnγα
〈γf(q)−Bq, zn − q〉+ νn(1 + βnγα)

≤
(
1− 2βn(γ̄ − αγ)

1− βnγα
)
‖xn − q‖2 +

2βn(γ̄ − αγ)

1− βnγα

( 1

γ̄ − αγ
〈γf(q)−Bq, zn − q〉+

βnγ̄
2

2(γ̄ − αγ)
K
)

+ νn(1 + βnγα),

where M = supn≥1{‖xn − q‖2}. This yields that

‖xn+1 − p‖2 ≤
(

1− (1− αn)
2βn(γ̄ − αγ)

1− βnγκ

)
‖xn − q‖2

+ (1− αn)
2βn(γ̄ − αγ)

1− βnγα

( 1

γ̄ − αγ
〈γf(q)−Bq, zn − q〉+

βnγ̄
2

2(γ̄ − αγ)
K
)

+ νn(1 + βnγα).

(3.19)

Let λn = (1− αn)2βn(γ̄−αγ)
1−βnαγ and

tn =
1

γ̄ − αγ
〈γf(q)−Bq, zn − q〉+

βnγ̄
2

2(γ̄ − αγ)
K.

This implies that
‖xn+1 − q‖2 ≤ (1− λn)‖xn − q‖2 + λntn + νn(1 + βnγα).

In view of the restriction, we find that limn→∞ λn = 0,
∑∞

n=1 λn = ∞,
∑∞

n=1 νn(1 + βnγα) < ∞, and
lim supn→∞ tn ≤ 0. Using (2.7), one obtain the desired conclusion immediately. The proof is completed.

Taking γ = 1 and B = I (the identity mapping) in Theorem 3.1, we have the following results.
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Corollary 3.2. Let H be a real Hilbert space and let C be a nonempty convex closed subset of H. Let
{Ti}∞i=1 be a sequence of nonexpansive self mappings on C with a common fixed points. Let f : C → C
be an α-contraction and let A : C → H be a µ-inverse-strongly monotone mapping. Assume that F =
∩∞i=1F (Ti) ∩ V I(C,A) 6= ∅. Let {xn} be a sequence generated in the following manner

x1 ∈ C,
yn = WnProjC

(
xn − λnAxn + en

)
,

xn+1 = (1− αn)βnf(yn) + αnxn + (1− αn)(1− βn)yn, ∀n ≥ 1,

where the mapping Wn is generated in (2.1), {αn}, {βn} are sequences in (0, 1) and {λn} is a sequence in
(0, 2µ) and {en} is a sequence in H. Assume that {αn}, {βn}, {en} and {λn} satisfy 1 > lim supn→∞ αn ≥
lim infn→∞ αn > 0,

∑∞
n=1 βn = ∞,

∑∞
n=1 ‖en‖ < ∞, limn→∞ βn = 0, limn→∞ |λn+1 − λn| = 0, {λn} ⊂

[λ, λ′] for some λ, λ′ with 0 < λ ≤ λ′ < 2µ. Then sequence {xn} converges strongly to some q ∈ F ,
which uniquely solves the following variation inequality: 〈q− f(q), q− p〉 ≤ 0, ∀p ∈ F. Equivalently, we have
q = ProjF (f)q.

Corollary 3.3. Let H be a real Hilbert space and let C be a nonempty convex closed subset of H. Let
{Ti}∞i=1 be a sequence of nonexpansive self mappings on C with a common fixed points. Let f : C → C be an
α-contraction. Assume that F = ∩∞i=1F (Ti) 6= ∅. Let {xn} be a sequence generated in the following manner

x1 ∈ C, xn+1 = ProjC

(
(1− αn)βnf(yn) + αnxn + (1− αn)(1− βn)Wnxn

)
, ∀n ≥ 1,

where the mapping Wn is generated in (2.1), {αn}, {βn} are sequences in (0, 1). Assume that {αn}, {βn},
satisfy 1 > lim supn→∞ αn ≥ lim infn→∞ αn > 0,

∑∞
n=1 βn = ∞, limn→∞ βn = 0. Then sequence {xn}

converges strongly to some q ∈ F , which uniquely solves the following variation inequality:

〈q − f(q), q − p〉 ≤ 0, ∀p ∈ F.

Equivalently, we have q = ProjF (f)q.

Finally, we consider another class of important nonlinear operator: strict pseudo-contractions.

Recall that a mapping T : C → C is said to be a k-strict pseudo-contraction if there exists a constant
k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C.

Note that the class of k-strict pseudo-contractions strictly includes the class of nonexpansive mappings.
Put A = I − T , where T : C → C is a k-strict pseudo-contraction. It is clear that A is 1−k

2 -inverse-strongly
monotone.

Theorem 3.4. Let H be a real Hilbert space and let C be a nonempty convex closed subset of H. Let
{Ti}∞i=1 be a sequence of nonexpansive self mappings on C with a common fixed points. Let f : C → C
be an α-contraction and Let B be a strongly positive linear bounded self-adjoint operator of C into itself
with the coefficient γ̄ > 0. Let T be a k-strict pseudo-contraction. Assume that γ̄ > αγ > 0 and F =
∩∞i=1F (Ti) ∩ F (T ) 6= ∅. Let {xn} be a sequence generated in the following manner

x1 ∈ C,
yn = Wn((1− λn)xn + λnTxn),

xn+1 = ProjC

(
(1− αn)βnγf(yn) + αnxn + (1− αn)(I − βnB)yn

)
, ∀n ≥ 1,

where the mapping Wn is generated in (2.1), {αn}, {βn} are sequences in (0, 1) and {λn} is a sequence in
(0, 2µ) and {en} is a sequence in H. Assume that {αn}, {βn}, {en} and {λn} satisfy 1 > lim supn→∞ αn ≥
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lim infn→∞ αn > 0,
∑∞

n=1 βn = ∞,
∑∞

n=1 ‖en‖ < ∞, limn→∞ βn = 0, limn→∞ |λn+1 − λn| = 0, {λn} ⊂
[λ, λ′] for some λ, λ′ with 0 < λ ≤ λ′ < 2(1 − k). Then sequence {xn} converges strongly to some q ∈ F ,
which uniquely solves the following variation inequality:

〈Bq − γf(q), q − p〉 ≤ 0, ∀p ∈ F.

Equivalently, we have q = ProjF (γf + I −B)q.

Proof. Put A = I − T . Then A is 1−k
2 -inverse-strongly monotone. We have

F (T ) = V I(C,A), P rojC(I − λnA)xn = (1− λn)xn + λnTxn.

Using Theorem 3.1, we easily conclude the desired conclusion. This completes the proof.
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