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Abstract
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1. Introduction and Preliminaries

Banach contraction principle was introduced in 1922 by Banach [3]. In 2001, Rhoades [7] introduced
weakly contractive as follows:
(i) A mapping T : X → X is said to be a weakly contractive if for all x, y ∈ X,

d(Tx, Ty) ≤ d(x, y)− φ(d(x, y)),

where φ : [0,∞)→ [0,∞) is a continuous and nondecreasing function such that φ(t) = 0 if and only if t = 0.
If one takes φ(t) = (1− k)t, where 0 < k < 1, a weak contraction reduces to a Banach contraction.
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Now, we recall the definition of cyclic map. Let A and B be nonempty subsets of a metric space (X, d)
and T : A ∪B → A ∪B, then T is called a cyclic map iff T (A) ⊆ B and T (B) ⊆ A. In 2003, Kirk et al. [4]
introduced cyclic contraction as follows:
(ii) A cyclic map T : A ∪B → A ∪B is said to be a cyclic contraction if there exists a ∈ [0, 1) such that

d(Tx, Ty) ≤ ad(x, y)

for all x ∈ A and y ∈ B.
In 2013, K. Zoto [9] introduced d-cyclic-φ-contraction follows:

(iii) A cyclic map T : A ∪B → A ∪B is said to be a d-cyclic-φ-contraction if φ ∈ Φ such that

d(Tx, Ty) ≤ φ(d(x, y))

for all x ∈ A, y ∈ B, where Φ the family of non-decreasing functions: φ : [0,∞) → [0,∞) such that∑∞
n=1 φ

n(t) <∞ for each t > 0, where n is the n-th iterate of φ.

Lemma 1.1. Suppose that the function φ : [0,∞) → [0,∞) is non-decreasing, then for each t > 0,
limn→∞ φ

n(t) = 0 implies φ(t) < t.

If (X, d) is complete metric spaces, at least one of (i), (ii) and (iii) holds, then T has a unique fixed
point (see[7]-[9]). Recently, Klin-eam and Suanoom [5] introduced dislocated quasi b-metric spaces, which
is a new generalization of quasi b-metric space (see[8]), b-metric-like space (see[1]), b-metric space (see[2]),
metric space, etc. as follows:

Definition 1.2 ([5]). Let X be a nonempty set. Suppose that the mapping d : X ×X → [0,∞) such that
constant s ≥ 1 satisfies the following conditions:

(d1) d(x, y) = d(y, x) = 0 implies x = y for all x, y ∈ X;
(d2) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X.

The pair (X, d) is then called a dislocated quasi b-metric space (or simply dqb-metric). The number s is
called to be the coefficient of (X, d).

Remark 1.3. When, in addition, the conditions d(x, y) = d(y, x) and d(x, x) = 0 are true, then d is a
b-metric.

Definition 1.4. Let {xn} be a sequence in a dqb-metric space (X, d).

(1) A sequence {xn} dislocated quasi-b-converges (for short, dqb-converges) to x ∈ X if

lim
n→∞

d(xn, x) = 0 = lim
n→∞

d(x, xn).

In this case x is called a dqb-limit of {xn} and we write (xn → x).

(2) A sequence {xn} is called dislocated quasi-b-Cauchy (for short, dqb-Cauchy), if

lim
n,m→∞

d(xn, xm) = 0 = lim
n,m→∞

d(xm, xn).

(3) A dqb-metric space (X, d) is complete if every dqb-Cauchy sequence is dqb-convergent in X.

Moreover, they introduced the notion of dqb-cyclic-Banach and dqb-cyclic-Kannan mapping and derive the
existence of fixed point theorems for such space.

In this paper, we study the properties of dislocated quasi-b-metric spaces and introduce dqb-cyclic-weak
Banach contraction, dqb-cyclic-φ-contraction and derive the existence of fixed point theorems in dislocated
quasi-b-metric spaces. Our main theorem extends and unifies existing results in the recent literature.
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2. Main results

Every dislocated quasi-b-metric space (X, d) can be considered as a topological space on which the
topology is introduced by taking, for any x ∈ X, the collection {Br(x)|r > 0} as a base of the neighborhood
filter of the point x. Here the ball Br(x) is defined by the equality Br(x) = {y ∈ X|max{d(x, y), d(y, x)} <
r}.

Definition 2.1 ([6]). Let X be topological space. Then X is said to be Hausdorff topological space if for
any distinct points x, y ∈ X, there exists two open sets G and H such that x ∈ G, y ∈ H and G ∩H = ∅.

Proposition 2.2. Every dqb-metric space is Hausdorff topological space.

Proof. Let x and y be two distinct points in X. Then d(x, y) > 0 and d(y, x) > 0. Choose δ = d(x,y)
2s . Then,

there exists
Bδ(x) = {z ∈ X|max{d(x, z), d(z, x)} < δ}

and
Bδ(y) = {z ∈ X|max{d(y, z), d(z, y)} < δ}

such that x ∈ Bδ(x) and y ∈ Bδ(y).
To show that Bδ(x)∩Bδ(y) = ∅, suppose that Bδ(x)∩Bδ(y) 6= ∅. Then, there exists z ∈ Bδ(x)∩Bδ(y).

We have

d(x, y) ≤ sd(x, z) + sd(z, y)

≤ smax{d(x, z), d(z, x)}+ smax{d(y, z), d(z, y)}
< sδ + sδ = d(x, y).

So, d(x, y) < d(x, y) which is a contradiction. Therefore Bδ(x) ∩Bδ(y) = ∅.

Proposition 2.3. Every dqb-convergent sequence in a dqb-metric space (X, d) is dqb-Cauchy sequence.

Proof. Suppose that {xn} is dqb-convergent. Then there exists x ∈ X such that xn → x, that is

lim
n→∞

d(xn, x) = 0 = lim
n→∞

d(x, xn).

Consider,
d(xn, xm) ≤ sd(xn, x) + sd(x, xm).

Taking limit as n,m→∞ we obtain
lim

n,m→∞
d(xn, xm) = 0.

Similarly,
lim

n,m→∞
d(xm, xn) = 0.

Therefore {xn} is dqb-Cauchy.

Definition 2.4. A subset S of a dqb-metric space (X, d) is bounded if there exists x̄, M ∈ (0,∞) such that
d(x, x̄) ≤M for all x ∈ S.

Proposition 2.5. Every dqb-convergent sequence in a dqb-metric space (X, d) is bounded sequence.

Proof. Suppose that {xn} is dqb-convergent. Then there exists x ∈ X such that xn → x, that is

lim
n→∞

d(xn, x) = 0 = lim
n→∞

d(x, xn).

Let ε = 1. Then there exists n0 ∈ N such that d(xn, x) < ε and d(x, xn) < ε for all n ≥ n0. Choose

K = max{d(x1, x), d(x2, x), ..., d(xn0−1, x), 1}.

Thus, d(xn, x) ≤ K for all n ∈ N and so {xn} is bounded sequence.
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Proposition 2.6. Every dqb-Cauchy sequence in a dqb-metric space (X, d) is bounded sequence.

Proof. Suppose that {xn} is dqb-Cauchy. Then

lim
n→∞

d(xn, xm) = 0 = lim
n→∞

d(xm, xn).

Let ε = 1. Then there exists n0 ∈ N such that d(xn, xm) < 1 and d(xm, xn) < 1 for all n,m ≥ n0. Let p be
any point in the space and let

k = max
i≤m

d(xi, p).

The maximum exists, since {xi : i ≤ m} is a finite set. If n ≤ m, then d(xn, p) ≤ k. If n > m, then
d(xn, p) ≤ d(xn, xm) + d(xm, p) ≤ 1 + k for all n ∈ N. Therefore {xn} is bounded sequence.

The next two propositions for subsequence follow immediately from definitions of dqb-convergent se-
quence and dqb-Cauchy sequence respectively.

Proposition 2.7. Every subsequence of dqb-convergent sequence in a dqb-metric space (X, d) is dqb-conver-
gent sequence.

Proposition 2.8. Every subsequence of dqb-Cauchy sequence in a dqb-metric space (X, d) is dqb-Cauchy
sequence.

Proposition 2.9. Let {xn} be sequence in a dqb-metric space (X, d). Then xn → x if and only if d(xn, x)→
0 and d(x, xn)→ 0.

Proof. Suppose that xn → x. Then

lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = 0.

Thus d(xn, x)→ 0 and d(x, xn)→ 0.
Conversely, Suppose that d(xn, x)→ 0 and d(x, xn)→ 0. Then

lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = 0.

By definition of dqb-convergent sequence, we get xn → x.

Proposition 2.10. Let {xn} be sequence in a dqb-metric space (X, d). If xn → x and xn → y, then x = y.

Proof. Suppose that xn → x and xn → y. Then

lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = lim
n→∞

d(xn, y) = lim
n→∞

d(y, xn) = 0.

Consider,
0 ≤ d(x, y) ≤ sd(x, xn) + sd(xn, y)

and
0 ≤ d(y, x) ≤ sd(y, xn) + sd(xn, x).

Taking limit as n,m→∞, we obtain
d(x, y) = d(y, x) = 0.

Therefore x = y.

Now, we begin with introducing the property of a continuous function.

Definition 2.11. Suppose that (X, dX) and (Y, dY ) are dislocated quasi-b-metric spaces, E ⊂ X , f : E →
Y and p ∈ E. Then f is continuous at p iff for all ε > 0 there exists δ > 0 such that

max{dY (fx, fp), dY (fp, fx)} < ε

for all x ∈ E, when max{dX(x, p), dX(p, x)} < δ.
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Theorem 2.12. Let (X, dX) and (X, dY ) be dislocated quasi-b-metric spaces, E ⊂ X , f : E → Y and
p ∈ E. Then f is continuous at p if and only if for every dislocated quasi-b-converges sequence {xn} in X,
limn→∞ fxn = fx.

Proof. Suppose that f is continuous at p and {xn} converges to p. Let ε > 0. Then there exists δ > 0 such
that max{dY (fx, fp), dY (fp, fx)} < ε , when max{dX(x, p), dX(p, x)} < δ for all x ∈ E.

Since {xn} converges to p, there exists N ∈ N such that max{dX(xn, p), dY (p, xn)} < δ for all n ≥ N.
Since f is continuous at p, we have max{dY (fxn, fp), dY (fp, fxn)} < ε, for all n ≥ N.

Hence limn fxn = fx.
Conversely, let x ∈ X and assume in the contrary that

∃ε > 0 ∀δ > 0 : max{dX(x, p), dX(p, x)} < δ,max{dY (fx, fp), dY (fp, fx)} ≥ ε.

Applying these successively for all δ = 1
k , we find a sequence {xk} such that max{dX(xk, p), dX(p, xk)} < 1

k

and max{dY (fxk, fp), dY (fp, fxk)} ≥ ε
′
. Thus

lim
k→∞

xk = p.

By assumption, we have
lim
k→∞

fxk = fp.

Hence, there exists a k0 such that for all k > k0

max{dY (fxk, fp), dY (fp, fxk)} < ε,

which is a contradiction.

Definition 2.13. Suppose that (X, dX) and (Y, dY ) are dislocated quasi-b-metric spaces, E ⊂ X , f : E →
Y and p ∈ E. Then f is continuous on E iff f is continuous at p for all p ∈ E.

Next, we begin with prove fixed point theorems.

Definition 2.14. Let A and B be nonempty closed subsets of a dislocated quasi-b-metric spaces (X, d). A
cyclic map T : A ∪ B → A ∪ B is said to be a dqb-cyclic-weak contraction or dqb-cyclic-weakly contraction
if for all x ∈ A, y ∈ B,

sd(Tx, Ty) ≤ d(x, y)− ψ(d(x, y)), (2.1)

where ψ : [0,∞)→ [0,∞) is a continuous and nondecreasing function such that ψ(t) = 0 if and only if t = 0.

Lemma 2.15. Let (X, dX) and (Y, dY ) be dislocated quasi-b-metric spaces and A and B be nonempty closed
subsets of a dislocated quasi-b-metric spaces (X, d). Consider a cyclic map T : A ∪ B → A ∪ B. If T is
dqb-cyclic-weak contraction, then T is continuous.

Proof. Let ε > 0, all x ∈ A ∪ B and fixed p ∈ A ∪ B. Suppose that max{dX(x, p), dC(p, x)} < δ. Choose
ε = δ

s . Since T is dqb-cyclic-weak contraction, we have

sd(Tx, Tp) ≤ d(x, p)− ψ(d(x, p))

≤ d(x, p) < δ

and

sd(Tp, Tx) ≤ d(p, x)− ψ(d(p, x))

≤ d(p, x) < δ.

So, d(Tx, Tp) < ε and d(Tp, Tx) < ε. Thus T is continuous at p and hence T is continuous on A ∪B.
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Now, we present a fixed point theorem related to dqb-cyclic-weak contraction.

Theorem 2.16. Let A and B be nonempty subsets of a complete dislocated quasi-b-metric space (X, d). Let
T be a cyclic mapping that satisfies the condition a dqb-cyclic-weak contraction. Then, T has a unique fixed
point in A ∩B.

Proof. Let x ∈ A be fixed. Using contractive condition in assumptions, we have

d(T 2x, Tx) ≤ sd(T 2x, Tx)

= sd(T (Tx), Tx)

≤ d(Tx, x)− ψ(d(Tx, x)),

≤ d(Tx, x)

(2.2)

and

d(Tx, T 2x) ≤ sd(Tx, T 2x)

= sd(Tx, T (Tx))

≤ d(x, Tx)− ψ((x, Tx)),

≤ d(x, Tx).

(2.3)

So

d(T 3x, T 2x) ≤ d(T 2x, Tx)− ψ(d(T 2x, Tx)) (2.4)

and

d(T 2x, T 3x) ≤ d(Tx, T 2x)− ψ(d(Tx, T 2x)). (2.5)

For all n ∈ N, we get

d(Tn+2x, Tn+1x) ≤ d(Tn+1x, Tnx)− ψ(d(Tn+1x, Tnx)) (2.6)

and

d(Tn+1x, Tn+2x) ≤ d(Tnx, Tn+1x)− ψ(d(Tnx, Tn+1x)). (2.7)

Set ςn = d(Tn+1x, Tnx) and τn = d(Tnx, Tn+1x). By inequalities (2.6) and (2.7), we get

ςn+1 ≤ ςn − ψ(ςn) ≤ ςn (2.8)

and

τn+1 ≤ τn − ψ(τn) ≤ τn. (2.9)

Thus {ςn} and {τn} are decreasing sequences of non-negative real numbers, and hence possess a limn→∞ ςn =
ς ≥ 0 and limn→∞ τn = τ ≥ 0. Suppose that ς > 0. Since ψ is nondecreasing, ψ(ςn) ≥ ψ(ς) > 0. By inequality
(2.8), we have ςn+1 ≤ ςn − ψ(ς). Thus ςN+m ≤ ςm −Nψ(ς), a contradiction for N large enough. Therefore
ς = 0.

Similarly, τ = 0.
Next, we prove that {Tnx} is a Cauchy sequence. Suppose that {Tnx} is not Cauchy, then there

exist ε > 0 and subsequence {Tmkx} and {Tnkx} with mk > nk ≥ n such that d(Tmkx, Tnkx) ≥ ε and
d(Tmk−1x, Tnkx) < ε. Now, we consider

sd(Tmkx, Tnkx) ≤ d(Tmk−1x, Tnk−1x)− ψ(d(Tmk−1x, Tnk−1x))

≤ d(Tmk−1x, Tnk−1x),
(2.10)
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which implies that

sε ≤ d(Tmk−1x, Tnk−1x). (2.11)

Take limit inferior in (2.11) as k →∞, we get

εs ≤ lim inf d(Tmk−1x, Tnk−1x). (2.12)

We have

d(Tmk−1x, Tnk−1x) ≤ sd(Tmk−1x, Tnkx) + sd(Tnkx, Tnk−1x)

< sε+ sd(Tnkx, Tnk−1x).
(2.13)

Take limit superior in (2.13) as k →∞, we get

lim sup d(Tmk−1x, Tnk−1x) ≤ sε. (2.14)

By (2.12) and (2.14), we get

lim d(Tmk−1x, Tnk−1x) = sε. (2.15)

Letting k →∞ in (2.10), by property of ψ and (2.15), we get

sε ≤ sε− ψ(sε) < sε, (2.16)

which is a contradiction. Hence {Tnx} is a dqb-Cauchy sequence. Since (X, d) is complete, we have {Tnx}
converges to some z ∈ X. We note that, {T 2nx} is a sequence in A and {T 2n−1x} is a sequence in B in a
way that both sequences tend to same limit z. Since A and B are closed, we have z ∈ A ∩ B and hence
A ∩ B 6= Ø. The continuity of T implies that the limit is a fixed point. Finally, to prove the uniqueness of
fixed point, let z∗ ∈ X be another fixed point of T such that Tz∗ = z∗. Then, we have

d(z, z∗) = d(Tz, Tz∗) ≤ sd(Tz, Tz∗) ≤ d(z, z∗)− ψ(d(z, z∗)) ≤ d(z, z∗). (2.17)

On the other hand,

d(z∗, z) = d(Tz∗, T z) ≤ sd(Tz∗, T z) ≤ d(z∗, z)− ψ(d(z, z∗)) ≤ d(z∗, z). (2.18)

By forms (2.17) and (2.18), we obtain that d(z, z∗) = d(z∗, z) = 0, this implies that z∗ = z. Therefore z is a
unique fixed point of T . This completes the proof.

Example 2.17. Let X = [−1, 1] and T : A ∪ B → A ∪ B be defined by Tx = −x
3 and ψ(t) = t

50 . Suppose
that A = [−1, 0] and B = [0, 1]. Defined the function d : X2 → [0,∞) by

d(x, y) = |x− y|2 +
|x|
10

+
|y|
11
.

We see that d is a dislocated quasi-b-metric on X (see[[5]]).
Let x ∈ A. Then −1 ≤ x ≤ 0. So, 0 ≤ −x

3 ≤
1
3 . Thus, Tx ∈ B. On the other hand, let x ∈ B. Then

0 ≤ x ≤ 1. So, −13 ≤
−x
3 ≤ 0. Thus, Tx ∈ A.

Hence, the map T is cyclic on X, because T (A) ⊂ B and T (B) ⊂ A.
Next, we consider

2d(Tx, Ty) = 2(|Tx− Ty|2 +
1

10
|Tx|+ 1

11
|Ty|)

= 2(|−x
3
− −y

3
|2 +

1

10
|−x

3
|+ 1

11
|−y

3
|)
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=
49

50
(
100

441
|x− y|2 +

50

1470
|x|+ 100

539
|y|)

≤ 49

50
(|x− y|2 +

1

10
|x|+ 1

11
|y|)

= |x− y|2 +
1

10
|x|+ 1

11
|y| − ψ(|x− y|2 +

1

10
|x|+ 1

11
|y|)

= d(x, y)− ψ(d(x, y)).

Thus, T satisfies dqb-cyclic-weak contraction of Theorem 2.16 and 0 is the unique fixed point of T.

Definition 2.18. Let A and B be nonempty subsets of a dislocated quasi-b-metric spaces. (X, d). A cyclic
map T : A∪B → A∪B is said to be a dqb-cyclic-φ-contraction and if there exists k ∈ [0, 1) and s ≥ 1 such
that

sd(Tx, Ty) ≤ φ(d(x, y)) (2.19)

for all x ∈ A, y ∈ B, where Φ the family of non-decreasing functions: φ : [0,∞) → [0,∞) such that∑∞
n=1 φ

n(t) <∞ for each t > 0, where n is the n-th iterate of φ.

Theorem 2.19. Let A and B be nonempty closed subsets of a complete dislocated quasi-b-metric space
(X, d). Let T be a cyclic mapping that satisfies the condition a dqb-cyclic-φ-contraction. Then, T has a
unique fixed point in A ∩B.

Proof. Let x ∈ A be fixed, then using contractive condition of theorem, we have

sd(T 2x, Tx) = sd(T (Tx), Tx)

≤ φ(d(Tx, x))

and

sd(Tx, T 2x) = sd(Tx, T (Tx))

≤ φ(d(x, Tx)).

Inductively, we have for all n ∈ N, we get

snd(Tn+1x, Tnx) ≤ φn(d(Tx, x))

and
snd(Tnx, Tn+1x) ≤ φn(d(x, Tx)).

Let ε > 0 be fixed and n(ε) ∈ N, such that

Σn≥n(ε)φ
n(d(Tx, x)) < ε

and
Σn≥n(ε)φ

n(d(x, Tx)) < ε.

Let n,m ∈ N with m > n > n(ε), using the triangular inequality, we have:

d(Tmx, Tnx) ≤ sm−nd(Tmx, Tm−1x) + sm−n−1d(Tm−1x, Tm−2x) + ...+ sd(Tn+1x, Tnx)

≤ sm−1d(Tmx, Tm−1x) + sm−2d(Tm−1x, Tm−2x) + ...+ snd(Tn+1x, Tnx)

≤ φm−1(d(Tx, x)) + φm−2(d(Tx, x)) + φm−3(d(Tx, x)) + ...+ φn(d(Tx, x))

= Σm−1
k=n φ

k(d(x, Tx))

≤ Σn≥n(ε)φ
n(d(x, Tx)) < ε.
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Similarly,

d(Tnx, Tmx) < ε.

Thus {Tnx} is a Cauchy sequence. Since(X, d) is complete, we have {Tnx} converges to some z ∈ X. We
note that {T 2nx} is a sequence in A and {T 2n−1x} is a sequence in B in a way that both sequences tend to
same limit z. Since A and B are closed, we have z ∈ A ∩ B and then A ∩ B 6= Ø. Now, we will show that
Tz = z. By using (2.19), consider

d(z, Tz) ≤ sd(z, T 2nx) + sd(T 2nx, Tz)

≤ sd(z, T 2nx) + d(T 2n−1x, z).

Taking limit as n→∞ in above inequality, we have

d(z, Tz) = 0.

Similarly considering form (2.19), we get

d(Tz, z) ≤ sd(Tz, T 2nx) + sd(T 2nx, z)

≤ d(z, T 2n−1x) + sd(T 2nx, z).

Taking limit as n→∞ in above inequality, we have

d(Tz, z) = 0.

Hence d(z, Tz) = d(Tz, z) = 0. This implies that Tz = z that is z is a fixed point of T.
Finally, to prove the uniqueness of fixed point, let z∗ ∈ X be another fixed point of T such that Tz∗ = z∗.

Then, we have

d(z∗, z) ≤ sd(Tz∗, Tnx) + sd(Tnx, Tz) ≤ φ(d(Tz∗, Tnx)) + φ(d(Tnx, Tz)) (2.20)

and on the other hand,

d(z, z∗) ≤ sd(Tz, Tnx) + sd(Tnx, Tz∗) ≤ φ(d(Tz, Tnx)) + φ(d(Tnx, Tz∗)). (2.21)

Letting n → ∞ we obtain that d(z, z∗) = d(z∗, z) = 0, which implies that z∗ = z. Therefore z is a unique
fixed point of T . This completes the proof.

Example 2.20. Let X = [−1, 1] and T : A∪B → A∪B be defined by Tx = −x
5 . Suppose that A = [−1, 0]

and B = [0, 1]. Defined the function d : X2 → [0,∞) by

d(x, y) = |x− y|2 +
|x|
10

+
|y|
11
.

We see that d is a dislocated quasi-b-metric on X, where s = 2. Let x ∈ A. Then −1 ≤ x ≤ 0. So, 0 ≤ −x5 ≤
1
5 .

Thus, Tx ∈ B. On the other hand, let x ∈ B. Then 0 ≤ x ≤ 1. So, −15 ≤
−x
5 ≤ 0. Thus, Tx ∈ A.

Hence the map T is cyclic on X, because T (A) ⊂ B and T (B) ⊂ A.
Next, we consider

sd(Tx, Ty) = 2d(Tx, Ty)

= 2(|Tx− Ty|2 +
1

10
|Tx|+ 1

11
|Ty|)

= 2(|−x
5
− −y

5
|2 +

1

10
|−x

5
|+ 1

11
|−y

5
|)
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=
2

3
(

3

25
|x− y|2 +

3

50
|x|+ 3

55
|y|)

≤ 2

3
(|x− y|2 +

5

50
|x|+ 5

55
|y|)

=
2

3
(|x− y|2 +

1

10
|x|+ 1

11
|y|)

= φ(d(x, y)),

where the function φ ∈ Φ is φ(t) = 2t
3 . Clearly, 0 is the unique fixed point of T.

The following corollary can be taken as a particular case of Theorem 2.19 if we take φ(t) = kt for all t ≥ 0
and some k ∈ [0, 1). That is the dqb-cyclic-Banach contraction, in the setting of dislocated quasi-b-metric
spaces.

Corollary 2.21. Let A and B be nonempty closed subsets of a complete dislocated quasi-b-metric space
(X, d). Let T be a cyclic mapping that satisfies the condition a dqb-cyclic-Banach contraction; that is, if
there exists k ∈ [0, 1) such that

d(Tx, Ty) ≤ kd(x, y) (2.22)

for all x ∈ A, y ∈ B and s ≥ 1 and sk ≤ 1. Then, T has a unique fixed point in A ∩B.
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