Research Article

Journal of Nonlinear Science and Applications Print: ISSN 2008-1898 Online: ISSN 2008-1901

Dislocated quasi-b-metric spaces and fixed point theorems for cyclic weakly contractions

Cholatis Suanoom^a, Chakkrid Klin-eam^{a,b,*}, Suthep Suantai^c

^aDepartment of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand. ^bResearch Center for Academic Excellence in Mathematics, Naresuan University, Phitsanulok, 65000, Thailand. ^cDepartment of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.

Communicated by R. Saadati

Abstract

In this paper, we introduce the notions of type dqb-cyclic-weak Banach contraction, dqb-cyclic- ϕ contraction and derive the existence of fixed point theorems on dislocated quasi-b-metric spaces. Our
main theorem extends and unifies existing results in the recent literature. ©2016 All rights reserved.

1. Introduction and Preliminaries

Banach contraction principle was introduced in 1922 by Banach [3]. In 2001, Rhoades [7] introduced weakly contractive as follows:

(i) A mapping $T: X \to X$ is said to be a *weakly contractive* if for all $x, y \in X$,

$$d(Tx, Ty) \le d(x, y) - \phi(d(x, y)),$$

where $\phi : [0, \infty) \to [0, \infty)$ is a continuous and nondecreasing function such that $\phi(t) = 0$ if and only if t = 0. If one takes $\phi(t) = (1 - k)t$, where 0 < k < 1, a weak contraction reduces to a Banach contraction.

*Corresponding author

Email addresses: Cholatis.Suanoom@gmail.com (Cholatis Suanoom), chakkridk@nu.ac.th (Chakkrid Klin-eam), scmti005@chiangmai.ac.th (Suthep Suantai)

(ii) A cyclic map $T: A \cup B \to A \cup B$ is said to be a cyclic contraction if there exists $a \in [0, 1)$ such that

$$d(Tx, Ty) \le ad(x, y)$$

for all $x \in A$ and $y \in B$.

In 2013, K. Zoto [9] introduced d-cyclic- ϕ -contraction follows:

(*iii*) A cyclic map $T: A \cup B \to A \cup B$ is said to be a *d*-cyclic- ϕ -contraction if $\phi \in \Phi$ such that

$$d(Tx, Ty) \le \phi(d(x, y))$$

for all $x \in A$, $y \in B$, where Φ the family of non-decreasing functions: $\phi : [0, \infty) \to [0, \infty)$ such that $\sum_{n=1}^{\infty} \phi^n(t) < \infty$ for each t > 0, where n is the n-th iterate of ϕ .

Lemma 1.1. Suppose that the function $\phi : [0, \infty) \to [0, \infty)$ is non-decreasing, then for each t > 0, $\lim_{n\to\infty} \phi^n(t) = 0$ implies $\phi(t) < t$.

If (X, d) is complete metric spaces, at least one of (i), (ii) and (iii) holds, then T has a unique fixed point (see[7]-[9]). Recently, Klin-eam and Suanoom [5] introduced dislocated quasi b-metric spaces, which is a new generalization of quasi b-metric space (see[8]), b-metric-like space (see[1]), b-metric space (see[2]), metric space, etc. as follows:

Definition 1.2 ([5]). Let X be a nonempty set. Suppose that the mapping $d: X \times X \to [0, \infty)$ such that constant $s \ge 1$ satisfies the following conditions:

(d1) d(x, y) = d(y, x) = 0 implies x = y for all $x, y \in X$;

(d2) $d(x,y) \leq s[d(x,z) + d(z,y)]$ for all $x, y, z \in X$.

The pair (X, d) is then called a *dislocated quasi b-metric space (or simply dqb-metric)*. The number s is called to be the coefficient of (X, d).

Remark 1.3. When, in addition, the conditions d(x,y) = d(y,x) and d(x,x) = 0 are true, then d is a b-metric.

Definition 1.4. Let $\{x_n\}$ be a sequence in a dqb-metric space (X, d).

(1) A sequence $\{x_n\}$ dislocated quasi-b-converges (for short, dqb-converges) to $x \in X$ if

$$\lim_{n \to \infty} d(x_n, x) = 0 = \lim_{n \to \infty} d(x, x_n).$$

In this case x is called a dqb-limit of $\{x_n\}$ and we write $(x_n \to x)$.

(2) A sequence $\{x_n\}$ is called *dislocated quasi-b-Cauchy (for short, dqb-Cauchy)*, if

$$\lim_{n,m\to\infty} d(x_n, x_m) = 0 = \lim_{n,m\to\infty} d(x_m, x_n).$$

(3) A dqb-metric space (X, d) is complete if every dqb-Cauchy sequence is dqb-convergent in X.

Moreover, they introduced the notion of dqb-cyclic-Banach and dqb-cyclic-Kannan mapping and derive the existence of fixed point theorems for such space.

In this paper, we study the properties of dislocated quasi-b-metric spaces and introduce dqb-cyclic-weak Banach contraction, dqb-cyclic- ϕ -contraction and derive the existence of fixed point theorems in dislocated quasi-b-metric spaces. Our main theorem extends and unifies existing results in the recent literature.

2. Main results

Every dislocated quasi-b-metric space (X, d) can be considered as a topological space on which the topology is introduced by taking, for any $x \in X$, the collection $\{B_r(x)|r>0\}$ as a base of the neighborhood filter of the point x. Here the ball $B_r(x)$ is defined by the equality $B_r(x) = \{y \in X | \max\{d(x, y), d(y, x)\} < r\}$.

Definition 2.1 ([6]). Let X be topological space. Then X is said to be *Hausdorff topological space* if for any distinct points $x, y \in X$, there exists two open sets G and H such that $x \in G, y \in H$ and $G \cap H = \emptyset$.

Proposition 2.2. Every dqb-metric space is Hausdorff topological space.

Proof. Let x and y be two distinct points in X. Then d(x, y) > 0 and d(y, x) > 0. Choose $\delta = \frac{d(x,y)}{2s}$. Then, there exists

$$B_{\delta}(x) = \{ z \in X | \max\{d(x, z), d(z, x)\} < \delta \}$$

and

$$B_{\delta}(y) = \{z \in X | \max\{d(y, z), d(z, y)\} < \delta\}$$

such that $x \in B_{\delta}(x)$ and $y \in B_{\delta}(y)$.

To show that $B_{\delta}(x) \cap B_{\delta}(y) = \emptyset$, suppose that $B_{\delta}(x) \cap B_{\delta}(y) \neq \emptyset$. Then, there exists $z \in B_{\delta}(x) \cap B_{\delta}(y)$. We have

$$\begin{aligned} d(x,y) &\leq sd(x,z) + sd(z,y) \\ &\leq s \max\{d(x,z), d(z,x)\} + s \max\{d(y,z), d(z,y)\} \\ &< s\delta + s\delta = d(x,y). \end{aligned}$$

So, d(x, y) < d(x, y) which is a contradiction. Therefore $B_{\delta}(x) \cap B_{\delta}(y) = \emptyset$.

Proposition 2.3. Every dqb-convergent sequence in a dqb-metric space (X, d) is dqb-Cauchy sequence.

Proof. Suppose that $\{x_n\}$ is dqb-convergent. Then there exists $x \in X$ such that $x_n \to x$, that is

$$\lim_{n \to \infty} d(x_n, x) = 0 = \lim_{n \to \infty} d(x, x_n)$$

Consider,

$$d(x_n, x_m) \le sd(x_n, x) + sd(x, x_m).$$

Taking limit as $n, m \to \infty$ we obtain

$$\lim_{n,m\to\infty} d(x_n, x_m) = 0.$$

Similarly,

$$\lim_{n,m\to\infty} d(x_m, x_n) = 0.$$

Therefore $\{x_n\}$ is dqb-Cauchy.

Definition 2.4. A subset S of a dqb-metric space (X, d) is bounded if there exists $\bar{x}, M \in (0, \infty)$ such that $d(x, \bar{x}) \leq M$ for all $x \in S$.

Proposition 2.5. Every dqb-convergent sequence in a dqb-metric space (X, d) is bounded sequence.

Proof. Suppose that $\{x_n\}$ is dqb-convergent. Then there exists $x \in X$ such that $x_n \to x$, that is

$$\lim_{n \to \infty} d(x_n, x) = 0 = \lim_{n \to \infty} d(x, x_n).$$

Let $\epsilon = 1$. Then there exists $n_0 \in \mathbb{N}$ such that $d(x_n, x) < \epsilon$ and $d(x, x_n) < \epsilon$ for all $n \ge n_0$. Choose

$$K = \max\{d(x_1, x), d(x_2, x), \dots, d(x_{n_0-1}, x), 1\}.$$

Thus, $d(x_n, x) \leq K$ for all $n \in \mathbb{N}$ and so $\{x_n\}$ is bounded sequence.

Proposition 2.6. Every dqb-Cauchy sequence in a dqb-metric space (X, d) is bounded sequence.

Proof. Suppose that $\{x_n\}$ is dqb-Cauchy. Then

$$\lim_{n \to \infty} d(x_n, x_m) = 0 = \lim_{n \to \infty} d(x_m, x_n).$$

Let $\epsilon = 1$. Then there exists $n_0 \in \mathbb{N}$ such that $d(x_n, x_m) < 1$ and $d(x_m, x_n) < 1$ for all $n, m \ge n_0$. Let p be any point in the space and let

$$k = \max_{i \le m} d(x_i, p).$$

The maximum exists, since $\{x_i : i \leq m\}$ is a finite set. If $n \leq m$, then $d(x_n, p) \leq k$. If n > m, then $d(x_n, p) \leq d(x_n, x_m) + d(x_m, p) \leq 1 + k$ for all $n \in \mathbb{N}$. Therefore $\{x_n\}$ is bounded sequence.

The next two propositions for subsequence follow immediately from definitions of dqb-convergent sequence and dqb-Cauchy sequence respectively.

Proposition 2.7. Every subsequence of dqb-convergent sequence in a dqb-metric space (X, d) is dqb-convergent sequence.

Proposition 2.8. Every subsequence of dqb-Cauchy sequence in a dqb-metric space (X,d) is dqb-Cauchy sequence.

Proposition 2.9. Let $\{x_n\}$ be sequence in a dqb-metric space (X, d). Then $x_n \to x$ if and only if $d(x_n, x) \to 0$ and $d(x, x_n) \to 0$.

Proof. Suppose that $x_n \to x$. Then

$$\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x, x_n) = 0$$

Thus $d(x_n, x) \to 0$ and $d(x, x_n) \to 0$.

Conversely, Suppose that $d(x_n, x) \to 0$ and $d(x, x_n) \to 0$. Then

$$\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x, x_n) = 0.$$

By definition of dqb-convergent sequence, we get $x_n \to x$.

Proposition 2.10. Let $\{x_n\}$ be sequence in a dqb-metric space (X, d). If $x_n \to x$ and $x_n \to y$, then x = y. *Proof.* Suppose that $x_n \to x$ and $x_n \to y$. Then

$$\lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x, x_n) = \lim_{n \to \infty} d(x_n, y) = \lim_{n \to \infty} d(y, x_n) = 0.$$

Consider,

$$0 \le d(x, y) \le sd(x, x_n) + sd(x_n, y)$$

and

$$0 \le d(y, x) \le sd(y, x_n) + sd(x_n, x).$$

Taking limit as $n, m \to \infty$, we obtain

d(x, y) = d(y, x) = 0.

Therefore x = y.

Now, we begin with introducing the property of a continuous function.

Definition 2.11. Suppose that (X, d_X) and (Y, d_Y) are dislocated quasi-b-metric spaces, $E \subset X$, $f : E \to Y$ and $p \in E$. Then f is continuous at p iff for all $\epsilon > 0$ there exists $\delta > 0$ such that

 $\max\{d_Y(fx, fp), d_Y(fp, fx)\} < \epsilon$

for all $x \in E$, when $\max\{d_X(x,p), d_X(p,x)\} < \delta$.

Theorem 2.12. Let (X, d_X) and (X, d_Y) be dislocated quasi-b-metric spaces, $E \subset X$, $f : E \to Y$ and $p \in E$. Then f is continuous at p if and only if for every dislocated quasi-b-converges sequence $\{x_n\}$ in X, $\lim_{n\to\infty} fx_n = fx$.

Proof. Suppose that f is continuous at p and $\{x_n\}$ converges to p. Let $\epsilon > 0$. Then there exists $\delta > 0$ such that $\max\{d_Y(fx, fp), d_Y(fp, fx)\} < \epsilon$, when $\max\{d_X(x, p), d_X(p, x)\} < \delta$ for all $x \in E$.

Since $\{x_n\}$ converges to p, there exists $N \in \mathbb{N}$ such that $\max\{d_X(x_n, p), d_Y(p, x_n)\} < \delta$ for all $n \ge N$. Since f is continuous at p, we have $\max\{d_Y(fx_n, fp), d_Y(fp, fx_n)\} < \epsilon$, for all $n \ge N$.

Hence $\lim_{n \to \infty} fx_n = fx$.

Conversely, let $x \in X$ and assume in the contrary that

$$\exists \epsilon > 0 \ \forall \delta > 0: \ \max\{d_X(x, p), d_X(p, x)\} < \delta, \max\{d_Y(fx, fp), d_Y(fp, fx)\} \ge \epsilon$$

Applying these successively for all $\delta = \frac{1}{k}$, we find a sequence $\{x_k\}$ such that $\max\{d_X(x_k, p), d_X(p, x_k)\} < \frac{1}{k}$ and $\max\{d_Y(fx_k, fp), d_Y(fp, fx_k)\} \ge \epsilon'$. Thus

$$\lim_{k \to \infty} x_k = p$$

By assumption, we have

$$\lim_{k \to \infty} fx_k = fp.$$

Hence, there exists a k_0 such that for all $k > k_0$

$$\max\{d_Y(fx_k, fp), d_Y(fp, fx_k)\} < \epsilon,$$

which is a contradiction.

Definition 2.13. Suppose that (X, d_X) and (Y, d_Y) are dislocated quasi-b-metric spaces, $E \subset X$, $f : E \to Y$ and $p \in E$. Then f is continuous on E iff f is continuous at p for all $p \in E$.

Next, we begin with prove fixed point theorems.

Definition 2.14. Let A and B be nonempty closed subsets of a dislocated quasi-b-metric spaces (X, d). A cyclic map $T : A \cup B \to A \cup B$ is said to be a *dqb-cyclic-weak contraction* or *dqb-cyclic-weakly contraction* if for all $x \in A, y \in B$,

$$sd(Tx,Ty) \le d(x,y) - \psi(d(x,y)), \tag{2.1}$$

where $\psi: [0, \infty) \to [0, \infty)$ is a continuous and nondecreasing function such that $\psi(t) = 0$ if and only if t = 0.

Lemma 2.15. Let (X, d_X) and (Y, d_Y) be dislocated quasi-b-metric spaces and A and B be nonempty closed subsets of a dislocated quasi-b-metric spaces (X, d). Consider a cyclic map $T : A \cup B \to A \cup B$. If T is dqb-cyclic-weak contraction, then T is continuous.

Proof. Let $\epsilon > 0$, all $x \in A \cup B$ and fixed $p \in A \cup B$. Suppose that $\max\{d_X(x,p), d_C(p,x)\} < \delta$. Choose $\epsilon = \frac{\delta}{s}$. Since T is dqb-cyclic-weak contraction, we have

$$sd(Tx,Tp) \le d(x,p) - \psi(d(x,p))$$
$$\le d(x,p) < \delta$$

and

$$sd(Tp,Tx) \le d(p,x) - \psi(d(p,x))$$
$$\le d(p,x) < \delta.$$

So, $d(Tx, Tp) < \epsilon$ and $d(Tp, Tx) < \epsilon$. Thus T is continuous at p and hence T is continuous on $A \cup B$. \Box

Now, we present a fixed point theorem related to dqb-cyclic-weak contraction.

Theorem 2.16. Let A and B be nonempty subsets of a complete dislocated quasi-b-metric space (X, d). Let T be a cyclic mapping that satisfies the condition a dqb-cyclic-weak contraction. Then, T has a unique fixed point in $A \cap B$.

Proof. Let $x \in A$ be fixed. Using contractive condition in assumptions, we have

$$d(T^{2}x, Tx) \leq sd(T^{2}x, Tx)$$

$$= sd(T(Tx), Tx)$$

$$\leq d(Tx, x) - \psi(d(Tx, x)),$$

$$\leq d(Tx, x)$$
(2.2)

and

$$d(Tx, T^{2}x) \leq sd(Tx, T^{2}x)$$

$$= sd(Tx, T(Tx))$$

$$\leq d(x, Tx) - \psi((x, Tx)),$$

$$\leq d(x, Tx).$$
(2.3)

 \mathbf{So}

$$d(T^{3}x, T^{2}x) \le d(T^{2}x, Tx) - \psi(d(T^{2}x, Tx))$$
(2.4)

and

$$d(T^{2}x, T^{3}x) \leq d(Tx, T^{2}x) - \psi(d(Tx, T^{2}x)).$$
(2.5)

For all $n \in \mathbb{N}$, we get

$$d(T^{n+2}x, T^{n+1}x) \le d(T^{n+1}x, T^nx) - \psi(d(T^{n+1}x, T^nx))$$
(2.6)

and

$$d(T^{n+1}x, T^{n+2}x) \le d(T^n x, T^{n+1}x) - \psi(d(T^n x, T^{n+1}x)).$$
(2.7)

Set $\varsigma_n = d(T^{n+1}x, T^nx)$ and $\tau_n = d(T^nx, T^{n+1}x)$. By inequalities (2.6) and (2.7), we get

$$\varsigma_{n+1} \le \varsigma_n - \psi(\varsigma_n) \le \varsigma_n \tag{2.8}$$

and

$$\tau_{n+1} \le \tau_n - \psi(\tau_n) \le \tau_n. \tag{2.9}$$

Thus $\{\varsigma_n\}$ and $\{\tau_n\}$ are decreasing sequences of non-negative real numbers, and hence possess a $\lim_{n\to\infty} \varsigma_n = \varsigma \ge 0$ and $\lim_{n\to\infty} \tau_n = \tau \ge 0$. Suppose that $\varsigma > 0$. Since ψ is nondecreasing, $\psi(\varsigma_n) \ge \psi(\varsigma) > 0$. By inequality (2.8), we have $\varsigma_{n+1} \le \varsigma_n - \psi(\varsigma)$. Thus $\varsigma_{N+m} \le \varsigma_m - N\psi(\varsigma)$, a contradiction for N large enough. Therefore $\varsigma = 0$.

Similarly, $\tau = 0$.

Next, we prove that $\{T^nx\}$ is a Cauchy sequence. Suppose that $\{T^nx\}$ is not Cauchy, then there exist $\epsilon > 0$ and subsequence $\{T^{m_k}x\}$ and $\{T^{n_k}x\}$ with $m_k > n_k \ge n$ such that $d(T^{m_k}x, T^{n_k}x) \ge \epsilon$ and $d(T^{m_k-1}x, T^{n_k}x) < \epsilon$. Now, we consider

$$sd(T^{m_k}x, T^{n_k}x) \le d(T^{m_k-1}x, T^{n_k-1}x) - \psi(d(T^{m_k-1}x, T^{n_k-1}x)) \le d(T^{m_k-1}x, T^{n_k-1}x),$$
(2.10)

which implies that

$$s\epsilon \le d(T^{m_k-1}x, T^{n_k-1}x).$$
 (2.11)

Take limit inferior in (2.11) as $k \to \infty$, we get

$$\epsilon s \le \liminf d(T^{m_k - 1}x, T^{n_k - 1}x). \tag{2.12}$$

We have

$$d(T^{m_k-1}x, T^{n_k-1}x) \le sd(T^{m_k-1}x, T^{n_k}x) + sd(T^{n_k}x, T^{n_k-1}x) < s\epsilon + sd(T^{n_k}x, T^{n_k-1}x).$$
(2.13)

Take limit superior in (2.13) as $k \to \infty$, we get

$$\limsup d(T^{m_k-1}x, T^{n_k-1}x) \le s\epsilon.$$
(2.14)

By (2.12) and (2.14), we get

$$\lim d(T^{m_k - 1}x, T^{n_k - 1}x) = s\epsilon.$$
(2.15)

Letting $k \to \infty$ in (2.10), by property of ψ and (2.15), we get

$$s\epsilon \le s\epsilon - \psi(s\epsilon) < s\epsilon,$$
 (2.16)

which is a contradiction. Hence $\{T^n x\}$ is a dqb-Cauchy sequence. Since (X, d) is complete, we have $\{T^n x\}$ converges to some $z \in X$. We note that, $\{T^{2n}x\}$ is a sequence in A and $\{T^{2n-1}x\}$ is a sequence in B in a way that both sequences tend to same limit z. Since A and B are closed, we have $z \in A \cap B$ and hence $A \cap B \neq \emptyset$. The continuity of T implies that the limit is a fixed point. Finally, to prove the uniqueness of fixed point, let $z^* \in X$ be another fixed point of T such that $Tz^* = z^*$. Then, we have

$$d(z, z^*) = d(Tz, Tz^*) \le sd(Tz, Tz^*) \le d(z, z^*) - \psi(d(z, z^*)) \le d(z, z^*).$$
(2.17)

On the other hand,

$$d(z^*, z) = d(Tz^*, Tz) \le sd(Tz^*, Tz) \le d(z^*, z) - \psi(d(z, z^*)) \le d(z^*, z).$$
(2.18)

By forms (2.17) and (2.18), we obtain that $d(z, z^*) = d(z^*, z) = 0$, this implies that $z^* = z$. Therefore z is a unique fixed point of T. This completes the proof.

Example 2.17. Let X = [-1, 1] and $T: A \cup B \to A \cup B$ be defined by $Tx = \frac{-x}{3}$ and $\psi(t) = \frac{t}{50}$. Suppose that A = [-1, 0] and B = [0, 1]. Defined the function $d: X^2 \to [0, \infty)$ by

$$d(x,y) = |x-y|^2 + \frac{|x|}{10} + \frac{|y|}{11}.$$

We see that d is a dislocated quasi-b-metric on X (see[[5]]).

Let $x \in A$. Then $-1 \le x \le 0$. So, $0 \le \frac{-x}{3} \le \frac{1}{3}$. Thus, $Tx \in B$. On the other hand, let $x \in B$. Then $0 \le x \le 1$. So, $\frac{-1}{3} \le \frac{-x}{3} \le 0$. Thus, $Tx \in \overline{A}$. Hence, the map T is cyclic on X, because $T(A) \subset B$ and $T(B) \subset A$.

Next, we consider

$$2d(Tx, Ty) = 2(|Tx - Ty|^2 + \frac{1}{10}|Tx| + \frac{1}{11}|Ty|)$$

= $2(|\frac{-x}{3} - \frac{-y}{3}|^2 + \frac{1}{10}|\frac{-x}{3}| + \frac{1}{11}|\frac{-y}{3}|)$

$$= \frac{49}{50} \left(\frac{100}{441} |x - y|^2 + \frac{50}{1470} |x| + \frac{100}{539} |y| \right)$$

$$\leq \frac{49}{50} \left(|x - y|^2 + \frac{1}{10} |x| + \frac{1}{11} |y| \right)$$

$$= |x - y|^2 + \frac{1}{10} |x| + \frac{1}{11} |y| - \psi(|x - y|^2 + \frac{1}{10} |x| + \frac{1}{11} |y|)$$

$$= d(x, y) - \psi(d(x, y)).$$

Thus, T satisfies dqb-cyclic-weak contraction of Theorem 2.16 and 0 is the unique fixed point of T.

Definition 2.18. Let A and B be nonempty subsets of a dislocated quasi-b-metric spaces. (X, d). A cyclic map $T : A \cup B \to A \cup B$ is said to be a *dqb-cyclic-\phi-contraction* and if there exists $k \in [0, 1)$ and $s \ge 1$ such that

$$sd(Tx, Ty) \le \phi(d(x, y)) \tag{2.19}$$

for all $x \in A$, $y \in B$, where Φ the family of non-decreasing functions: $\phi : [0, \infty) \to [0, \infty)$ such that $\sum_{n=1}^{\infty} \phi^n(t) < \infty$ for each t > 0, where n is the n-th iterate of ϕ .

Theorem 2.19. Let A and B be nonempty closed subsets of a complete dislocated quasi-b-metric space (X, d). Let T be a cyclic mapping that satisfies the condition a dqb-cyclic- ϕ -contraction. Then, T has a unique fixed point in $A \cap B$.

Proof. Let $x \in A$ be fixed, then using contractive condition of theorem, we have

$$sd(T^{2}x, Tx) = sd(T(Tx), Tx)$$
$$\leq \phi(d(Tx, x))$$

and

$$sd(Tx, T^{2}x) = sd(Tx, T(Tx))$$
$$\leq \phi(d(x, Tx)).$$

Inductively, we have for all $n \in \mathbb{N}$, we get

$$s^n d(T^{n+1}x, T^n x) \le \phi^n(d(Tx, x))$$

and

$$s^n d(T^n x, T^{n+1} x) \le \phi^n (d(x, Tx)).$$

Let $\epsilon > 0$ be fixed and $n(\epsilon) \in \mathbb{N}$, such that

$$\sum_{n \ge n(\epsilon)} \phi^n(d(Tx, x)) < \epsilon$$

and

$$\sum_{n > n(\epsilon)} \phi^n(d(x, Tx)) < \epsilon.$$

Let $n, m \in \mathbb{N}$ with $m > n > n(\epsilon)$, using the triangular inequality, we have:

$$\begin{aligned} d(T^m x, T^n x) &\leq s^{m-n} d(T^m x, T^{m-1} x) + s^{m-n-1} d(T^{m-1} x, T^{m-2} x) + \dots + s d(T^{n+1} x, T^n x) \\ &\leq s^{m-1} d(T^m x, T^{m-1} x) + s^{m-2} d(T^{m-1} x, T^{m-2} x) + \dots + s^n d(T^{n+1} x, T^n x) \\ &\leq \phi^{m-1} (d(T x, x)) + \phi^{m-2} (d(T x, x)) + \phi^{m-3} (d(T x, x)) + \dots + \phi^n (d(T x, x)) \\ &= \sum_{k=n}^{m-1} \phi^k (d(x, T x)) \\ &\leq \sum_{n \geq n(\epsilon)} \phi^n (d(x, T x)) < \epsilon. \end{aligned}$$

Similarly,

$$d(T^n x, T^m x) < \epsilon.$$

Thus $\{T^nx\}$ is a Cauchy sequence. Since (X, d) is complete, we have $\{T^nx\}$ converges to some $z \in X$. We note that $\{T^{2n}x\}$ is a sequence in A and $\{T^{2n-1}x\}$ is a sequence in B in a way that both sequences tend to same limit z. Since A and B are closed, we have $z \in A \cap B$ and then $A \cap B \neq \emptyset$. Now, we will show that Tz = z. By using (2.19), consider

$$d(z, Tz) \le sd(z, T^{2n}x) + sd(T^{2n}x, Tz) \le sd(z, T^{2n}x) + d(T^{2n-1}x, z).$$

Taking limit as $n \to \infty$ in above inequality, we have

$$d(z,Tz) = 0.$$

Similarly considering form (2.19), we get

$$\begin{split} d(Tz,z) &\leq sd(Tz,T^{2n}x) + sd(T^{2n}x,z) \\ &\leq d(z,T^{2n-1}x) + sd(T^{2n}x,z). \end{split}$$

Taking limit as $n \to \infty$ in above inequality, we have

$$d(Tz,z) = 0.$$

Hence d(z,Tz) = d(Tz,z) = 0. This implies that Tz = z that is z is a fixed point of T.

Finally, to prove the uniqueness of fixed point, let $z^* \in X$ be another fixed point of T such that $Tz^* = z^*$. Then, we have

$$d(z^*, z) \le sd(Tz^*, T^n x) + sd(T^n x, Tz) \le \phi(d(Tz^*, T^n x)) + \phi(d(T^n x, Tz))$$
(2.20)

and on the other hand,

$$d(z, z^*) \le sd(Tz, T^n x) + sd(T^n x, Tz^*) \le \phi(d(Tz, T^n x)) + \phi(d(T^n x, Tz^*)).$$
(2.21)

Letting $n \to \infty$ we obtain that $d(z, z^*) = d(z^*, z) = 0$, which implies that $z^* = z$. Therefore z is a unique fixed point of T. This completes the proof.

Example 2.20. Let X = [-1, 1] and $T: A \cup B \to A \cup B$ be defined by $Tx = \frac{-x}{5}$. Suppose that A = [-1, 0]and B = [0, 1]. Defined the function $d: X^2 \to [0, \infty)$ by

$$d(x,y) = |x-y|^2 + \frac{|x|}{10} + \frac{|y|}{11}.$$

We see that d is a dislocated quasi-b-metric on X, where s = 2. Let $x \in A$. Then $-1 \le x \le 0$. So, $0 \le \frac{-x}{5} \le \frac{1}{5}$. Thus, $Tx \in B$. On the other hand, let $x \in B$. Then $0 \le x \le 1$. So, $\frac{-1}{5} \le \frac{-x}{5} \le 0$. Thus, $Tx \in A$.

Hence the map T is cyclic on X, because $T(A) \subset B$ and $T(B) \subset A$. Next, we consider

$$\begin{split} sd(Tx,Ty) &= 2d(Tx,Ty) \\ &= 2(|Tx-Ty|^2 + \frac{1}{10}|Tx| + \frac{1}{11}|Ty|) \\ &= 2(|\frac{-x}{5} - \frac{-y}{5}|^2 + \frac{1}{10}|\frac{-x}{5}| + \frac{1}{11}|\frac{-y}{5}|) \end{split}$$

$$\begin{split} &= \frac{2}{3} (\frac{3}{25} |x - y|^2 + \frac{3}{50} |x| + \frac{3}{55} |y|) \\ &\leq \frac{2}{3} (|x - y|^2 + \frac{5}{50} |x| + \frac{5}{55} |y|) \\ &= \frac{2}{3} (|x - y|^2 + \frac{1}{10} |x| + \frac{1}{11} |y|) \\ &= \phi(d(x, y)), \end{split}$$

where the function $\phi \in \Phi$ is $\phi(t) = \frac{2t}{3}$. Clearly, 0 is the unique fixed point of T.

The following corollary can be taken as a particular case of Theorem 2.19 if we take $\phi(t) = kt$ for all $t \ge 0$ and some $k \in [0, 1)$. That is the dqb-cyclic-Banach contraction, in the setting of dislocated quasi-b-metric spaces.

Corollary 2.21. Let A and B be nonempty closed subsets of a complete dislocated quasi-b-metric space (X, d). Let T be a cyclic mapping that satisfies the condition a dqb-cyclic-Banach contraction; that is, if there exists $k \in [0, 1)$ such that

$$d(Tx, Ty) \le kd(x, y) \tag{2.22}$$

for all $x \in A$, $y \in B$ and $s \ge 1$ and $sk \le 1$. Then, T has a unique fixed point in $A \cap B$.

Acknowledgements

The authors would like to thank the Thailand Research Fund under the project RTA5780007 and Science Achievement Scholarship of Thailand, which provides funding for research.

References

- M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl., 2013 (2013), 25 pages. 1
- [2] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., 30 (1989), 26–37. 1
- [3] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
- W. A. Kirk, P. S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), 79–89.
- [5] C. Klin-eam, C. Suanoom, Dislocated quasi-b-metric spaces and fixed point theorems for cyclic contractions, Fixed Point Theory Appl., 2015 (2015), 12 pages. 1, 1.2, 2.17
- [6] E. Kreyszig, Introductory functional analysis with applications, John Wiley and Sons, New York, (1978). 2.1
- [7] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683–2693. 1, 1
- [8] M. H. Shah, N. Hussain, Nonlinear contractions in partially ordered quasi b-metric spaces, Commun. Korean Math. Soc., 27 (2012), 117–128.
- [9] K. Zoto, E. Hoxha, A. Isufati, Fixed Point Theorems for Cyclic Contractions in Dislocated Metric Spaces, Advanced Research in Scientific Areas, 4 (2013). 1, 1