The mixed L_{p}-dual affine surface area for multiple star bodies

Zhang Ting ${ }^{\text {a }}$, Wang Weidong ${ }^{\text {a,*, }}$, Si Lin ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, China Three Gorges University, Yichang, 443002, P. R. China.
${ }^{b}$ Department of Mathematics, Beijing Forestry University, Beijing, 100083, P. R. China.

Abstract

Associated with the notion of the mixed L_{p}-affine surface area for multiple convex bodies for all real p $(p \neq-n)$ which was introduced by Ye, et al. [D. Ye, B. Zhu, J. Zhou, arXiv, 2013 (2013), 38 pages], we define the concept of the mixed L_{p}-dual affine surface area for multiple star bodies for all real $p(p \neq-n)$ and establish its monotonicity inequalities and cyclic inequalities. Besides, the Brunn-Minkowski type inequalities of the mixed L_{p}-dual affine surface area for multiple star bodies with two addition are also presented. (C)2016 All rights reserved.

Keywords: $\quad L_{p}$-affine surface area, L_{p}-dual affine surface area, multiple star bodies, Hölder inequality. 2010 MSC: 52A20, 52A40.

1. Introduction

During the past three decades, the investigations of the classical affine surface area have received great attention from many articles (see [7, 8, 9, 10, 11, 12, 13, 14]). Based on the classical affine surface area, Lutwak (see [14]) introduced the notion of L_{p}-affine surface area and established its some inequalities. Wang and He (see [19, 20]) introduced the notion of L_{p}-dual affine surface area. Regarding studies of the L_{p}-affine surface area and L_{p}-dual affine surface area also see [16, 17, 21, 22, 23, 24, 25, 26].

We say that K is a convex body if K is a compact and convex subset in n-dimensional Euclidean space \mathbb{R}^{n} with non-empty interior. The set of all convex bodies in \mathbb{R}^{n} is written as \mathcal{K}, and its subset \mathcal{K}_{o} denote the set of convex bodies containing the origin in their interiors. Similarly, \mathcal{K}_{c} denote the set of convex bodies

[^0]with centroid at the origin. Besides \mathcal{S}_{o} denotes the set of star bodies (with respect to the origin) and \mathcal{S}_{c} denotes the set of star bodies whose centroid lie at the origin in \mathbb{R}^{n}. Let \mathcal{F}_{o} denotes the subset of \mathcal{K}_{o} that has a positive continuous curvate function. Let S^{n-1} denotes the unit sphere in \mathbb{R}^{n} and $V(K)$ denotes the n-dimensional volume of the body K.

The notion of classical affine surface area was proposed by Leichtwei β (see [7]). For $K \in \mathcal{K}$, the affine surface area, $\Omega(K)$ of K is defined by

$$
n^{-\frac{1}{n}} \Omega(K)^{\frac{n+1}{n}}=\inf _{L \in \mathcal{S}_{o}}\left\{n V_{1}\left(K, L^{*}\right) V(L)^{\frac{1}{n}}\right\}
$$

Here L^{*} denotes the polar body of L.
According to the L_{p}-mixed volume, Lutwak introduced the notion of L_{p}-affine surface area in [14]. For $K \in \mathcal{K}_{o}, p \geq 1$, the L_{p}-affine surface area, $\Omega_{p}(K)$ of K is defined by

$$
n^{-\frac{p}{n}} \Omega_{p}(K)^{\frac{n+p}{n}}=\inf _{L \in \mathcal{S}_{o}}\left\{n V_{p}\left(K, L^{*}\right) V(L)^{\frac{p}{n}}\right\}
$$

Obviously, if $p=1, \Omega_{1}(K)$ is the classical affine surface area $\Omega(K)$.
Based on above the notion of L_{p}-affine surface area, Wang and He (see [19]) presented the notion of L_{p}-dual affine surface area associated with the L_{p}-dual mixed volume. For $K \in \mathcal{S}_{o}$ and $1 \leq p<n$, the L_{p}-dual affine surface area, $\widetilde{\Omega}_{-p}(K)$ of K is defined by

$$
n^{\frac{p}{n}} \widetilde{\Omega}_{-p}(K)^{\frac{n-p}{n}}=\inf _{L \in \mathcal{K}_{c}}\left\{n \widetilde{V}_{-p}\left(K, L^{*}\right) V(L)^{-\frac{p}{n}}\right\}
$$

According to the definition of L_{p}-dual affine surface area, Wang and He (see [19]) proved the following result:

Theorem 1.1. If $K, L \in \mathcal{K}_{c}$ and $1 \leq p<n$, then

$$
\widetilde{\Omega}_{-p}\left(K \widetilde{+}_{n+p} L\right)^{\frac{n-p}{n}} \geq \widetilde{\Omega}_{-p}(K)^{\frac{n-p}{n}}+\widetilde{\Omega}_{-p}(L)^{\frac{n-p}{n}}
$$

with equality if and only if K and L dilates. Here $K \widetilde{+}_{n+p} L$ denotes the L_{n+p}-radial combination of K and L.

In fact, Wang and Wang in [18] extend the definition of L_{p}-dual affine surface area which was introduced by Wang and He (see [19]) from $L \in \mathcal{K}_{c}$ to $L \in \mathcal{S}_{c}$, as follows:

For $K \in \mathcal{S}_{o}$ and $1 \leq p<n$, the L_{p}-dual affine surface area, $\widetilde{\Omega}_{-p}(K)$ of K is defined by

$$
\begin{equation*}
n^{\frac{p}{n}} \widetilde{\Omega}_{-p}(K)^{\frac{n-p}{n}}=\inf _{L \in \mathcal{S}_{c}}\left\{n \widetilde{V}_{-p}\left(K, L^{*}\right) V(L)^{-\frac{p}{n}}\right\} \tag{1.1}
\end{equation*}
$$

Recently, L_{p}-affine surface area was successfully extended to any real $p(p \neq-n)$ by Ye (see [24, 25]). Moreover, Ye, Zhu and Zhou [26] studied the mixed L_{p}-affine surface area for multiple star bodies for all real $p(p \neq-n)$. Let $\mathbf{K}=\left(K_{1}, \cdots, K_{n}\right)$ be a sequence with each $K_{i} \subset \mathbb{R}^{n}(i=1, \cdots, n)$ and $\mathbf{K} \in \mathcal{F}_{o}^{n}$ means each $K_{i} \in \mathcal{F}_{o}, L \in \mathcal{S}_{o}$. They defined the mixed L_{p}-affine surface areas for multiple convex bodies $\Omega_{p}(\mathbf{K})$ as follows:

$$
\text { for } p>0
$$

$$
\Omega_{p}(\mathbf{K})=\inf _{L \in \mathcal{S}_{o}}\{n V_{p}(\mathbf{K} ; \underbrace{L^{*}, \cdots, L^{*}}_{n})^{\frac{n}{n+p}} V(L)^{\frac{p}{n+p}}\}
$$

for $-n \neq p<0$,

$$
\Omega_{p}(\mathbf{K})=\sup _{L \in \mathcal{S}_{o}}\{n V_{p}(\mathbf{K} ; \underbrace{L^{*}, \cdots, L^{*}}_{n})^{\frac{n}{n+p}} V(L)^{\frac{p}{n+p}}\}
$$

In this paper, combining with 1.1 and the notion of the mixed L_{p}-affine surface area for multiple star bodies, we first introduce the notion of the mixed L_{p}-dual affine surface area for multiple star bodies for all real $p(p \neq-n)$. Here, we write that $\mathbf{K}=\left(K_{1}, \ldots, K_{n}\right) \in \mathcal{S}_{o}^{n}$ be a sequence with each $K_{i} \in \mathcal{S}_{o}$.
$\underset{\sim}{\text { Definition 1.2. Let }} \mathbf{K}=\left(K_{1}, \ldots, K_{n}\right) \in \mathcal{S}_{o}^{n}$, the mixed L_{p}-dual affine surface area for multiple star bodies, $\widetilde{\Omega}_{-p}(\mathbf{K})$ of \mathbf{K} is defined by: for $p>0$,

$$
\begin{equation*}
\widetilde{\Omega}_{-p}(\mathbf{K})=\inf _{L \in \mathcal{S}_{c}}\{n \widetilde{V}_{-p}(\mathbf{K} ; \underbrace{L^{*}, \cdots, L^{*}}_{n})^{\frac{n}{n-p}} V(L)^{-\frac{p}{n-p}}\} \tag{1.2}
\end{equation*}
$$

for $-n \neq p<0$,

$$
\begin{equation*}
\widetilde{\Omega}_{-p}(\mathbf{K})=\sup _{L \in \mathcal{S}_{c}}\{n \widetilde{V}_{-p}(\mathbf{K} ; \underbrace{L^{*}, \cdots, L^{*}}_{n})^{\frac{n}{n-p}} V(L)^{-\frac{p}{n-p}}\} \tag{1.3}
\end{equation*}
$$

Further, we establish monotonicity inequalities and cyclic inequalities of the mixed L_{p}-dual affine surface area for multiple star bodies. Our results can be stated as follows:

Theorem 1.3. Let $\mathbf{K}=\left(K_{1}, \ldots, K_{n}\right) \in \mathcal{S}_{o}^{n}$. If $0<p<q<n$, then

$$
\begin{equation*}
\left(\frac{\widetilde{\Omega}_{-p}(\mathbf{K})^{n-p}}{n^{n-p} \widetilde{V}(\mathbf{K})^{n+p}}\right)^{\frac{1}{p}} \leq\left(\frac{\widetilde{\Omega}_{-q}(\mathbf{K})^{n-q}}{n^{n-q} \widetilde{V}(\mathbf{K})^{n+q}}\right)^{\frac{1}{q}} \tag{1.4}
\end{equation*}
$$

if $-n<q<p<0$, then

$$
\begin{equation*}
\left(\frac{\widetilde{\Omega}_{-p}(\mathbf{K})^{n-p}}{n^{n-p} \widetilde{V}(\mathbf{K})^{n+p}}\right)^{\frac{1}{p}} \geq\left(\frac{\widetilde{\Omega}_{-q}(\mathbf{K})^{n-q}}{n^{n-q} \widetilde{V}(\mathbf{K})^{n+q}}\right)^{\frac{1}{q}} \tag{1.5}
\end{equation*}
$$

Here $\widetilde{\Omega}_{-p}(\mathbf{K})^{n-p} / n^{n-p} \widetilde{V}(\mathbf{K})^{n+p}$ denotes L_{p}-dual affine area ratio of the sequence \mathbf{K}.
Theorem 1.4. Let $\mathbf{K}=\left(K_{1}, \ldots, K_{n}\right) \in \mathcal{S}_{o}^{n}$. If $0<r<q<p<n$, then

$$
\begin{equation*}
\widetilde{\Omega}_{-p}(\mathbf{K})^{(n-p)(q-r)} \geq \widetilde{\Omega}_{-q}(\mathbf{K})^{(n-q)(p-r)} \widetilde{\Omega}_{-r}(\mathbf{K})^{(n-r)(q-p)} ; \tag{1.6}
\end{equation*}
$$

if $-n \neq r<p<q<0$, then

$$
\begin{equation*}
\widetilde{\Omega}_{-p}(\mathbf{K})^{(n-p)(q-r)} \leq \widetilde{\Omega}_{-q}(\mathbf{K})^{(n-q)(p-r)} \widetilde{\Omega}_{-r}(\mathbf{K})^{(n-r)(q-p)} \tag{1.7}
\end{equation*}
$$

Besides, associated with the combination $\lambda \circ \mathbf{K} \widetilde{+}_{q} \mu \circ \mathbf{L}=\left(\lambda \circ K_{1} \tilde{+}_{q} \mu \circ L_{1}, \cdots, \lambda \circ K_{n} \widetilde{+}_{q} \mu \circ L_{n}\right)$, where $\lambda \circ K \tilde{+}_{q} \mu \circ L$ is the L_{q}-radial combination of star bodies K and L, and corresponding to Theorem 1.1, we give a Brunn-Minkowski type inequality of the mixed L_{p}-dual affine surface area for multiple star bodies.

Theorem 1.5. Let $\mathbf{K}=\left(K_{1}, \ldots, K_{n}\right) \in \mathcal{S}_{o}^{n}, \mathbf{L}=\left(L_{1}, \ldots, L_{n}\right) \in \mathcal{S}_{o}^{n}, \lambda, \mu \geq 0$ (not both zero). If $0<p<n$, $q>n+p$, then

$$
\begin{equation*}
\widetilde{\Omega}_{-p}\left(\lambda \circ \mathbf{K} \widetilde{+}_{q} \mu \circ \mathbf{L}\right)^{\frac{q(n-p)}{n(n+p)}} \geq \lambda \widetilde{\Omega}_{-p}(\mathbf{K})^{\frac{q(n-p)}{n(n+p)}}+\mu \widetilde{\Omega}_{-p}(\mathbf{L})^{\frac{q(n-p)}{n(n+p)}} ; \tag{1.8}
\end{equation*}
$$

with equality if and only if K_{i} and L_{i} are dilates.
Finally, combining with the combination $\lambda \star \mathbf{K}+_{-q} \mu \star \mathbf{L}=\left(\lambda \star K_{1}+_{-q} \mu \star L_{1}, \cdots, \lambda \star K_{n}+_{-q} \mu \star L_{n}\right)$, where $\lambda \star K+{ }_{-q} \mu \star L$ denote the L_{q}-harmonic radial combination of star bodies K and L, and corresponding to Theorem 1.1, we get another Brunn-Minkowski type inequality of the mixed L_{p}-dual affine surface area for multiple star bodies.

Theorem 1.6. For $\mathbf{K}=\left(K_{1}, \ldots, K_{n}\right) \in \mathcal{S}_{o}^{n}$ and $\mathbf{L}=\left(L_{1}, \ldots, L_{n}\right) \in \mathcal{S}_{o}^{n}, \lambda, \mu \geq 0$ (not both zero). If $p>n>0, q \geq 1$, then

$$
\begin{equation*}
\widetilde{\Omega}_{-p}\left(\lambda \star \mathbf{K}+_{-q} \mu \star \mathbf{L}\right)^{-\frac{q(n-p)}{n(n+p)}} \geq \lambda \widetilde{\Omega}_{-p}(\mathbf{K})^{-\frac{q(n-p)}{n(n+p)}}+\mu \widetilde{\Omega}_{-p}(\mathbf{L})^{-\frac{q(n-p)}{n(n+p)}} \tag{1.9}
\end{equation*}
$$

equality holds if and only if K_{i} and L_{i} are dilates.
The proofs of Theorems $1.3 \sqrt{1.6}$ will be completed in Section 3 of this paper.

2. Notations and Background Materials

2.1. Radial functions and polar set

If K is a compact star-shaped (with respect to the origin) in \mathbb{R}^{n}, then its radial function, $\rho_{K}=\rho(K, \cdot)$: $\mathbb{R}^{n} \backslash\{0\} \rightarrow[0, \infty)$, is defined by (see [4, 15])

$$
\rho(K, u)=\max \{\lambda \geq 0: \lambda u \in K\}, \quad u \in S^{n-1}
$$

If ρ_{K} is positive and continuous, K will be called a star body (respect to the origin). Two star bodies K and L are said to be dilates (of one another) if $\rho_{K}(u) / \rho_{L}(u)$ is independent of $u \in S^{n-1}$.

If E is a nonempty subset in \mathbb{R}^{n}, the polar set, E^{*}, of E is defined by (see [4, 15])

$$
E^{*}=\left\{x \in \mathbb{R}^{n}: x \cdot y \leq 1, y \in E\right\}
$$

2.2. L_{p}-dual mixed volume

Lutwak ([14]) introduced the L_{p}-dual mixed volume. For $K, L \in \mathcal{S}_{o}$ and $p \geq 1$, the L_{p}-dual mixed volume, $\widetilde{V}_{-p}(K, L)$ of K and L is defined by

$$
\begin{equation*}
\widetilde{V}_{-p}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n+p}(u) \rho_{L}^{-p}(u) d S(u) \tag{2.1}
\end{equation*}
$$

Obviously, $\widetilde{V}_{-p}(K, K)=V(K)$.
Now we extend the L_{p}-dual mixed volume (2.1) to multiple star bodies as follows: For $\mathbf{K}=\left(K_{1}, \ldots, K_{n}\right) \in$ $\mathcal{S}_{o}^{n}, \mathbf{L}=\left(L_{1}, \ldots, L_{n}\right) \in \mathcal{S}_{o}^{n}, p \in \mathbb{R}(p \neq-n$ and $p \neq 0)$, the L_{p}-dual mixed volume, $\widetilde{V}_{-p}(\mathbf{K} ; \mathbf{L})$ of \mathbf{K} and \mathbf{L} is defined by

$$
\begin{equation*}
\widetilde{V}_{-p}(\mathbf{K} ; \mathbf{L})=\frac{1}{n} \int_{S^{n-1}} \prod_{i=1}^{n}\left[\rho\left(K_{i}, u\right)^{n+p} \rho\left(L_{i}, u\right)^{-p}\right]^{\frac{1}{n}} d S(u) \tag{2.2}
\end{equation*}
$$

From (2.2), when all K_{i} coincide with K and all L_{i} coincide with L, one can easily get $\widetilde{V}_{-p}(\mathbf{K} ; \mathbf{L})=$ $\widetilde{V}_{-p}(K, L)$.

When $L_{1}=L_{2}=\cdots=L_{n}=L$, we rewrite 2.2 as follows:

$$
\begin{equation*}
\widetilde{V}_{-p}(\mathbf{K} ; \underbrace{L, L, \cdots, L}_{n})=\frac{1}{n} \int_{S^{n-1}} \prod_{i=1}^{n}\left[\rho\left(K_{i}, u\right)^{n+p}\right]^{\frac{1}{n}} \rho(L, u)^{-p} d S(u) \tag{2.3}
\end{equation*}
$$

We use $\tilde{V}(\mathbf{L})$ to denote the dual mixed volume of $\mathbf{L}=\left(L_{1}, \ldots, L_{n}\right) \in \mathcal{S}_{o}^{n}$. That is,

$$
\widetilde{V}(\mathbf{L})=\widetilde{V}\left(L_{1}, \ldots, L_{n}\right)=\frac{1}{n} \int_{S^{n-1}} \prod_{i=1}^{n} \rho_{L_{i}}(u) d S(u)
$$

When $L_{1}=\ldots=L_{n}=L$, one has $\widetilde{V}(\mathbf{L})=V(L)$. It is easy to get the following inequality for the dual mixed volume:

$$
\widetilde{V}(\mathbf{L})^{n}=\widetilde{V}\left(L_{1}, \ldots, L_{n}\right)^{n} \leq V\left(L_{1}\right) \cdots V\left(L_{n}\right)
$$

with equality if and only if $L_{i}(1 \leq i \leq n)$ are dilates of each other.

2.3. Two L_{q}-combinations

1. L_{q}-radial combination. For $K, L \in \mathcal{S}_{o}, q>0$ and $\lambda, \mu \geq 0$ (not both zero), the L_{q}-radial combination, $\lambda \circ K \widetilde{+}{ }_{q} \mu \circ L \in \mathcal{S}_{o}$ of K and L is defined by (see [4])

$$
\begin{equation*}
\rho\left(\lambda \circ K \widetilde{+}_{q} \mu \circ L, \cdot\right)^{q}=\lambda \rho(K, \cdot)^{q}+\mu \rho(L, \cdot)^{q} \tag{2.4}
\end{equation*}
$$

where the operation " $\widetilde{+}_{q}$ " is called L_{q}-radial addition and $\lambda \circ K$ denotes the L_{q}-radial scalar multiplication. From (2.4), we easily get $\lambda \circ K=\lambda^{\frac{1}{q}} K$. For $q=1, L_{q}$-radial combination (2.4) is the classical radial combination (see [4]).
2. L_{q}-harmonic radial combination. For $K, L \in \mathcal{S}_{o}, q \geq 1$ and $\lambda, \mu \geq 0$ (not both zero), the L_{q}-harmonic radial combination, $\lambda \star K+_{-q} \mu \star L \in \mathcal{S}_{o}$ of K and L is defined by (see [3, 1, 2, 14])

$$
\begin{equation*}
\rho\left(\lambda \star K+_{-q} \mu \star K, \cdot\right)^{-q}=\lambda \rho(K, \cdot)^{-q}+\mu \rho(L, \cdot)^{-q} \tag{2.5}
\end{equation*}
$$

where the operation $"+_{-q}$ " is called L_{q}-harmonic radial addition and $\lambda \star K$ denotes the L_{q}-harmonic radial scalar multiplication. From 2.5), we can obtain $\lambda \star K=\lambda^{-\frac{1}{q}} K$. For $q=1, L_{q}$-harmonic radial combination (2.5) is the classical harmonic radial combination (see [14]).

3. Results and Proofs

In this section, we complete the proofs of Theorems 1.31 .6 .
Proof of Theorem 1.3. For $\mathbf{K}=\left(K_{1}, \cdots, K_{n}\right) \in \mathcal{S}_{o}^{n}, L \in \mathcal{S}_{o}$, using (2.3), we obtain

$$
\begin{aligned}
& \widetilde{V}_{-p}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)=\frac{1}{n} \int_{S^{n-1}} \rho\left(L^{*}, u\right)^{-p} \prod_{i=1}^{n}\left[\rho\left(K_{i}, u\right)^{n+p}\right]^{\frac{1}{n}} d S(u) \\
& \quad=\frac{1}{n} \int_{S^{n-1}}\left[\rho\left(L^{*}, u\right)^{-q} \prod_{i=1}^{n} \rho\left(K_{i}, u\right)^{\frac{n+q}{n}}\right]^{\frac{p}{q}} \prod_{i=1}^{n} \rho\left(K_{i}, u\right)^{\frac{q-p}{q}} d S(u)
\end{aligned}
$$

If $0<p<q$, i.e., $q / p>1$, together with the Hölder inequality, then

$$
\begin{align*}
\widetilde{V}_{-p}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right) \leq & \left\{\frac{1}{n} \int_{S^{n-1}}\left[\rho\left(L^{*}, u\right)^{-p} \prod_{i=1}^{n} \rho\left(K_{i}, u\right)^{\frac{n p+p q}{n q}}\right]^{\frac{q}{p}} d S(u)\right\}^{\frac{p}{q}} \\
& \left\{\frac{1}{n} \int_{S^{n-1}} \prod_{i=1}^{n}\left(\rho\left(K_{i}, u\right)^{\frac{q-p}{q}}\right)^{\frac{q}{q-p}} d S(u)\right\}^{\frac{q-p}{q}} \tag{3.1}\\
\leq & \widetilde{V}_{-q}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{\frac{p}{q}} \widetilde{V}(\mathbf{K})^{\frac{q-p}{q}}
\end{align*}
$$

Thus

$$
\begin{equation*}
\left(\frac{\tilde{V}_{-p}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)}{\widetilde{V}(\mathbf{K})}\right)^{\frac{1}{p}} \leq\left(\frac{\widetilde{V}_{-q}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)}{\widetilde{V}(\mathbf{K})}\right)^{\frac{1}{q}} \tag{3.2}
\end{equation*}
$$

If $q<p<0$, i.e. $q / p>1$, then (3.1) is also hold. Since $p<0$, we give

$$
\begin{equation*}
\left(\frac{\widetilde{V}_{-p}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)}{\widetilde{V}(\mathbf{K})}\right)^{\frac{1}{p}} \geq\left(\frac{\widetilde{V}_{-q}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)}{\widetilde{V}(\mathbf{K})}\right)^{\frac{1}{q}} \tag{3.3}
\end{equation*}
$$

(i) For $0<p<q<n$, applying (1.2) and (3.2), we have

$$
\begin{aligned}
\left(\frac{\widetilde{\Omega}_{-p}(\mathbf{K})^{n-p}}{n^{n-p} \widetilde{V}(\mathbf{K})^{n+p}}\right)^{\frac{1}{p}} & =\inf _{L \in \mathcal{S}_{c}}\left\{\left[\frac{n^{n-p} \widetilde{V}_{-p}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{n} V(L)^{-p}}{n^{n-p} \widetilde{V}(\mathbf{K})^{n+p}}\right]^{\frac{1}{p}}\right\} \\
& =\inf _{L \in \mathcal{S}_{c}}\left\{\left(\frac{\widetilde{V}_{-p}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)}{\widetilde{V}(\mathbf{K})}\right)^{\frac{n}{p}} V(L)^{-1} \widetilde{V}(\mathbf{K})^{-1}\right\} \\
& \leq \inf _{L \in \mathcal{S}_{c}}\left\{\left(\frac{\widetilde{V}_{-q}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)}{\widetilde{V}(\mathbf{K})}\right)^{\frac{n}{q}} V(L)^{-1} \widetilde{V}(\mathbf{K})^{-1}\right\} \\
& =\left(\frac{\widetilde{\Omega}_{-q}(\mathbf{K})^{n-q}}{n^{n-q} \widetilde{V}(\mathbf{K})^{n+q}}\right)^{\frac{1}{q}} .
\end{aligned}
$$

So (1.4) is obtained.
(ii) For $-n<q<p<0$, by (1.3) and (3.3), we obtain

$$
\begin{aligned}
\left(\frac{\widetilde{\Omega}_{-p}(\mathbf{K})^{n-p}}{n^{n-p} \widetilde{V}(\mathbf{K})^{n+p}}\right)^{\frac{1}{p}} & =\sup _{L \in \mathcal{S}_{c}}\left\{\left[\frac{n^{n-p} \widetilde{V}_{-p}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{n} V(L)^{-p}}{n^{n-p} \widetilde{V}(\mathbf{K})^{n+p}}\right]^{\frac{1}{p}}\right\} \\
& =\sup _{L \in \mathcal{S}_{c}}\left\{\left(\frac{\widetilde{V}_{-p}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)}{\widetilde{V}(\mathbf{K})}\right)^{\frac{n}{p}} V(L) \widetilde{V}(\mathbf{K})\right\} \\
& \geq \sup _{L \in \mathcal{S}_{c}}\left\{\left(\frac{\widetilde{V}_{-q}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)}{\widetilde{V}(\mathbf{K})}\right)^{\frac{n}{q}} V(L) \widetilde{V}(\mathbf{K})\right\} \\
& =\left(\frac{\widetilde{\Omega}_{-q}(\mathbf{K})^{n-q}}{n^{n-q} \widetilde{V}(\mathbf{K})^{n+q}}\right)^{\frac{1}{q}}
\end{aligned}
$$

This gives 1.5 .
Proof of Theorem 1.4. For $\mathbf{K}=\left(K_{1}, \cdots, K_{n}\right) \in \mathcal{S}_{o}^{n}$ and $L \in \mathcal{S}_{o}$, from (2.3), we obtain

$$
\begin{aligned}
& \widetilde{V}_{-p}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)=\int_{S^{n-1}} \rho\left(L^{*}, u\right)^{-p}\left[\prod_{i=1}^{n}\left(\rho\left(K_{i}, u\right)^{n+p}\right)^{\frac{1}{n}}\right] d S(u) \\
& \quad=\int_{S^{n-1}}\left[\rho\left(L^{*}, u\right)^{-q}\left(\prod_{i=1}^{n} \rho\left(K_{i}, u\right)^{\frac{n+q}{n}}\right)\right]^{\frac{p-r}{q-r}}\left[\rho\left(L^{*}, u\right)^{-r}\left(\prod_{i=1}^{n} \rho\left(K_{i}, u\right)^{\frac{n+r}{n}}\right)\right]^{\frac{q-p}{q-r}} d S(u) .
\end{aligned}
$$

If $0<r<q<p<n$, i.e., $0<\frac{q-r}{p-r}<1$, then by the Hölder inequality, we get

$$
\begin{align*}
\widetilde{V}_{-p}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right) \geq & {\left[\int_{S^{n-1}} \rho\left(L^{*}, u\right)^{-q}\left(\prod_{i=1}^{n} \rho\left(K_{i}, u\right)^{\frac{n+q}{n}}\right) d S(u)\right]^{\frac{p-r}{q-r}} } \\
& {\left[\int_{S^{n-1}} \rho\left(L^{*}, u\right)^{-r}\left(\prod_{i=1}^{n} \rho\left(K_{i}, u\right)^{\frac{n+r}{n}}\right) d S(u)\right]^{\frac{q-p}{q-r}} } \tag{3.4}\\
= & \widetilde{V}_{-q}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{\frac{p-r}{q-r}} \widetilde{V}_{-r}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{\frac{q-p}{q-r}}
\end{align*}
$$

Thus

$$
\widetilde{V}_{-p}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{n} V(L)^{-p} \geq\left[\widetilde{V}_{-q}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{n} V(L)^{-q}\right]^{\frac{p-r}{q-r}}\left[\widetilde{V}_{-r}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{n} V(L)^{-r}\right]^{\frac{q-p}{q-r}}
$$

This combining with 1.2 , and notice $n>p$, yields

$$
\begin{aligned}
\widetilde{\Omega}_{-p}(\mathbf{K})^{n-p}= & \inf _{L \in \mathcal{S}_{c}}\left\{n^{n-p} \widetilde{V}_{-p}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{n} V(L)^{-p}\right\} \\
\geq & \inf _{L \in \mathcal{S}_{c}}\left\{n^{n-q} \widetilde{V}_{-q}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{n} V(L)^{-q}\right\}^{\frac{p-r}{q-r}} \\
& \inf _{L \in \mathcal{S}_{c}}\left\{n^{n-r} \widetilde{V}_{-r}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{n} V(L)^{-r}\right\}^{\frac{q-p}{q-r}} \\
= & \widetilde{\Omega}_{-q}(\mathbf{K})^{\frac{(n-q)(p-r)}{q-r}} \widetilde{\Omega}_{-r}(\mathbf{K})^{\frac{(n-r)(q-p)}{q-r}} .
\end{aligned}
$$

So (1.6) is obtained.

If $r<p<q<0$, i.e., $\frac{q-r}{p-r}>1$, then inequality (3.4) is reversed, that is

$$
\widetilde{V}_{-p}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right) \leq \widetilde{V}_{-q}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{\frac{p-r}{q-r}} \widetilde{V}_{-r}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{\frac{q-p}{q-r}}
$$

This combining with (1.3), we have that

$$
\begin{aligned}
\widetilde{\Omega}_{-p}(\mathbf{K})^{n-p}= & \sup _{L \in \mathcal{S}_{c}}\left\{n^{n-p} \widetilde{V}_{-p}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{n} V(L)^{-p}\right\} \\
\leq & \sup _{L \in \mathcal{S}_{c}}\left\{n^{n-q} \widetilde{V}_{-q}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{n} V(L)^{-q}\right\}^{\frac{p-r}{q-r}} \\
& \sup _{L \in \mathcal{S}_{c}}\left\{n^{n-r} \widetilde{V}_{-r}\left(\mathbf{K} ; L^{*}, \ldots, L^{*}\right)^{n} V(L)^{-r}\right\}^{\frac{q-p}{q-r}} \\
= & \widetilde{\Omega}_{-q}(\mathbf{K})^{\frac{(n-q)(p-r)}{q-r}} \widetilde{\Omega}_{-r}(\mathbf{K})^{\frac{(n-r)(q-p)}{q-r}} .
\end{aligned}
$$

This yields (1.7).
In the following we will prove Theorem 1.5 and 1.6 . The Minkowski's produce type inequality obtained by Kuang [6] is needed.

Lemma 3.1 (Minkowski's product type inequality). Let $a_{k}, b_{k} \geq 0$, then

$$
\left\{\prod_{k=1}^{n}\left(a_{k}+b_{k}\right)\right\}^{\frac{1}{n}} \geq\left(\prod_{k=1}^{n} a_{k}\right)^{\frac{1}{n}}+\left(\prod_{k=1}^{n} b_{k}\right)^{\frac{1}{n}}
$$

with equality if and only if a_{k} and b_{k} are proportional.
Lemma 3.2. For $\mathbf{K}=\left(K_{1}, \cdots, K_{n}\right) \in \mathcal{S}_{o}^{n}, \mathbf{L}=\left(L_{1}, \cdots, L_{n}\right) \in \mathcal{S}_{o}^{n}, \lambda, \mu \geq 0$ (not both zero). If $p>0$ and $q>n+p$, then for any $\mathbf{Q}=\left(Q_{1}, \cdots, Q_{n}\right) \in \mathcal{S}_{o}^{n}$,

$$
\begin{equation*}
\widetilde{V}_{-p}\left(\lambda \circ \mathbf{K} \widetilde{+}_{q} \mu \circ \mathbf{L} ; \mathbf{Q}\right)^{\frac{q}{n+p}} \geq \lambda \widetilde{V}_{-p}(\mathbf{K} ; \mathbf{L})^{\frac{q}{n+p}}+\mu \widetilde{V}_{-p}(\mathbf{L} ; \mathbf{Q})^{\frac{q}{n+p}} \tag{3.5}
\end{equation*}
$$

with equality if and only if K_{i} and L_{i} are dilates.
Proof. Since $p>0, q>n+p$, thus $0<\frac{n+p}{q}<1$. Hence, from 2.2, 2.4, Lemma 3.1 and the Minkowski's integral inequality (see [5]), we get

$$
\begin{aligned}
\widetilde{V}_{-p}\left(\lambda \circ \mathbf{K} \tilde{+}_{q} \mu \circ \mathbf{L} ; \mathbf{Q}\right)^{\frac{q}{n+p}} & =\left\{\frac{1}{n} \int_{S^{n-1}} \prod_{i=1}^{n} \rho\left(\lambda \circ K_{i} \widetilde{+}_{q} \mu \circ L_{i}, u\right)^{\frac{n+p}{n}} \rho\left(Q_{i}, u\right)^{-\frac{p}{n}} d S(u)\right\}^{\frac{q}{n+p}} \\
= & \left\{\frac{1}{n} \int_{S^{n-1}}\left[\prod_{i=1}^{n} \rho\left(\lambda \circ K_{i} \widetilde{+}_{q} \mu \circ L_{i}, u\right)^{\frac{q}{n}} \rho\left(Q_{i}, u\right)^{-\frac{p q}{n(n+p)}}\right]^{\frac{n+p}{q}} d S(u)\right\}^{\frac{q}{n+p}} \\
= & \left\{\frac{1}{n} \int_{S^{n-1}}\left[\prod_{i=1}^{n}\left(\lambda \rho\left(K_{i}, u\right)^{q}+\mu \rho\left(L_{i}, u\right)^{q}\right)^{\frac{1}{n}} \rho\left(Q_{i}, u\right)^{-\frac{p q}{n(n+p)}}\right]^{\frac{n+p}{q}} d S(u)\right\}^{\frac{q}{n+p}} \\
\geq & \left\{\frac { 1 } { n } \int _ { S ^ { n - 1 } } \left[\lambda \prod_{i=1}^{n} \rho\left(K_{i}, u\right)^{\frac{q}{n}} \rho\left(Q_{i}, u\right)^{-\frac{p q}{n(n+p)}}\right.\right. \\
& \left.\left.+\mu \prod_{i=1}^{n} \rho\left(L_{i}, u\right)^{\frac{q}{n}} \rho\left(Q_{i}, u\right)^{-\frac{p q}{n(n+p)}}\right]^{\frac{n+p}{q}} d S(u)\right\}^{\frac{q}{n+p}}
\end{aligned}
$$

$$
\begin{aligned}
& \geq \lambda\left[\frac{1}{n} \int_{S^{n-1}} \prod_{i=1}^{n} \rho\left(K_{i}, u\right)^{\frac{n+p}{n}} \rho\left(Q_{i}, u\right)^{-\frac{p}{n}} d S(u)\right]^{\frac{q}{n+p}} \\
& \quad+\mu\left[\frac{1}{n} \int_{S^{n-1}} \prod_{i=1}^{n} \rho\left(L_{i}, u\right)^{\frac{n+p}{n}} \rho\left(Q_{i}, u\right)^{-\frac{p}{n}} d S(u)\right]^{\frac{q}{n+p}} \\
& =\lambda \widetilde{V}_{-p}(\mathbf{K} ; \mathbf{Q})^{\frac{q}{n+p}}+\mu \widetilde{V}_{-p}(\mathbf{L} ; \mathbf{Q})^{\frac{q}{n+p}}
\end{aligned}
$$

According to the equality conditions of Lemma 3.1 and Minkowski's integral inequality, we see that equality holds in (3.5) if and only if K_{i} and L_{i} are dilates.

Proof of Theorem 1.5. Since $0<p<n, q>1+\frac{p}{n}$, thus by (1.2) and (3.5), we have

$$
\begin{aligned}
\left\{\widetilde{\Omega}_{-p}\left(\lambda \circ \mathbf{K} \widetilde{+}_{q} \mu \circ \mathbf{L}\right)^{\frac{n-p}{n}}\right\}^{\frac{q}{n+p}} & =\left\{\inf _{Q \in \mathcal{S}_{c}}\left\{n^{\frac{n-p}{n}} \widetilde{V}_{-p}\left(\lambda \circ \mathbf{K} \widetilde{+}_{q} \mu \circ \mathbf{L} ; Q^{*}, \cdots, Q^{*}\right) V(Q)^{-\frac{p}{n}}\right\}\right\}^{\frac{q}{n+p}} \\
= & \inf _{Q \in \mathcal{S}_{c}}\left\{\left[n^{\frac{n-p}{n}} \widetilde{V}_{-p}\left(\lambda \circ \mathbf{K} \widetilde{+}_{q} \mu \circ \mathbf{L} ; Q^{*}, \cdots, Q^{*}\right)\right]^{\frac{q}{n+p}}\left[V(Q)^{-\frac{p}{n}}\right]^{\frac{q}{n+p}}\right\} \\
\geq & \inf _{Q \in \mathcal{S}_{c}}\left\{\lambda\left[n^{\frac{n-p}{n}} \widetilde{V}_{-p}\left(\mathbf{K} ; Q^{*}, \cdots, Q^{*}\right) V(Q)^{-\frac{p}{n}}\right]^{\frac{q}{n+p}}\right\} \\
& +\inf _{Q \in \mathcal{S}_{c}}\left\{\mu\left[n^{\frac{n-p}{n}} \widetilde{V}_{-p}\left(\mathbf{L} ; Q^{*}, \cdots, Q^{*}\right) V(Q)^{-\frac{p}{n}}\right]^{\frac{q}{n+p}}\right\} \\
= & \lambda\left[\widetilde{\Omega}_{-p}(\mathbf{K})^{\frac{n-p}{n}}\right]^{\frac{q}{n+p}}+\mu\left[\widetilde{\Omega}_{-p}(\mathbf{L})^{\frac{n-p}{n}}\right]^{\frac{q}{n+p}}
\end{aligned}
$$

According to the equality condition of (3.5), we see that equality holds in (1.8) if and only if K_{i} and L_{i} are dilates.

Using the proof method of Lemma 3.2 and combining with L_{q}-harmonic radial combination (2.5), we easily obtain the following result for the L_{p}-dual mixed volume.

Lemma 3.3. If $\mathbf{K}=\left(K_{1}, \cdots, K_{n}\right) \in \mathcal{S}_{o}^{n}, \mathbf{L}=\left(L_{1}, \cdots, L_{n}\right) \in \mathcal{S}_{o}^{n}, \lambda, \mu \geq 0$ (not both zero). If $p>0, q \geq 1$, then for any $\mathbf{Q}=\left(Q_{1}, \cdots, Q_{n}\right) \in \mathcal{S}_{o}^{n}$,

$$
\begin{equation*}
\widetilde{V}_{-p}\left(\lambda \star \mathbf{K}+_{-q} \mu \star \mathbf{L} ; \mathbf{Q}\right)^{-\frac{q}{n+p}} \geq \lambda \widetilde{V}_{-p}(\mathbf{K} ; \mathbf{Q})^{-\frac{q}{n+p}}+\mu \widetilde{V}_{-p}(\mathbf{L} ; \mathbf{Q})^{-\frac{q}{n+p}} \tag{3.6}
\end{equation*}
$$

with equality if and only if K_{i} and L_{i} are dilates.
Proof. Since $p>0, q \geq 1$, thus $-\frac{n+p}{q}<0$. Hence, by 2.2, 2.5, Lemma 3.1 and the Minkowski's integral inequality (see [5]), we get

$$
\begin{aligned}
& \widetilde{V}_{-p}\left(\lambda \star \mathbf{K} \widetilde{+}_{-q} \mu \star \mathbf{L} ; \mathbf{Q}\right)^{-\frac{q}{n+p}} \\
& =\left\{\frac{1}{n} \int_{S^{n-1}} \prod_{i=1}^{n} \rho\left(\lambda \star K_{i} \widetilde{+}_{-q} \mu \star L_{i}, u\right)^{\frac{n+p}{n}} \rho\left(Q_{i}, u\right)^{-\frac{p}{n}} d S(u)\right\}^{-\frac{q}{n+p}} \\
& =\left\{\frac{1}{n} \int_{S^{n-1}}\left[\prod_{i=1}^{n} \rho\left(\lambda \star K_{i} \widetilde{+}_{-q} \mu \star L_{i}, u\right)^{-\frac{q}{n}} \rho\left(Q_{i}, u\right)^{\frac{p q}{n(n+p)}}\right]^{-\frac{n+p}{q}} d S(u)\right\}^{-\frac{q}{n+p}} \\
& =\left\{\frac{1}{n} \int_{S^{n-1}}\left[\prod_{i=1}^{n}\left(\lambda \rho\left(K_{i}, u\right)^{-q}+\mu \rho\left(L_{i}, u\right)^{-q}\right)^{\frac{1}{n}} \rho\left(Q_{i}, u\right)^{\frac{p q}{n(n+p)}}\right]^{-\frac{n+p}{q}} d S(u)\right\}^{-\frac{q}{n+p}}
\end{aligned}
$$

$$
\begin{aligned}
& \geq\left\{\frac{1}{n} \int_{S^{n-1}}\left[\lambda \prod_{i=1}^{n} \rho\left(K_{i}, u\right)^{-\frac{q}{n}} \rho\left(Q_{i}, u\right)^{\frac{p q}{n(n+p)}}+\mu \prod_{i=1}^{n} \rho\left(L_{i}, u\right)^{-\frac{q}{n}} \rho\left(Q_{i}, u\right)^{\frac{p q}{n(n+p)}}\right]^{-\frac{n+p}{q}} d S(u)\right\}^{-\frac{q}{n+p}} \\
& \geq \lambda\left[\frac{1}{n} \int_{S^{n-1}} \prod_{i=1}^{n} \rho\left(K_{i}, u\right)^{\frac{n+p}{n}} \rho\left(Q_{i}, u\right)^{-\frac{p}{n}} d S(u)\right]^{-\frac{q}{n+p}} \\
& +\mu\left[\frac{1}{n} \int_{S^{n-1}} \prod_{i=1}^{n} \rho\left(L_{i}, u\right)^{\frac{n+p}{n}} \rho\left(Q_{i}, u\right)^{-\frac{p}{n}} d S(u)\right]^{-\frac{q}{n+p}} \\
& =\lambda \widetilde{V}_{-p}(\mathbf{K} ; \mathbf{Q})^{-\frac{q}{n+p}}+\mu \widetilde{V}_{-p}(\mathbf{L} ; \mathbf{Q})^{-\frac{q}{n+p}} .
\end{aligned}
$$

According to the equality conditions of Lemma 3.1 and the Minkowski's integral inequality, we see that equality holds in (3.6) if and only if K_{i} and L_{i} are dilates.

Proof of Theorem 1.6. If $p>n>0, q \geq 1$, then from (1.2) and (3.6), and notice that $n-p<0$ and $-\frac{n+p}{q}<0$ we have

$$
\begin{aligned}
{\left[\widetilde{\Omega}_{-p}\left(\lambda \star \mathbf{K}+_{-q} \mu \star \mathbf{L}\right)^{\frac{n-p}{n}}\right]^{-\frac{q}{n+p}} \geq } & \inf _{Q \in \mathcal{S}_{c}}\left\{\lambda\left[n^{n-p} \widetilde{V}_{-p}\left(\mathbf{K} ; Q^{*}, \cdots, Q^{*}\right) V(Q)^{-\frac{p}{n}}\right]^{-\frac{q}{n+p}}\right\} \\
& +\inf _{Q \in \mathcal{S}_{c}}\left\{\mu\left[n^{\frac{n-p}{n}} \widetilde{V}_{-p}\left(\mathbf{L} ; Q^{*}, \cdots, Q^{*}\right) V(Q)^{-\frac{p}{n}}\right]^{-\frac{q}{n+p}}\right\} \\
= & \lambda\left[\widetilde{\Omega}_{-p}(\mathbf{K})^{\frac{n-p}{n}}\right]^{-\frac{q}{n+p}}+\mu\left[\widetilde{\Omega}_{-p}(\mathbf{L})^{\frac{n-p}{n}}\right]^{-\frac{q}{n+p}}
\end{aligned}
$$

This gives (1.9).
According to the equality condition of (3.6), we see that equality holds in (1.9) if and only if K_{i} and L_{i} are dilates.

Acknowledgments

Research is supported in part by the Natural Science Foundation of China (No. 11371224) and Innovation Foundation of Graduate Student of China Three Gorges University (No. 2014CX097) and Excellent Foundation of Degree Dissertation of Master of China Three Gorges University (No. 2015PY071).

References

[1] W. J. Firey, Polar means of convex bodies and a dual to the Brunn-Minkowski theorem, Canad. J. Math., 13 (1961), 444-453. 2.3
[2] W. J. Firey, Mean cross-section measures of harmonic means of convex bodies, Pacific J. Math., 11 (1961), 1263-1266. 2.3
[3] W. J. Firey, p-Means of convex bodies, Math. Scandinavica, 10 (1962), 17-24. 2.3
[4] R. J. Gardner, Geometric tomography, Cambrige University Press, Cambrige, (1995). 2.1, $2.3,2.3$
[5] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambrige University Press, Cambrige, (1952). 3,3
[6] J. C. Kuang, Applied inequalities, Shangdong Science and Technology Press, Jinan, (2010). 3
[7] K. Leichtwei β, Bemerkungen zur Definition einer erweiterten Affinoberfläche von E.Lutwak, Manuscripta Math., 65 (1989), 181-197. 1
[8] K. Leichtweiss, On the history of the affine surface area for convex bodies, Results Math., 20 (1991), 650-656. 1
[9] E. Lutwak, On the Blaschke-Santaló inequality, Anal. New York Acad. Sci., 440 (1985), 106-112. 1
[10] E. Lutwak, On some affine isoperimetric inequalities, J. Differ. Geom, 23 (1986), 1-13. 1
[11] E. Lutwak, Mixed affine surface area, J. Math. Anal. Appl., 125 (1987), 351-360. 1
[12] E. Lutwak, Extended affine surface area, Adv. Math., 85 (1991), 39-68. 1
[13] E. Lutwak, The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem, J. Differ. Geom, 38 (1993), 131-150. 1
[14] E. Lutwak, The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas, Adv. Math., 118 (1996), 244-294. 1, 2.2, 2.3, 2.3
[15] R. Schneider, Convex Bodies: The Brunn-Minkowski theory, Cambridge University Press, Cambridge, (2014). 2.1
[16] C. Schütt, E. Werner, Surface bodies and p-affine surface area, Adv. Math., 187 (2004), 98-145. 1
[17] W. Wang, G. Leng, L_{p}-mixed affine surface area, J. Math. Anal. Appl., 335 (2007), 341-354. 1
[18] J. Y. Wang, W. D. Wang, L-dual affine surface area forms of Busemann-Petty type problems, Proc. Indian Acad. Sci., 125 (2015), 71-77. 1
[19] W. Wei, H. Binwu, L_{p}-dual affine surface area, J. Math. Anal. Appl., 348 (2008), 746-751. 1 . 1 ,
[20] W. Wei, Y. Jun, H. Binwu, Inequalities for L_{p}-dual affine surface area, Math. Inequal. Appl., 13 (2010), 319-327. 1
[21] E. M. Werner, On L_{p} affine surface areas, Indiana Univ. Math. J., 56 (2007), 2305-2324. 1
[22] E. M. Werner, Rényi divergence and L_{p}-affine surface area for convex bodies, Adv. Math., 230 (2012), 1040-1059. 1
[23] E. Werner, D. Ye, New L_{p}-affine isoperimetric inequalities, Adv. Math., 218 (2008), 762-780. 1
[24] E. Werner, D. Ye, Inequalities for mixed p-affine surface area, Math. Ann., 347 (2010), 703-737. 1. 1
[25] D. Ye, Inequalities for general mixed affine surface areas, J. London Math. Soc., 85 (2012), 101-120. 1.1
[26] D. Ye, B. Zhu, J. Zhou, The mixed L_{p} geominimal surface areas for multiple convex bodies, arXiv, 2013 (2013), 38 pages. 11 1

[^0]: *Corresponding author
 Email address: wangwd722@163.com (Wang Weidong)

