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Abstract

A radio k-labeling c of a graph G is a mapping c : V (G)→ Z+∪{0} such that d(u, v)+|c(u)−c(v)| ≥ k+1
for every two distinct vertices u and v of G, where d(u, v) is the distance between any two vertices u and v
of G. The span of a radio k-labeling c is denoted by sp(c) and defined as max{|c(u)− c(v)| : u, v ∈ V (G)}.
The radio labeling is a radio k-labeling when k = diam(G). In other words, a radio labeling is a one-to-one
function f from V (G) to Z+ ∪ {0} such that |c(u) − c(v)| ≥ diam(G) + 1 − d(u, v) for any pair of vertices
u, v in G. The radio number of G expressed by rn(G), is the lowest span taken over all radio labelings
of the graph. For k = diam(G) − 1, a radio k- labeling is called a radio antipodal labeling. An antipodal
labeling for a graph G is a function c : V (G) → {0, 1, 2, ...} such that d(u, v) + |c(u) − c(v)| ≥ diam(G)
for all u, v ∈ V (G). The radio antipodal number for G denoted by an(G), is the minimum span of an
antipodal labeling admitted by G. In this paper, we investigate the exact value of the radio number and
radio antipodal number for the circulant graphs G(4mk + 2m; {1, 2m}), when m ≥ 3 is odd. Furthermore,
we also determine the lower bound of the radio number for the circulant graphs G(4mk + 2m; {1, 2m}),
when m ≥ 2 is even. c©2016 All rights reserved.
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1. Introduction

In general FM radio stations situated within a certain proximity of one another must be assigned different
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channels. If two stations are nearest to each other then there must be greater difference in assigned channels.
The goal of efficiently assigning channels to transmitters is called the channel assignment problem.

The term graph theory is used to study the channel assignment problem in 19th century. Hale [4] in
1980 provided a model of the channel assignment problem. The transmitters are the vertices of the graph.
If two vertices (transmitters) are sufficiently close to each other then they are adjacent.

Let G = (V (G), E(G)) be a connected graph with vertex set V (G) and edge set E(G) and let k be an
integer, k ≥ 1. A radio k-labeling c of G is an assignment of non-negative integers to the vertices of G such
that |c(u)− c(v)| ≥ k+ 1−d(u, v), where d(u, v) denotes the distance for every two distinct vertices u and v
of G. The span of the function c denoted by sp(c), is max{|c(u)− c(v)| : u, v ∈ V (G)}. The radio k-labeling
number of G is the minimum span among all radio k-labelings of G.

The study of radio k-labelings was motivated by Chartrand et al. [3]. Quite few results concerning radio
k-labelings are known. Chartrand et al. [3] was the first, who studied the radio k-labeling number for paths,
where lower and upper bounds were given. These bounds have been improved by Kchikech et al. [7].

When k = diam(G), then radio k-labeling becomes a radio labeling. A radio labeling is a function from
the vertices of the graph to some subset of non-negative integers. The task of radio labeling is to assign
to each station a non negative smallest integer such that the interference in the nearest channel should be
minimized. In 2001 multilevel distance labeling problem was introduced by Chartrand et al. [2].

For a simple graph G, distance between any distinct pair of vertices in G denoted by d(u, v) is the length
of the shortest path between them. The diameter of G, diam(G) = d, is the maximum shortest distance
between any two distinct vertices in G. A radio labeling is a one-to-one mapping c : V (G) → Z+ ∪ {0}
satisfying the condition

|c(u)− c(v)| ≥ diam(G) + 1− d(u, v)

for any pair of vertices u, v in G. The largest number that c maps to a vertex of a graph is the span of
labeling c. Radio number of G is the minimum span taken over all radio labelings of G and is denoted by
rn(G). In [11], multilevel distance (or radio) labelings for paths and cycles are completely determined by
Liu and Zhu. Helm graphs are discussed by Rahim and Tomescu in [15], where the radio number is given.

When k = diam(G) − 1, a radio k-labeling is referred to as a (radio) antipodal labeling, because only
antipodal vertices can have the same label. The minimum span of an antipodal labeling is called the
antipodal number, denoted by an(G). In [1, 3], Chartrand et al. studied the radio antipodal labeling for
cycle and path. In [2], Chartrand et al. gave general bounds for the antipodal number of a graph. The
exact value of the radio antipodal number of path was found in [5]. In [10], Liu and Xie determined the
radio number for square cycles. In [8], by using a generalization of binary Gray codes the radio antipodal
number and the radio number of the hypercube are determined. We refer [6, 9, 12, 13, 14] and the references
therein for more literature.

An undirected circulant graph denoted by G(n;±{1, 2, ..., j}) where 1 ≤ j ≤ bn2 c and n ≥ 3 is defined as a
graph with vertex set V = {0, 1, 2, ..., n−1} and an edge set E = {(i, j) : |j−i| ≡ s (modn), s ∈ {1, 2, ..., j}}.
For the sake of simplicity, take the vertex set as {v1, v2, ..., vn} in clockwise order.

Remark 1.1. The diameter of subclasses of circulant graphs which will be discussed in this paper is:

diam (G(4mk + 2m; {1, 2m}) = d = k +m.

In this paper, radio and radio antipodal numbers for the certain classes of circulant graphs G(4mk+2m :
{1, 2m}), where m is odd and m ≥ 3 are computed. Furthermore, the lower bound of radio number of the
class of circulant graphs G(4mk + 2m : {1, 2m}), where m is even are also determined and conjecture is
given so that this lower bound may be an upper bound.
The main theorems of this paper are:

Theorem 1.2. The radio number of the circulant graphs G(4mk+2m; {1, 2m}), where m is odd and m ≥ 3
is
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rn(G(4mk + 2m; {1, 2m}) =


2mk2+2m2k+5mk+m2+m−k

2 , if k is odd;

2mk2+2m2k+7mk+m2+2m−k−1
2 , if k is even.

Theorem 1.3. The radio antipodal number of the circulant graphs G(4mk + 2m; {1, 2m}), where m is odd
and m ≥ 3 is

an(G(4mk + 2m; {1, 2m}) = rn(G(4mk + 2m; {1, 2m}))− 4mk + 2m

2
.

Theorem 1.4. The radio number of the circulant graphs G(4mk + 2m; {1, 2m}) for even m satisfies

rn(G(4mk + 2m; {1, 2m}) ≥


2mk2+2m2k+7mk+m2+2m−k−1

2 , if k is odd;

2mk2+2m2k+5mk+m2+m−k
2 , if k is even.

2. Radio number for G(4mk + 2m; {1, 2m}), m is odd

2.1. Lower bound for G(4mk + 2m; {1, 2m}), m is odd

In this section, the general techniques to determine the lower bound for the radio number of graphs
G(4mk + 2m; {1, 2m}), where m is odd and m ≥ 3 are studied.

Lemma 2.1. For each vertex on the graph G(4mk + 2m; {1, 2m}) there is exactly one vertex at a distance
diameter d, of the graph G.

Proof. We show that
d(v1, v2mk+m+1) = k +m = d.

The path from v1 to v2mk+m+1 is of length k +m as

v1 → v2m(1)+1 → v2m(2)+1 · · · → v2m(k)+1 → v2m(k)+1+1 → · · · → v2m(k)+1+1.m.

Lemma 2.2.

(i) Let u, v, w be any three vertices on the graphs G(4mk+ 2m; {1, 2m}), where m is odd, m ≥ 3 and k is
even, then

d(u, v) + d(v, w) + d(w, u) ≤ 2d.

(ii) Let u, v, w be any three vertices on the graphs G(4mk+ 2m; {1, 2m}), where m, k are odd and m ≥ 3,
then

d(u, v) + d(v, w) + d(w, u) ≤ 2d+ 1.

Proof. By Lemma 2.1,
d(v1, v2mk+m+1) = k +m = d.

(i) When k is even.

d(v2mk+m+1, v2mk+m+1+2m.( k+2
2

)+m−1
2
.1) =

k +m+ 1

2
,

and a path of length k+m+1
2 between v2mk+m+1 to v2mk+m+1+2m.( k+2

2
)+m−1

2
.1 is

v2mk+m+1 → v2mk+m+1+2m.(1) → v2mk+m+1+2m.(2) → v2mk+m+1+2m.(3) · · · → v2mk+m+1+2m.( k+2
2

)

→ v2mk+m+1+2m.( k+2
2

+1) → v2mk+m+1+2m.( k+2
2

+2.1) → · · · → v2mk+m+1+2m.( k+2
2

+(m−1
2

)1),
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and

d(v2mk+m+1+2m.( k+2
2

)+m−1
2
.1, v1) =

k +m− 1

2
,

because

v2mk+m+1+2m.( k+2
2

)+m−1
2
.1 → v2mk+m+1+2m.( k+2

2
)+m−1

2
.1+2m.(1) → v2mk+m+1+2m.( k+2

2
)+m−1

2
.1+2m.(2)

→ v2mk+m+1+2m.( k+2
2

)+m−1
2
.1+2m.(3) → · · · → v2mk+m+1+2m.( k+2

2
)+m−1

2
.1+2m.( k−2

2
)

→ v2mk+m+1+2m.( k+2
2

)+m−1
2
.1+2m.( k−2

2
+1) → v2mk+m+1+2m.( k+2

2
)+m−1

2
.1+2m.( k−2

2
+2.1) → · · ·

→ v2mk+m+1+2m.( k+2
2

)+m−1
2
.1+2m.( k−2

2
+(m+1

2
)) = v1.

Therefore,

d(v1, v2mk+m+1) + d(v2mk+m+1, v2mk+m+1+2m.( k+2
2

)+m−1
2
.1) + d(v2mk+m+1+2m.( k+2

2
)+m−1

2
.1, v1)

= k +m+
k +m+ 1

2
+
k +m− 1

2
= 2(k +m) = 2d.

Thus, if u, v, w are three vertices on the graphs G(4mk + 2m; {1, 2m}), where m is odd and k is even then

d(u, v) + d(v, w) + d(w, u) ≤ 2d.

(ii). When k is odd.

d(v2mk+m+1, v2mk+m+1+2m.( k+1
2

)−m+1
2
.1) =

k +m

2
+ 1

and a path of length k+m+
2 + 1 between v2mk+m+1 to v2mk+m+1+2m.( k+1

2
)−m+1

2
.1 is

v2mk+m+1 → v2mk+m+1+2m.(1) → v2mk+m+1+2m.(2) → v2mk+m+1+2m.(3) → · · · → v2mk+m+1+2m.( k+1
2

)
→ v2mk+m+1+2m.( k+1

2
−1) → v2mk+m+1+2m.( k+1

2
−2.1) → · · · → v2mk+m+1+2m.( k+2

2
−(m+1

2
)1).

and

d(v2mk+m+1+2m.( k+1
2

)−m+1
2
.1, v1) =

k +m

2
,

because

v2mk+m+1+2m.( k+1
2

)−m+1
2
.1 → v2mk+m+1+2m.( k+1

2
)−m+1

2
.1+2m.(1) → v2mk+m+1+2m.( k+1

2
)−m+1

2
.1+2m.(2)

→ v2mk+m+1+2m.( k+1
2

)−m+1
2
.1+2m.(3) → · · · → v2mk+m+1+2m.( k+1

2
)−m+1

2
.1+2m.( k+1

2
)

= v4mk+2m+m+1
2
→ v4mk+2m+m+1

2
−1 → v4mk+2m+m+1

2
−2.1 → · · · → v4mk+2m+m+1

2
−(m−1

2
)1 = v1.

Therefore,

d(v1, v2mk+m+1) + d(v2mk+m+1, v2mk+m+1+2m.( k+1
2

)−m+1
2
.1) + d(v2mk+m+1+2m.( k+1

2
)−m+1

2
.1, v1)

= k +m+
k +m

2
+ 1 +

k +m

2
= 2(k +m) + 1 = 2d+ 1.

So, if u, v, w are three vertices on the graphs G(4mk + 2m; {1, 2m}), where m and k are odd then

d(u, v) + d(v, w) + d(w, u) ≤ 2d+ 1.

Lemma 2.3. Let c be radio labeling to V (G(4mk + 2m; {1, 2m})), where m is odd and m ≥ 3. Suppose
{xi : 1 ≤ i ≤ 4mk + 2m} is the ordering of V (G(4mk + 2m; {1, 2m})) such that c(xi) < c(xi+1) for all
1 ≤ i ≤ 4mk + 2m− 1, then
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c(xi+2)− c(xi) = ci + ci+1 =


k+m+1

2 + 1, if k is even;

k+m
2 + 1, if k is odd.

Proof. Let {xi, xi+1, xi+2} be any set of three vertices on the graphs V (G(4mk+ 2m; {1, 2m})), where m is
odd. Applying the radio condition to each pair in the vertex set {xi, xi+1, xi+2} and take the sum of three
inequalities,

|c(xi+1)− c(xi)| ≥ diam(G)− d(xi+1, xi) + 1,

|c(xi+2)− c(xi+1)| ≥ diam(G)− d(xi+2, xi+1) + 1,

|c(xi+2)− c(xi)| ≥ diam(G)− d(xi+2, xi) + 1.

|c(xi+1)−c(xi)|+|c(xi+2)−c(xi+1)|+|c(xi+2)−c(xi)| ≥ 3diam(G)−d(xi+1, xi)−d(xi+2, xi+1)−d(xi+2, xi)+3,

we drop the absolute sign because c(xi) < c(xi+1)c(xi+2) and use Lemma 2.2 to obtain the following:

2[c(xi+2)− c(xi)] ≥


3diam(G)− 2d+ 3, if k is even;

3diam(G)− 2d− 1 + 3, if k is odd,

and

c(xi+2)− c(xi) ≥


d+3
2 = k+m+1

2 + 1, if k is even;

d+2
2 = k+m

2 + 1, if k is odd.

Theorem 2.4. The radio number of the circulant graphs G(4mk+2m; {1, 2m}), where m is odd and m ≥ 3
satisfies

rn(G(4mk + 2m; {1, 2m}) ≥


2mk2+2m2k+5mk+m2+m−k

2 , if k is odd;

2mk2+2m2k+7mk+m2+2m−k−1
2 , if k is even.

Proof. Let c be a distance labeling for G(4mk+ 2m; {1, 2m}), where m is odd and {x1, x2, x3, ..., x4mk+2m}
be the ordering of vertices of G(4mk + 2m; {1, 2m}), such that c(xi) < c(xi+1) defined by c(x1) = 0 and,
set di = d(xi, xi+1) and ci = c(xi+1) − c(xi). Then ci ≥ d + 1 − di for all i. By Lemma 2.3, the span of a
distance labeling is

c(x4mk+2m) =
4mk+2m−1∑

i=1

ci = c1 + c2 + c3 + · · ·+ c4mk+2m−2 + c4mk+2m−1

= [c(x2)− c(x1)] + [c(x3)− c(x2)] + · · ·+ [c(x4mk+2m−1)− c(x4mk+2m−2)]

+ [c(x4mk+2m)− c(x4mk+2m−1)]

= (c1 + c2) + (c3 + c4) + (c5 + c6) + · · ·+ (c4mk+2m−3 + c4mk+2m−2) + c4mk+2m−1

=

4mk+2m−2
2∑
i=1

(c2i−1 + c2i) + c4mk+2m−1,

c(x4mk+2m) ≥


4mk+2m−2

2

(
k+m+1

2 + 1
)
, if k is even;

4mk+2m−2
2

(
k+m
2 + 1

)
, if k is odd.

Thus,
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c(x4mk+2m) ≥


2mk2+2m2k+7mk+m2+2m−k−1

2 , if k is even;

2mk2+2m2k+5mk+m2+m−k
2 , if k is odd.
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Figure 1: Radio labeling and ordinary labelings G(12k + 6; {1, 6}) for k = 1

2.2. Upper bound for anG(4mk + 2m; {1, 2m}), where m is odd

To complete the proof of Theorem 1.2, we find upper bound and show that this upper bound is equal to
the lower bound for G(4mk + 2m; {1, 2m}), where m is odd and m ≥ 3. The labeling is generated by three
sequences,

the distance gap sequence
D = (d1, d2, d3, ..., d4mk+2m−1),

the color gap sequence
C = (c1, c2, c3, ..., c4mk+2m−1),

and the vertex gap sequence
T = (t1, t2, t3, ..., t4mk+2m−1).

Case (i). For even k.
The distance gap sequence is given by:

di =


k +m, if i is odd;

k+m+1
2 , if i is even.

The color gap sequence C is given by:

ci =


1, if i is odd;

k+m+1
2 , if i is even.

The vertex gap sequence T is:

ti =

{
2mk +m− 1, if i is odd;
mk + 5m

2 −
3
2 , if i is even,
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where ti denotes number of vertices between xi and xi+1.
Let φ : {1, 2, 3, ..., 4mk+ 2m} → {1, 2, 3, ..., 4mk+ 2m} be defined by π(1) = 1 and φ(i+ 1) = φ(i) + ti +

1(mod 2m(2k + 1)). Let xi = uφ(i) for i = 1, 2, 3, ..., 4mk + 2m. Then x1, x2, x3, ..., x4mk+2m is an ordering
of the vertices of G, assuming c(x1) = 0, c(xi+1) = c(xi) + ci. Then for i = 1, 2, 3, ..., 2mk +m,

φ(2i) = mk(3i− 1) + (7m− 1)
i

2
+

1

2
(3− 5m) (mod 2m(2k + 1)),

π(2i− 1) = 3mk(i− 1) + (7m− 1)
i

2
+

1

2
(3− 7m) (mod 2m(2k + 1)).

We will show that for each of the sequences given above, the corresponding φ are permutations. Since k
is even, g.c.d.(k, 4mk + 2m) = 2 and 2mk + 3m − 1 ≡ −2mk + m − 1 (mod 2m(2k + 1)). This implies
(2mk + 3m − 1)(i − i′) ≡ (−2mk + m − 1)(i − i′) 6≡ 0 (mod 2m(2k + 1)) when i − i′ < 2mk + m. If
(−2mk+m− 1)(i− i′) ≡ 0 (mod 2m(2k+ 1)), as g.c.d.(−2mk+m− 1, 4mk+ 2m) = 2, then it follows that
i− i′ ≡ 0 (modm(2k+ 1)). This means that 2mk+m divides i− i′ < 2mk+m, which is not possible. Thus,
φ(2i) 6= φ(2i′) or φ(2i− 1) 6= φ(2i′ − 1) for i 6= i′. However, if φ(2i) = φ(2i′ − 1) for i = 1, 2, 3, ..., 2mk +m,
then we obtain

mk(3i− 1) + (7m− 1)
i

2
+ (3− 5m)

1

2
≡ 3mk(i′ − 1) + (7m− 1)

i

2
+ (3− 7m)

1

2
(mod 2m(2k + 1)),

(6mk + 7m− 1)(i− i′) ≡ −(4mk + 2m) (mod 2m(2k + 1)),

(2mk + 3m− 1)(i− i′) ≡ 0 (mod 2m(2k + 1)).

Since g.c.d.(2mk + 3m − 1, 4mk + 2m) = 2. Thus, i − i′ ≡ 0 (modm(2k + 1)), which is a contradiction to
the fact that i− i′ < 2mk +m. Therefore φ is a permutation.

The span of c is:

c1 + c2 + c3 + · · · c4mk+2m−2 + c4mk+2m−1

= [(c1 + c3 + c5 + · · ·+ c4k+2m−1)] + [(c2 + c4 + c6 + · · ·+ c4mk+2m−2)]

=
4mk + 2m

2
(1) +

4mk + 2m− 2

2

(
k +m+ 1

2

)
=

2mk2 + 2m2k + 7mk +m2 + 2m− k − 1

2
.

Case (ii). For odd k.

The distance gap sequence is given by:

di =


k +m, if i is odd;

k+m
2 + 1, if i is even.

The color gap sequence C is given by:

ci =


1, if i is odd;

k+m
2 , if i is even.

The vertex gap sequence T is:

ti =

{
2mk +m− 1, if i is odd;
mk + m−3

2 , if i is even,
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where ti denotes number of vertices between xi and xi+1.
Let θ : {1, 2, 3, ..., 4mk+ 2m} → {1, 2, 3, ..., 4mk+ 2m} be defined by θ(1) = 1 and θ(i+ 1) = θ(i) + ti +

1(mod 2m(2k + 1)). Let xi = uθ(i) for i = 1, 2, 3, ..., 4mk + 2m. Then x1, x2, x3, ..., x4mk+2m is an ordering
of the vertices of G, assuming f(x1) = 0, f(xi+1) = f(xi) + fi. Then for i = 1, 2, 3, ..., 2mk +m,

θ(2i) = mk(3i− 1) + (3m− 1)
i

2
+

1

2
(3−m) (mod 2m(2k + 1)),

θ(2i− 1) = 3mk(i− 1) + (3m− 1)
i

2
+

1

2
(3− 3m) (mod 2m(2k + 1)).

We will show that for each of the sequences given above, the corresponding θ are permutations. Since
k is odd, g.c.d.(k, 4mk + 2m) = 1 and 2mk + m − 1 ≡ −2mk − m − 1 (mod 2m(2k + 1). This implies
(2mk + m − 1)(i − i′) ≡ (−2mk − m − 1)(i − i′) 6≡ 0 (mod 2m(2k + 1)) when i − i′ < 2mk + m. If
(2mk + m + 1)(i′ − i) ≡ 0 (mod 2m(2k + 1)), as g.c.d.(2mk + m + 1, 4mk + 2m) = 2, then it follows that
i− i′ ≡ 0 (mod 2m(2k+1)). This means that 2mk+m divides i− i′ < 2mk+m, which is not possible. Thus,
θ(2i) 6= θ(2i′) or θ(2i− 1) 6= θ(2i′ − 1) for i 6= i′. However, if θ(2i) = θ(2i′ − 1) for i = 1, 2, 3, ..., 2mk + m,
then we obtain

mk(3i− 1) + (3m− 1)
i

2
) +

1

2
(3−m) ≡ 3mk(i′ − 1) + (3m− 1)

i′

2
+

1

2
(3− 3m)(mod 2m(2k + 1)),

(6mk + 3m− 1)(i− i′) ≡ −(4mk + 2m) (mod 2m(2k + 1)),

(2mk +m− 1)(i− i′) ≡ 0 (mod 2m(2k + 1)).

Since g.c.d.(2mk + m − 1, 4mk + 2m) = 2. Thus, i − i′ ≡ 0 (mod 2m(2k + 1)), which is a contradiction to
the fact that i− i′ < 2mk +m. Therefore θ is a permutation.
The span of c is:

c1 + c2 + c3 + · · · c4mk+2m−2 + c4mk+2m−1

= [(c1 + c3 + c5 + · · ·+ c4k+2m−1)] + [(c2 + c4 + c6 + · · ·+ c4mk+2m−2)]

=
4mk + 2m

2
(1) +

4mk + 2m− 2

2

(
k +m

2

)
=

2mk2 + 2m2k + 5mk +m2 +m− k
2

.
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Figure 2: Radio labeling and ordinary labelings G(12k + 6; {1, 6}) for k = 2

3. Radio antipodal number for G(4mk + 2m; {1, 2m}), where m is odd

In this section, the lower and upper bound for the radio antipodal number are determined and have
shown that these bounds are equal.
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3.1. Lower bound for an(G(4mk + 2m; {1, 2m}))
First of all we determine the lower bound for an(G(4mk + 2m; {1, 2m})).

Lemma 3.1. Let c be radio antipodal labeling for V (G(4mk + 2m; {1, 2m})), where m is odd and m ≥ 3.
Suppose {xi : 1 ≤ i ≤ 4mk+ 2m} is the ordering of V (G(4mk+ 2m; {1, 2m})) such that c(xi) ≤ c(xi+1) for
all 1 ≤ i ≤ 4mk + 2m− 1, then

c(xi+2)− c(xi) = ci + ci+1 ≥


k+m+1

2 , if k is even;

k+m
2 , if k is odd.

Proof. By definition,
c(xi+1)− c(xi) ≥ d− d(xi+1, xi),

c(xi+2)− c(xi+1) ≥ d− d(xi+2, xi+1)

and
c(xi+2)− c(xi) ≥ d− d(xi+2, xi).

Summing up these three inequalities and by Lemma 2.2, we get

2(c(xi+2)− c(xi)) ≥ 3d− [d(xi, xi+1) + d(xi+1, xi+2) + d(xi, xi+2)],

2(c(xi+2)− c(xi)) ≥ 3d− 2d = d,

(c(xi+2)− c(xi)) ≥
d

2
=
k +m

2
.

Thus,

c(xi+2)− c(xi) = ci + ci+1 ≥


k+m+1

2 , if k is even;

k+m
2 , if k is odd.

Theorem 3.2. The an(G(4mk + 2m; {1, 2m})), where m is odd and m ≥ 3 is given by

an(G(4mk + 2m; {1, 2m})) ≥ rn(G(4mk + 2m; {1, 2m}))− 4mk + 2m

2
.

Proof. Let c be a distance labeling for G(4mk + 2m; {1, 2m}) and {x1, x2, x3, ..., x4mk+2m} be the ordering
of vertices of G(4mk + 2m; {1, 2}), such that c(xi) ≤ c(xi+1) defined by c(x1) = 0 and, set di = d(xi, xi+1)
and ci = c(xi+1) − c(xi). Then ci ≥ d − di for all i. By Lemma 3.1, the span of a distance labeling for
G(4mk + 2m; {1, 2m}) is

c(x4mk+2m) =
4mk+2m−1∑

i=1

ci = c1 + c2 + c3 + · · ·+ c4mk+2m−2 + c4mk+2m−1

= [c(x2)− c(x1)] + [c(x3)− c(x2)] + · · ·+ [c(x4mk+2m−3)− c(x4mk+2m−2)]

+ [c(x4mk+2m−2)− c(x4mk+2m−1)]

= (c1 + c2) + (c3 + c4) + (c5 + c6) + · · ·+ (c4mk+2m−3 + c4mk+2m−2) + c4mk+2m−1

=

4mk+2m−2
2∑
i=1

(c2i−1 + c2i) + c4mk+2m−1.

Thus,
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c(x4mk+2m) ≥


4mk+2m−2

2 (k+m2 ) + 0, if k is odd;

4mk+2m−2
2 (k+m+1

2 ) + 0, if k is even.

c(x4mk+2m) ≥ rn(G(4mk + 2m; {1, 2m}))− 4mk + 2m

2
.

1
v

5
v

2
v

3
v18

v

4
v

17
v

16
v

5
v

6
v

7
v

8
v

9
v

10
v

11
v

12
v

14
v

15
v

13
v

1
v

1
v

5
v

15
x

12
x

6
x

7
x

9
x

14
x

4
x

18
x

13
x

10
x

5
x

2
x

16
x

11
x

3
x

17
x

8
x

1
x14

104

68

12 2

16

12

8

4

014

10

2

16

6

0

Figure 3: Radio antipodal labeling and ordinary labelings G(12k + 6; {1, 6}) for k = 1

3.2. Upper bound for an(G(4mk + 2m; {1, 2m})), where m is odd

To complete the proof of Theorem 1.3, we find upper bound and show that this upper bound is same as
the lower bound for an(G(4mk+2m; {1, 2})). The technique for determining an upper bound for an(G(4mk+
2m; {1, 2})) is analogous to that of upper bound for rn(G(4mk+ 2m; {1, 2})) with the changing of the color
gap sequence.

For even k, the color gap sequence C is given by:

ci =


0, if i is odd;

k+m+1
2 , if i is even.

Therefore, span of c is:

c1 + c2 + c3 + · · ·+ c4mk+2m−2 + c4mk+2m−1

= [(c1 + c3 + c5 + · · ·+ c4k+2m−1)] + [(c2 + c4 + c6 + · · ·+ c4mk+2m−2)]

=
4mk + 2m

2
(0) +

4mk + 2m− 2

2

(
k +m

2

)
=

2mk2 + 2m2k + 7mk +m2 + 2m− k − 1

2
− 4mk + 2m

2

= rnG(4mk + 2m : {1, 2m})− 4mk + 2m

2
.

For odd k, the color gap sequence is given by:

ci =


0, if i is odd;

k+m
2 , if i is even.
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Therefore, span of c is:

c1 + c2 + c3 + · · ·+ c4mk+2m−2 + c4mk+2m−1

= [(c1 + c3 + c5 + · · ·+ c4k+2m−1)] + [(c2 + c4 + c6 + · · ·+ c4mk+2m−2)]

=
4mk + 2m

2
(0) +

4mk + 2m− 2

2

(
k +m

2

)
=

2mk2 + 2m2k + 5mk +m2 +m− k
2

− 4mk + 2m

2

= rn(G(4mk + 2m : {1, 2m}))− 4mk + 2m

2
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Figure 4: Radio antipodal labeling and ordinary labelings G(12k + 6; {1, 6}) for k = 2

4. Radio number for G(4mk + 2m; {1, 2m}), where m is even

4.1. Lower bound for rn(G(4mk + 2m; {1, 2m}))
In this section, the general techniques to determine the lower bound for the radio number of graphs

G(4mk + 2m; {1, 2m}) for even m are discussed.

Lemma 4.1. For each vertex on the graph G(4mk + 2m; {1, 2m}) there is exactly one vertex at a distance
diameter d, of the graph G.

Proof. proof is similar as in the case when m is odd.

Lemma 4.2. For any three vertices u, v, w on the graphs G(4mk + 2m; {1, 2m}), where m is even,

d(u, v) + d(v, w) + d(w, u) ≤ 2d+ 1.

Proof. By Lemma 4.1, d(v1, v2mk+m+1) = k +m = d.
(i). When k is even.

d(v2mk+m+1, v2mk+m+1+2m.( k+2
2

)−m
2
.1) =

k +m

2
+ 1

and a path of length k+m
2 + 1 between v2mk+m+1 to v2mk+m+1+2m.( k+2

2
)−m

2
is

v2mk+m+1 → v2mk+m+1+2m.(1) → v2mk+m+1+2m.(2) → v2mk+m+1+2m.(3) · · · → v2mk+m+1+2m.( k+2
2

)

→ v2mk+m+1+2m.( k+2
2
−1) → v2mk+m+1+2m.( k+2

2
−2.1) → · · · → v2mk+m+1+2m.( k+2

2
−(m

2
.1)).
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and

d(v2mk+m+1+2m.( k+2
2

)−m
2
.1, v1) =

k +m

2
,

because

v2mk+m+1+2m.( k+2
2

)−m
2
.1 → v2mk+m+1+2m.( k+2

2
)−m

2
.1+2m.(1) → v2mk+m+1+2m.( k+2

2
)−m

2
.1+2m.(2)

→ v2mk+m+1+2m.( k+2
2

)−m
2
.1+2m.(3) → · · · → v2mk+m+1+2m.( k+2

2
)−m

2
.1+2m.( k

2
)

= v4mk+ 5m
2

+1 → v4mk+ 5m
2

+1−1 → v4mk+ 5m
2

+1−2.1 → · · · → v4mk+ 5m
2

+1−m
2
.1 = v1.

Therefore,

d(v1, v2mk+m+1) + d(v2mk+m+1, v2mk+m+1+2m.( k+2
2

)−m
2
.1) + d(v2mk+m+1+2m.( k+2

2
)−m

2
.1, v1)

= k +m+
k +m

2
+ 1 +

k +m

2
= 2(k +m) + 1 = 2d+ 1.

Thus, if u, v, w are three vertices on the graphs G(4mk + 2m; {1, 2m}), where m and k are even, then

d(u, v) + d(v, w) + d(w, u) ≤ 2d+ 1.

(ii). When k is odd.

d(v2mk+m+1, v2mk+m+1+2m.( k+1
2

)−m
2
.1) =

k +m+ 1

2

and a path of length k+m+1
2 between v2mk+m+1 to v2mk+m+1+2m.( k+1

2
)−m

2
.1 is

v2mk+m+1 → v2mk+m+1+2m.(1) → v2mk+m+1+2m.(2) → v2mk+m+1+2m.(3) · · · → v2mk+m+1+2m.( k+1
2

)
→ v2mk+m+1+2m.( k+1

2
−1) → v2mk+m+1+2m.( k+1

2
−2.1) → · · · → v2mk+m+1+2m.( k+2

2
−(m

2
).1).

and

d(v2mk+m+1+2m.( k+1
2

)−m
2
.1, v1) =

k +m+ 1

2

because

v2mk+m+1+2m.( k+1
2

)−m
2
.1 → v2mk+m+1+2m.( k+1

2
)−m

2
.1+2m.(1) → v2mk+m+1+2m.( k+1

2
)−m

2
.1+2m.(2)

→ v2mk+m+1+2m.( k+1
2

)−m
2
.1+2m.(3) → · · · → v2mk+m+1+2m.( k+1

2
)−m

2
.1+2m.( k+1

2
)

= v4mk+ 5m
2

+1 → v4mk+ 5m
2

+1−1 → v4mk+ 5m
2

+1−2.1 → · · · → v4mk+ 5m
2

+1−(m
2
).1 = v1.

Therefore,

d(v1, v2mk+m+1) + d(v2mk+m+1, v2mk+m+1+2m.( k+1
2

)−m
2
.1) + d(v2mk+m+1+2m.( k+1

2
)−m

2
.1, v1)

= k +m+
k +m+ 1

2
+
k +m+ 1

2
= 2(k +m) + 1 = 2d+ 1.

So, if u, v, w are three vertices on the graphs G(4mk + 2m; {1, 2m}), where m is even and k is odd then

d(u, v) + d(v, w) + d(w, u) ≤ 2d+ 1.

Lemma 4.3. Let c be radio labeling to V (G(4mk + 2m; {1, 2m})), where m is even. Suppose {xi : 1 ≤ i ≤
4mk+2m} is the ordering of V (G(4mk+2m; {1, 2m})) such that c(xi) < c(xi+1) for all 1 ≤ i ≤ 4mk+2m−1,
then
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c(xi+2)− c(xi) = ci + ci+1 =


k+m
2 + 1, if k is even;

k+m+1
2 + 1, if k is odd.

Proof. Let {xi, xi+1, xi+2} be any set of three vertices on the graphs V (G(4mk + 2m; {1, 2m})), where m
is odd. Applying the radio condition to each pair in the vertex set {xi, xi+1, xi+2} and take the sum of the
inequalities,

|c(xi+1)− c(xi)| ≥ diam(G)− d(xi+1, xi) + 1,

|c(xi+2)− c(xi+1)| ≥ diam(G)− d(xi+2, xi+1) + 1,

|c(xi+2)− c(xi)| ≥ diam(G)− d(xi+2, xi) + 1,

|c(xi+1)−c(xi)|+|c(xi+2)−c(xi+1)|+|c(xi+2)−c(xi)| ≥ 3diam(G)−d(xi+1, xi)−d(xi+2, xi+1)−d(xi+2, xi)+3,

We drop the absolute sign because c(xi) < c(xi+1) < c(xi+2) and using Lemma 4.3 to obtain:

2[c(xi+2)− c(xi)] ≥ 3diam(G)− 2d− 1 + 3,

c(xi+2)− c(xi) ≥


k+m
2 + 1, if k is even;

k+m+1
2 + 1, if k is odd.

Theorem 4.4. The radio number of the circulant graphs G(4mk + 2m; {1, 2m}), where m is even satisfies

rn(G(4mk + 2m; {1, 2m}) ≥


2mk2+2m2k+5mk+m2+m−k

2 , if k is odd;

2mk2+2m2k+7mk+m2+2m−k−1
2 , if k is even.

Proof. Let c be a distance labeling for G(4mk+ 2m; {1, 2m}), where m is even and {x1, x2, x3, ..., x4mk+2m}
be the ordering of vertices of G(4mk + 2m; {1, 2m}), such that c(xi) < c(xi+1) defined by c(x1) = 0 and,
set di = d(xi, xi+1) and ci = c(xi+1) − c(xi). Then ci ≥ d + 1 − di for all i. By Lemma 4.3, the span of a
distance labeling of G(4mk + 2m; {1, 2m}) is

c(x4mk+2m) =
4mk+2m−1∑

i=1

ci = c1 + c2 + c3 + · · ·+ c4mk+2m−2 + c4mk+2m−1

= [c(x2)− c(x1)] + [c(x3)− c(x2)] + · · ·+ [c(x4mk+2m−1)− c(x4mk+2m−2)]

+ [c(x4mk+2m)− c(x4mk+2m−1)]

= (c1 + c2) + (c3 + c4) + (c5 + c6) + · · ·+ (c4mk+2m−3 + c4mk+2m−2) + c4mk+2m−1

=

4mk+2m−2
2∑
i=1

(c2i−1 + c2i) + c4mk+2m−1,

c(x4mk+2m) ≥


4mk+2m−2

2

(
k+m
2 + 1

)
, if k is even;

4mk+2m−2
2

(
k+m+1

2 + 1
)
, if k is odd.

Thus,

c(x4mk+2m) ≥


2mk2+2m2k+5mk+m2+m−k

2 , if k is even;

2mk2+2m2k+7mk+m2+2m−k−1
2 , if k is odd.
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We conjecture that rn(G(4mk + 2m; {1, 2m}), for even m is same as the lower bound in Theorem 4.4.

Conjecture 1: For even value of m, it seems that

rn(G(4mk + 2m; {1, 2m})=


2mk2+2m2k+5mk+m2+m−k

2 , if k is odd;

2mk2+2m2k+7mk+m2+2m−k−1
2 , if k is even.

A case-by-case analysis has confirmed the above conjecture for even value of m.

5. Conclusion

The assignment of channels has unlimited significance for the creation of transmitter network which is
unrestricted of interference. The multilevel distance labeling and antipodal labeling are quick change in this
direction because the level of interference is maximum at diametrical distance. Very few graphs have been
proved to have multilevel distance labeling and antipodal labeling that achieve the radio and radio antipodal
numbers. In this paper, we have investigated the exact value of radio number and radio antipodal number
of the lobster and extended mesh. To develop similar results for various other families of graphs is an open
area of research.

Acknowledgment

We are thankful to the editor and the referees for valuable comments which helps us to improve this
article. This study was supported by research funds from Dong-A University.

References

[1] G. Chartrand, D. Erwin, P. Zhang, Radio antipodal colourings of cycles, Cong. Numer., 144 (2000), 129–141.1
[2] G. Chartrand, D. Erwin, P. Zhang, F. Harary, Radio labelings of graphs, Bull. Inst. Combin. Appl., 33 (2001),

77–85.1
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