
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 2900–2913

Research Article

Common fixed point results involving contractive
condition of integral type in complex valued metric
spaces

Mian Bahadur Zadaa,∗, Muhammad Sarwara, Nasir Rahmanb, Muhammad Imdadc

aDepartment of Mathematics, University of Malakand, Chakdara Dir(L), Pakistan.
bDepartment of mathematics and Statistics, Allam Iqbal open university, Islamabad, Pakistan.
cDepartment of Mathematics, Aligarh Muslim University, Aligarh 202002, India.

Communicated by M. Eslamian

Abstract

By using the Closed Range Property of the involved pairs (in short CLR property), common fixed point
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1. Introduction and Preliminaries

Fixed point theory is one of the most fruitful and applicable topics of nonlinear analysis, which is very old
but still a young area of research. Banach contraction principle [7] is indeed the most popular result of metric
fixed point theory. This principle has fruitful application in several domains such as: Ordinary differential
equations, Partial differential equations, Random differential equations, Integral equations, Economics, Wild
life and several others. Owing to its importance, especially due sound and natural applications, this principle
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has been extended and generalized in numerous spaces namely: 2-metric spaces, D-metric spaces, G-metric
spaces, Partial metric spaces, b-metric spaces, rectangular metric spaces and several others.

Recently, Azam et al. [6] introduced the notion of complex valued metric spaces, which are relatively
more general than ordinary metric spaces, and studied fixed point theorems for mappings satisfying a
rational type inequality. The authors in [2, 3, 8, 10, 12, 14, 15, 16, 20, 23] continue the study of fixed
point in complex valued metric spaces. Verma and Pathak [24] adopted the concepts of (E.A) and (CLR)
properties in complex valued metric spaces and utilize the same to prove some common fixed point theorems
for two pairs of weakly compatible mappings satisfying a contractive condition of maximum type. Manro et
al. [18] proved common fixed point theorems satisfying integral type contractive condition using the (E.A)
and (CLR) properties in complex valued metric space which generalize the noted theorem of Branciari [9].
In recent years, the theorem of Branciari [9] had also been generalized to two pairs of weakly compatible
mappings, by several authors in metric spaces, which include [4, 5, 11, 14, 17, 21] and some others.

Our aim is to prove common fixed point theorems for two pairs of weakly compatible mappings satisfying
contractive condition of integral type in complex valued metric spaces. Furthermore, some common fixed
point theorems for two pairs of weakly compatible mappings satisfying integral type contractive condition
of maximum type are also studied. Besides, our results also extend the corresponding results of [18] proved
in complex valued setting.

To prove our results, we need to recall some basic definitions and results which can also be found in [6].
Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order - on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).
Consequently, one can say that z1 - z2 if one of the following conditions is satisfied:

(1) Re(z1) = Re(z2), Im(z1) < Im(z2);

(2) Re(z1) < Re(z2), Im(z1) = Im(z2);

(3) Re(z1) < Re(z2), Im(z1) < Im(z2);

(4) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we write z1 � z2 if z1 6= z2 and one of (1), (2) and (3) is satisfied, and we write z1 ≺ z2 if only
(3) is satisfied. Notice that

(i) a, b ∈ R and a ≤ b⇒ az - bz for all z ∈ C;

(ii) 0 - z1 � z2 ⇒ |z1| < |z2|;
(iii) z1 - z2 and z2 ≺ z3 ⇒ z1 ≺ z3.

Definition 1.1 ([24]). The “ max ” function for the partial order relation “ - ” is defined as follows:

1. max{z1, z2} = z2 ⇔ z1 - z2;

2. if z1 - max{z2, z3}, then z1 - z2 or z1 - z3;

3. max{z1, z2} = z2 ⇔ z1 - z2 or |z1| ≤ |z2|.

Azam et al. [6] defined the complex valued metric space (X, d) in the following way:

Definition 1.2. Let X be a nonempty set. Suppose that the mapping d : X ×X → C satisfies

1. 0 - d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x), for all x, y ∈ X;

3. d(x, y) - d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a complex valued metric on X and the pair (X, d) is called a complex valued metric space.

Example 1.3 ([10]). Let X = C. Define the mapping d : X ×X → C by

d(z1, z2) = eι̇k|z1 − z2|,

where 0 ≤ k ≤ π
2 . Then (X, d) is a complex valued metric space.
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Definition 1.4 ([6]). Let {xn} be a sequence in a complex valued metric space (X, d) and x ∈ X. Then x
is called the limit of {xn} if for every c ∈ C with 0 ≺ c there is an n0 ∈ N such that d(xn, x) ≺ c for all
n > n0, and we write lim

n→∞
xn = x.

Lemma 1.5 ([6]). Any sequence {xn} in complex valued metric space (X, d) converges to x if and only if
|d(xn, x)| → 0 as n→∞.

Definition 1.6 ([22]). Let S and T be selfmaps defined on a nonempty set X. Then

(i) x ∈ X is said to be fixed point of T if Tx = x;

(ii) x ∈ X is said to be a coincidence point of S and T if Sx = Tx;

(iii) x ∈ X is said to be a common fixed point of S and T if Sx = Tx = x.

Jungck [13] introduced the concept of weakly compatible maps in ordinary metric spaces, while Bhatt
et al. [8] defined the same concept in the complex valued metric spaces in the following way.

Definition 1.7. Let X be a complex valued metric space. Then a pair of self-mapping S, T : X → X are
said to be weakly compatible if they commute at their coincidence points i.e., x ∈ X with Sx = Tx implies
that STx = TSx.

Aamri and Moutawakil [1] generalized the notion of noncompatible mappings to (E.A) property in
ordinary metric spaces, while Verma and Pathak [24] adapted the same concept for complex valued metric
space in the following way.

Definition 1.8. Let T, S : X → X be two selfmaps on a complex-valued metric space (X, d). Then the
pair (T, S) is said to satisfy property (E.A), if there exists a sequence {xn} in X such that

lim
n→∞

Txn = lim
n→∞

Sxn = x for some x ∈ X.

Sintunavarat and Kumam [22] introduced the notion of (CLR) property in ordinary metric spaces.
Similarly Verma and Pathak [24] defined this notion in a complex valued metric space in the following way.

Definition 1.9. Let T, S : X → X be two selfmaps on a complex-valued metric space (X, d). Then T and
S are said to satisfy the common limit range property of with respect to S (denoted by (CLRS)) if there
exists a sequence {xn} in X such that

lim
n→∞

Txn = lim
n→∞

Sxn = Sx for some x ∈ X.

Lemma 1.10 ([19]). If {an} is a sequence in [0,∞), then lim
n→∞

an∫
0

φ(s)ds = 0 if and only if an → 0, as

n→∞.

2. Main results

From [9], let Φ = {φ : φ : [0,∞[→ [0,∞[ is a Lebesgue-integrable mapping which is summable on each

compact subset of [0,∞[, nonnegative, nondecreasing and such that for each ε > 0,
ε∫
0

φ (t) dt > 0}.

Now, let C+ = {z ∈ C : z % 0}. Then for any z1, z2 ∈ C+, define

[z1, z2] = {r (s) ∈ C : r (s) = z1 + s(z2 − z1) for some s ∈ [0, 1]} , (2.1)

(z1, z2] = {r (s) ∈ C : r (s) = z1 + s(z2 − z1) for some s ∈ (0, 1]} . (2.2)

A set P = {z1 = w0, w1, w2, . . . , wn = z2} is a partition of [z1, z2] if and only if the sets {[wi−1, wi)}ni=1

are pairwise disjoint and their union along with z2 is [z1, z2].
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Let ζ : [z1, z2]→ C be defined by

ζ (x, y) = (φ1 (x) , φ2 (y)) ,

where (x, y) ∈ [z1, z2] and φ1, φ2 ∈ Φ. Now, for a given partition P̂ of [z1, z2], we define the lower summation
by

SL

(
ζ, P̂

)
=

n−1∑
n=0

(φ1 (xi) , φ2 (yi)) |(xi+1, yi+1)− (xi, yi)| ,

and the upper summation by

SU

(
ζ, P̂

)
=

n−1∑
n=0

ζ (φ1 (xi+1) , φ2 (yi)) |(xi+1, yi+1)− (xi, yi)| .

Then the integral
z2∫
z1

ζdC , if exists, is defined by

z2∫
z1

ζdC = lim
n→∞

n−1∑
n=0

(φ1 (xi) , φ2 (yi)) |(xi+1, yi+1)− (xi, yi)|

= lim
n→∞

n−1∑
n=0

ζ (φ1 (xi+1) , φ2 (yi)) |(xi+1, yi+1)− (xi, yi)| .

For any ζ := (φ1, φ2) : [(a, b), (c, d)]→ C, define

z2=(c,d)∫
z1=(a,b)

ζdC =

∫
C1

φ1 (s) |z2 − z1| ds,
∫
C2

φ2 (s) |z2 − z1| ds

 .

Using (2.1), we have

z2=(c,d)∫
z1=(a,b)

ζdC =

∫
C1

φ1 (s) |ŕ(s)| ds,
∫
C2

φ2 (s) |ŕ(s)| ds

 .

Particularly for any ζ := (φ1, φ2) : [(0, 0), (a, b)]→ C we have

z2=(a,b)∫
z1=(0,0)

ζdC =

 a∫
0

φ1 (s) |ŕ(s)| ds,
b∫
0

φ2 (s) |ŕ(s)| ds

 .

We denote the set of all complex integrable functions ζ : [z1, z2]→ C by L1 ([z1, z2] ,C).

Lemma 2.1. Let ζ ∈ L1 ([z1, z2] ,C) and {zn} be a sequence in C+; then lim
n→∞

zn∫
0

ζ (s) ds = (0, 0) if and only

if zn → (0, 0), as n→∞.

Proof. From (2.1), we have r(s) = (0, 0) + s (zn − (0, 0))⇒ ŕ(s) = zn. Then

lim
n→∞

zn∫
0

ζ (s) ds = 0 ⇔ lim
n→∞

an∫
0

φ1 (s) |zn|ds,
bn∫
0

φ2 (s) |zn|ds

 = (0, 0) .
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lim
n→∞

zn∫
0

ζ (s) ds = 0 ⇔ lim
n→∞

an∫
0

φ1 (s) ds = 0 and lim
n→∞

bn∫
0

φ2 (s) ds = 0

⇔ an → 0 and bn → 0, as n→∞ (by Lemma 1.10)

⇔ an → 0 and bn → 0, as n→∞
⇔ zn → (0, 0) , as n→∞.

Definition 2.2. A complex valued function ϕ : Rn → C is measurable if both of its real and imaginary
parts are measurable.

Now we extend our ideas to complex valued measurable functions. Let E ⊂ Rn be a measurable set.
Suppose f : E → C. Split f into its real and imaginary parts so that f = Re (f) + iIm (f). Then we define
the Lebesgue integral of f by

∫
E

f =

∫
E

Re (f) + i

∫
E

Im (f) =

∫
E

Re (f) ,

∫
E

Im (f)

 ,

provided that Re (f) and Im (f) are Lebesgue integrable. Denote the set of all such complex valued lebesgue
integrable functions by L1 (E,C).

We define Φ∗ = {ϕ : Rn → C is a complex valued Lebesgue-integrable mapping (i.e., ϕ ∈ L1 (E,C)),

which is summable and nonvanishing on each measurable subset of Rn, such that for each ε � 0,
ε∫
0

ϕ (t) dt �

0}.
The following remark and lemma are consequences of the above discussion.

Remark 2.3. Let ϕ ∈ Φ∗, such that Re (ϕ), Im (ϕ) ∈ Φ and let {zn} be a sequence in C+ converging to z;

then lim
n→∞

zn∫
0

ϕ (s) ds =
z∫
0

ϕ (s) ds.

Lemma 2.4. Let ϕ ∈ Φ∗ such that Re (ϕ), Im (ϕ) ∈ Φ and let {zn} be a sequence in C+; then

lim
n→∞

zn∫
0

ϕ (s) ds = 0 if and only if zn → (0, 0), as n→∞.

Now, we present our main results:

Theorem 2.5. Let (X, d) be a complex valued metric space and K,L,M,N : X → X be four selfmappings
satisfying the conditions:

(1) either the pair (K,M) has (CLRK) property or the pair (L,M) has (CLRL) property;

(2) for each x, y in X and 0 ≤ λ < 1, one has∫ d(Kx,Ly)

0
ϕ(t)dt - λ

∫ d(Kx,Mx)+d(Ly,Ny)

0
ϕ(t)dt.

If K(X) ⊆ N(X) and L(X) ⊆ M(X), then the pairs (K,M) and (L,N) have a coincident point in X.
Moreover if the pairs (K,M) and (L,N) are weakly compatible, then the mappings K,L,M and N have a
unique common fixed point in X.

Proof. Assume that the pair (K,M) has (CLRK) property. Then there exists a sequence {xn} in X such
that

lim
n→∞

Kxn = lim
n→∞

Mxn = Kx for some x ∈ X. (2.3)

Since K(X) ⊆ N(X), there exists a u ∈ X such that Kx = Nu.
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We assert that Lu = Nu. On contrary, let Lu 6= Nu. For this, using condition (2) of Theorem 2.5 with
x = xn and y = u, it would follow that∫ d(Kxn,Lu)

0
ϕ(t)dt - λ

∫ d(Kxn,Mxn)+d(Lu,Nu)

0
ϕ(t)dt.

Taking limit as n→∞ and making use of (2.3), we would get∫ d(Kx,Lu)

0
ϕ(t)dt - λ

∫ d(Lu,Kx)

0
ϕ(t)dt = λ

∫ d(Lu,Kx)

0
ϕ(t)dt ⇒

∣∣∣∣ ∫ d(Kx,Lu)

0
ϕ(t)dt

∣∣∣∣ ≤ λ∣∣∣∣ ∫ d(Lu,Kx)

0
ϕ(t)dt

∣∣∣∣,
which is not possible as 0 ≤ λ < 1. Thus Kx = Lu and hence Lu = Nu = Kx. But L(X) ⊆ M(X), so
there exists a v ∈ X such that Lu = Mv. Therefore

Lu = Nu = Mv = Kx. (2.4)

Now, we claim that Kv = Mv. To substantiate our claim, let suppose that Kv 6= Mv. Then on setting
x = v, y = u in condition (2) of Theorem 2.5, we would have∫ d(Kv,Lu)

0
ϕ(t)dt - λ

∫ d(Kv,Mv)+d(Lu,Nu)

0
ϕ(t)dt,

which on using equation (2.4), would yield∫ d(Kv,Kx)

0
ϕ(t)dt - λ

∫ d(Kx,Kv)

0
ϕ(t)dt ⇒

∣∣∣∣ ∫ d(Kv,Kx)

0
ϕ(t)dt

∣∣∣∣ ≤ λ∣∣∣∣ ∫ d(Kx,Kv)

0
ϕ(t)dt

∣∣∣∣,
which is possible only if

∣∣∣∣ ∫ d(Kv,Kx)

0
ϕ(t)dt

∣∣∣∣ = 0, yielding thereby Kv = Kx. Therefore from (2.4), we have

Kv = Lu = Mv = Nu = Kx = z (say). (2.5)

Now, using the weak compatibility of the pairs (K,M), (L,N) and (2.5), it follows that

Kv = Mv ⇒ KMv = MKv ⇒ Kz = Mz (2.6)

and
Nu = Lu ⇒ LNu = NLu ⇒ Lz = Nz. (2.7)

That is, z is a coincident point of each of the pairs (K,M) and (L,N) in X.
Next, we confirm that z is a common fixed point of K,L,M and N in X. For this, using condition (2)

of Theorem 2.5 with x = z and y = u, we have∫ d(Kz,Lu)

0
ϕ(t)dt - λ

∫ d(Kz,Mz)+d(Lu,Nu)

0
ϕ(t)dt,

which, on using equation (2.5), gives∫ d(Kz,z)

0
ϕ(t)dt - λ

∫ d(Kz,Kz)+d(z,z)

0
ϕ(t)dt = 0.

Thus, d(Kz, z) = 0⇒ Kz = z and hence from equation (2.6), it follows that

Kz = Mz = z. (2.8)



M. Bahadur Zada, et al., J. Nonlinear Sci. Appl. 9 (2016), 2900–2913 2906

Similarly, setting x = v and y = z in condition (2) of Theorem 2.5, we get Lz = z, which in view of
equation (2.7) gives

Lz = Nz = z. (2.9)

Making use equations (2.8) and (2.9), we get

Kz = Lz = Mz = Nz = z.

That is z is a common fixed point of K,L,M and N in X.
To prove the uniqueness of the common fixed point, let z∗ 6= z be another fixed point of K,L,M and

N , i.e., Kz∗ = Lz∗ = Mz∗ = Nz∗ = z∗. Using condition (2) of Theorem 2.5, we would have∫ d(z∗,z)

0
ϕ(t)dt =

∫ d(Kz∗,Lz)

0
ϕ(t)dt - λ

∫ d(Kz∗,Mz∗)+d(Lz,Nz)

0
ϕ(t)dt,

⇒
∣∣∣∣ ∫ d(z∗,z)

0
ϕ(t)dt

∣∣∣∣ ≤ λ∣∣∣∣ ∫ d(z∗,z∗)+d(z,z)

0
ϕ(t)dt

∣∣∣∣ = 0,

which is a contradiction. Thus z = z∗ and hence z is a unique common fixed point of K,L,M and N in
X.

By setting N = M in Theorem 2.5, we get the following corollary involving three mappings.

Corollary 2.6. Let (X, d) be a complex valued metric space and K,L,M : X → X be three self-mappings
satisfying the conditions:

1. either the pair (K,M) has (CLRK) property or the pair (L,M) has (CLRL) property;

2. for each x, y ∈ X and 0 ≤ λ < 1, one has∫ d(Kx,Ly)

0
ϕ(t)dt - λ

∫ d(Kx,Mx)+d(Ly,My)

0
ϕ(t)dt.

If K(X) ⊆ M(X) and L(X) ⊆ M(X), then each of the pairs (K,M) and (L,M) has a coincident point in
X. Moreover if the pairs (K,M) and (L,M) are weakly compatible, then the mappings K,L and M have a
unique common fixed point in X.

By setting L = K and N = M in Theorem 2.5, we get the following corollary involving a pair of
mappings.

Corollary 2.7. Let (X, d) be a complex valued metric space and K,M : X → X selfmappings satisfying the
conditions:

1. the pair (K,M) has (CLRK) property;

2. for each x, y ∈ X and 0 ≤ λ < 1, one has∫ d(Kx,Ky)

0
ϕ(t)dt - λ

∫ d(Kx,Mx)+d(Ky,My)

0
ϕ(t)dt.

If K(X) ⊆ M(X), then the pair (K,M) have a coincident point in X. Moreover if the pair (K,M) are
weakly compatible, then the mappings K and M have a unique common fixed point in X.

If we replace (CLR) property by (E.A) property in Theorem 2.5, we get the following corollary:

Corollary 2.8. Let (X, d) be a complex valued metric space and K,L,M,N : X → X four selfmappings
satisfying condition (2) of Theorem 2.5 and one of the pairs (K,M) and (L,N) has (E.A) property such
that N(X) (or M(X)) is a closed subspace of X. If K(X) ⊆ N(X) and L(X) ⊆ M(X), then each pair
(K,M) and (L,N) have a coincidence point in X. Moreover if the pairs (K,M) and (L,N) are weakly
compatible, then the mappings K,L,M and N have a unique common fixed point in X.
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Proof. Since the (E.A) property together with the closedness property of a suitable subspace imply closed
range property, the proof follows on the lines of the proof of Theorem 2.5. Hence, it is omitted.

To illustrate Theorem 2.5, we construct the following example:

Example 2.9. Let X = (−1, 1) ∪ (1, 5) be a metric space with metric d : X ×X → C defined by d(x, y) =
eι̇m|x− y|, where x, y ∈ X and 0 ≤ m ≤ π

6 . Define selfmaps K,L,M and N on X by

Kx =

{
3 if x ∈ (−1, 1) ∪ (1, 3]
x−1
2 if x ∈ (3, 5)

; Lx =

{
3 if x ∈ (−1, 1) ∪ (1, 3]
x+1
2 if x ∈ (3, 5)

;

Mx =

{
2x− 3 if x ∈ (1, 3]
4 if x ∈ (−1, 1) ∪ (3, 5)

and Nx =


x− 1 if x ∈ (1, 3)
3 if x = 3
5 if x ∈ (−1, 1) ∪ (3, 5)

.

Also define ϕ : R2 → C by ϕ(t) = 3z2, where t = (a, b) and z = a+ ι̇b. Then

K(X) = (1, 2) ∪ {3}, L(X) = (2, 3], M(X) = (−1, 3] ∪ {4}, N(X) = (0, 2) ∪ {3, 5}.

Firstly, we verify condition (1) of Theorem 2.5. For this, let {xn} = {3− 1
n2+1
}n≥1 be a sequence in X.

Then

lim
n→∞

Kxn = lim
n→∞

K

(
3− 1

n2 + 1

)
= lim

n→∞
3 = 3 and

lim
n→∞

Mxn = lim
n→∞

M

(
3− 1

n2 + 1

)
= lim

n→∞

(
2(3− 1

n2 + 1
)− 3

)
= 3,

i.e., there exists a sequence {xn} in X such that limn→∞Kxn = limn→∞Mxn = 3 = Kx for all x ∈ (1, 3].
Thus

lim
n→∞

Kxn = lim
n→∞

Mxn = 3 = Kx for some x ∈ X.

Hence (K,M) has (CLRK) property.
To check condition (2) of Theorem 2.5, we distinguish the following three cases.
Case 1. Let x, y ∈ (1, 3); then Kx = Ky = 3,Mx = 2x− 3 and Ny = y − 1.
Now, for all λ ∈ [0, 1) we have∫ d(Kx,Ly)

0
ϕ(t)dt = 0 - λ(|6− 2x|+ |4− y|)3e3ι̇m = λ

∫ d(Kx,Mx)+d(Ly,Ny)

0
ϕ(t)dt.

Case 2. Let x, y ∈ (−1, 1) ∪ {3}; then Kx = Ly = 3,Mx = 4, Ny = 5 and∫ d(Kx,Ly)

0
ϕ(t)dt = 0 = λ

∫ d(Kx,Mx)+d(Ly,Ny)

0
ϕ(t)dt, ∀ λ ∈ [0, 1).

Case 3. Let x, y ∈ (3, 5); then Kx = x−1
2 , Ly = y+1

2 ,Mx = 4 and Ny = 5.
Now ∫ d(Kx,Ly)

0
ϕ(t)dt =

∫ eι̇m|x−1
2
− y+1

2
|

0
3z2dt = z3

∣∣∣∣eι̇m|x−y−2
2
|

0

=
1

8
|x− y − 2|3e3ι̇m ≺ 8e3ι̇m,

and ∫ d(Kx,Mx)+d(Ly,Ny)

0
ϕ(t)dt = z3

∣∣∣∣eι̇m(|x−1
2 −4|+| y+1

2 −5|)

0

=
1

8
(|x− 9|+ |y − 9|)3e3ι̇m � 64e3ι̇m.
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Thus ∫ d(Kx,Ly)

0
ϕ(t)dt ≺ 8e3ι̇m - λ64e3ι̇m ≺ λ

∫ d(Kx,Mx)+d(Ly,Ny)

0
ϕ(t)dt,

⇒
∫ d(Kx,Ly)

0
ϕ(t)dt ≺ λ

∫ d(Kx,Mx)+d(Ly,Ny)

0
ϕ(t)dt, ∀ λ ∈

[
1

8
, 1

)
.

Therefore, in view of foregoing three cases, the integral contractive condition (2) is satisfied.
Also K(X) ⊆ N(X) and L(X) ⊆M(X) and the pairs (K,M) and (L,N) are weakly compatible. Thus

all the conditions of Theorem 2.5 are satisfied and 3 is a unique common fixed point of K,L,M and N .

To illustrate Corollary 2.8, we construct the following example.

Example 2.10. Let X = (1, 3] ∪ [4, 6] be a metric space with metric d : X ×X → C defined by d(x, y) =
eι̇m|x− y|, where x, y ∈ X and 0 ≤ m ≤ π

6 . Define selfmaps K,L,M and N on X by

Kx =

{
3
2 if x ∈ (1, 32 ] ∪ [4, 6]
2 if x ∈ (32 , 3]

; Lx =

{
3
2 if x ∈ (1, 32 ] ∪ [4, 6]
3 if x ∈ (32 , 3]

;

Mx =


3 if x ∈

(
1, 32
)

3
2 if x ∈ {32} ∪ [4, 6]
2x if x ∈

(
3
2 , 3
] and Nx =


3− x if x ∈

(
1, 32
)

3
2 if x ∈ {32} ∪ [4, 6]
4 if x ∈

(
3
2 , 3
] .

Also define ϕ : R2 → C by ϕ(t) = 3z2, where t = (a, b) and z = a+ ι̇b. Then by routine calculation one
can verify all the conditions of Corollary 2.8, so that 3

2 is a unique common fixed point of K,L,M and N .

Our next theorem is proved under maximum integral contractive condition.

Theorem 2.11. Let (X, d) be a complex valued metric space and K,L,M,N : X → X four selfmappings
satisfying the conditions:

(1) either the pair (K,M) has (CLRK) property or the pair (L,N) has (CLRL) property;

(2) for each x, y ∈ X and 0 ≤ λ < 1, one has∫ d(Kx,Ly)

0
ϕ(t)dt - λ max

(∫ d(Ly,Mx)[1+d(Kx,Mx)d(Kx,Ny)]

0
ϕ(t)dt,

∫ d(Kx,Ny)[1+d(Ly,Mx)d(Ly,Ny)]

0
ϕ(t)dt

)
.

If K(X) ⊆ N(X) and L(X) ⊆ M(X), then each of the pairs (K,M) and (L,N) have a coincidence point
in X. Moreover if the pairs (K,M) and (L,N) are weakly compatible, then the mappings K,L,M and N
have a unique common fixed point in X.

Proof. Let the pair (K,M) have (CLRK) property; then there exists a sequence {xn} in X such that

lim
n→∞

Kxn = lim
n→∞

Mxn = Kx for some x ∈ X. (2.10)

Since K(X) ⊆ N(X), there exists a u ∈ X such that Kx = Nu.
We claim that Lu = Nu. If not, then on using condition (2) of Theorem 2.11 with x = xn and y = u, it

would follow that ∫ d(Kxn,Lu)

0
ϕ(t)dt - λ max

(∫ d(Mxn,Lu)[1+d(Mxn,Kxn)d(Nu,Kxn)]

0
ϕ(t)dt,∫ d(Nu,Kxn)[1+d(Mxn,Lu)d(Nu,Lu)]

0
ϕ(t)dt

)
.
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Taking limit as n→∞ and using (2.10), we would have∫ d(Kx,Lu)

0
ϕ(t)dt - λ max

(∫ d(Kx,Lu)

0
ϕ(t)dt, 0

)
= λ

∫ d(Kx,Lu)

0
ϕ(t)dt,

implies that

∣∣∣∣ ∫ d(Kx,Lu)

0
ϕ(t)dt

∣∣∣∣ ≤ λ ∣∣∣∣ ∫ d(Kx,Lu)

0
ϕ(t)dt

∣∣∣∣, which is possible only if

∣∣∣∣ ∫ d(Kx,Lu)

0
ϕ(t)dt

∣∣∣∣ = 0,

thus Lu = Kx and Lu = Nu = Kx. But L(X) ⊆M(X), so there exists v ∈ X such that Lu = Mv. Hence

Lu = Nu = Mv = Kx. (2.11)

Next, we show that Kv = Mv. Let, on contrary, Kv 6= Mv; then on putting x = v and y = u in
condition (2) of Theorem 2.11, we would obtain∫ d(Kv,Lu)

0
ϕ(t)dt - λ max

(∫ d(Mv,Lu)[1+d(Mv,Kv)d(Nu,Kv)]

0
ϕ(t)dt,

∫ d(Nu,Kv)[1+d(Mv,Lu)d(Nu,Lu)]

0
ϕ(t)dt

)
.

Using equation (2.11), we would have∫ d(Kv,Kx)

0
ϕ(t)dt - λ max

(
0,

∫ d(Kx,Kv)

0
ϕ(t)dt

)
,= λ

∫ d(Kx,Kv)

0
ϕ(t)dt

⇒
∣∣∣∣ ∫ d(Kv,Kx)

0
ϕ(t)dt

∣∣∣∣ ≤ λ ∣∣∣∣ ∫ d(Kx,Kv)

0
ϕ(t)dt

∣∣∣∣,
which is contradiction. Thus Kv = Kx and hence Kv = Mv = Kx. Therefore from equation (2.11), it
follows that

Kv = Lu = Nu = Mv = Kx = z(say). (2.12)

Now, using the weak compatibility of the pairs (K,M), (L,N) and equation (2.12) it follows that

Kv = Mv ⇒ KMv = MKv ⇒ Kz = Mz (2.13)

and
Nu = Lu ⇒ LNu = NLu ⇒ Lz = Nz. (2.14)

That is z is a coincident point of each pair (K,M) and (L,N) in X.
Next, we have to show that z is a common fixed point of K,L,M and N in X. For this, by putting

x = z and y = u in condition (2) of Theorem 2.11, we have∫ d(Kz,Lu)

0
ϕ(t)dt - λ max

(∫ d(Lu,Mz)[1+d(Kz,Mz)d(Kz,Nu)]

0
ϕ(t)dt,

∫ d(Kz,Nu)[1+d(Lu,Mz)d(Lu,Nu)]

0
ϕ(t)dt

)
.

Using equations (2.12) and (2.13), we get∫ d(Kz,z)

0
ϕ(t)dt - λmax

(∫ d(z,Kz)

0
ϕ(t)dt,

∫ d(Kz,z)

0
ϕ(t)dt

)
=

∫ d(Kz,z)

0
ϕ(t)dt,

which is possible if
∫ d(Kz,z)
0 ϕ(t)dt = 0, thus Kz = z and hence from equation (2.13), we get

Kz = Mz = z. (2.15)

Similarly, if we put x = v and y = z in condition (2) of Theorem 2.11, we get

Lz = Nz = z. (2.16)
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Using equations (2.15) and (2.16), we get

Kz = Mz = Lz = Nz = z. (2.17)

That is z is a common fixed point of K,L,M and N in X.
To prove the uniqueness of the common fixed point, let z∗ 6= z be another fixed point of K,L,M and

N , i.e., Kz∗ = Lz∗ = Mz∗ = Nz∗ = z∗. Then using condition (2) of Theorem 2.11, we would have∫ d(z,z∗)

0
ϕ(t)dt =

∫ d(Kz,Lz∗)

0
ϕ(t)dt

-λ max

(∫ d(Lz∗,Mz)[1+d(Kz,Mz)d(Kz,Nz∗)]

0
ϕ(t)dt,

∫ d(Kz,Nz∗)[1+d(Lz∗,Mz)d(Lz∗,Nz∗)]

0
ϕ(t)dt

)
-λ max

(∫ d(z,z∗)

0
ϕ(t)dt,

∫ d(z,z∗)

0
ϕ(t)dt

)
=

∫ d(z,z∗)

0
ϕ(t)dt,

which is not possible. Thus z = z∗ and z remains a unique common fixed point of K,L,M and N in X.

By setting N = M in Theorem 2.11, we get the following corollary involving three mappings.

Corollary 2.12. Let (X, d) be a complex valued metric space and K,L,M : X → X three selfmappings
satisfying the conditions:

1. either the pair (K,M) has (CLRK) property or the pair (L,M) has (CLRL) property;

2. for each x, y ∈ X and 0 ≤ λ < 1, one has∫ d(Kx,Ly)

0
ϕ(t)dt - λ max

(∫ d(Mx,Ly)[1+d(Mx,Kx)d(My,Kx)]

0
ϕ(t)dt,

∫ d(My,Kx)[1+d(Mx,Ly)d(My,Ly)]

0
ϕ(t)dt

)
.

If K(X) ⊆ M(X) and L(X) ⊆ M(X), then each of the pairs (K,M) and (L,M) have a coincidence point
in X. Moreover if the pairs (K,M) and (L,M) are weakly compatible, then the mappings K,L and M have
a unique common fixed point in X.

By setting L = K and N = M in Theorem 2.11, we get the following corollary involving a pair of
mappings.

Corollary 2.13. Let (X, d) be a complex valued metric space and K,M : X → X two selfmappings satisfying
the conditions:

1. the pair (K,M) has (CKRK) property;

2. for each x, y ∈ X and 0 ≤ λ < 1, one has∫ d(Kx,Ky)

0
ϕ(t)dt - λ max

(∫ d(Ky,Mx)[1+d(Kx,Mx)d(Kx,My)]

0
ϕ(t)dt,

∫ d(Kx,My)[1+d(Ky,Mx)d(Ky,My)]

0
ϕ(t)dt

)
.

If K(X) ⊆ M(X), then each pair (K,M) have a coincidence point in X. Moreover if the pair (K,M) is
weakly compatible, then the mappings K and M have a unique common fixed point in X.

If we replace (CLR) property by (E.A) property in Theorem 2.11, we get the following corollary.

Corollary 2.14. Let (X, d) be a complex valued metric space and K,L,M,N : X → X four selfmappings
satisfying condition (2) of Theorem 2.11 and one of the pairs (K,M) and (L,N) has (E.A) property such
that N(X) (or M(X)) is a closed subspace of X. If K(X) ⊆ N(X) and L(X) ⊆ M(X), then each of the
pairs (K,M) and (L,N) have a coincidence point in X. Moreover if the pairs (K,M) and (L,N) are weakly
compatible, then the mappings K,L,M and N have a unique common fixed point in X.
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Proof. As indicated earlier, the proof easily follows on the lines of the proof of Theorem 2.11, so we omit
it.

To illustrate Theorem 2.11, we provide the following example.

Example 2.15. Let X = {−13 } ∪ (0, 32) be a metric space with metric d : X ×X → C defined by d(x, y) =
ι̇|x− y|, where x, y ∈ X. Define selfmaps K,L,M and N on X by

Kx =

{
1
6 if x ∈ {−13 } ∪ (0, 12) ∪ [1, 32)
1
2 if x ∈ [12 , 1)

; Lx =

{
1
7 if x ∈ {−13 } ∪ (0, 12) ∪ [1, 32)
1
2 if x ∈ [12 , 1)

;

Mx =

{ −1
3 if x ∈ {−13 } ∪ (0, 12) ∪ [1, 32)

1− x if x ∈ [12 , 1)
; Nx =

{
1
6 if x ∈ {−13 } ∪ (0, 12) ∪ [1, 32)
2x− 1

2 if x ∈ [12 , 1)
.

Also define ϕ : R2 → C by ϕ(t) = 5z4, where t = (a, b) and z = a+ ι̇b. Then

K(X) =

{
1

6
,
1

2

}
, L(X) =

{
1

7
,
1

2

}
, M(X) =

(
0,

1

2

]
∪
{
−1

3

}
, N(X) =

{
1

6

}
∪
[

1

2
,
3

2

)
.

Firstly, we verify condition (2) of Theorem 2.11. For this let {xn} = {12 + 1
n+2}n≥1 be a sequence in X.

Then

lim
n→∞

Kxn = lim
n→∞

K

(
1

2
+

1

n+ 2

)
= lim

n→∞

1

2
=

1

2

and lim
n→∞

Mxn = lim
n→∞

M

(
1

2
+

1

n+ 2

)
= lim

n→∞

(
1

2
− 1

n+ 2

)
=

1

2
,

that is, there exists a sequence {xn} in X such that lim
n→∞

Kxn = lim
n→∞

Mxn = 1
2 = Kx for some x ∈ X.

Hence (K,M) has (CLRK) property.
To check condition (2) of Theorem 2.11, we distinguish the following cases.
Case 1. Let x, y ∈ {−13 } ∪ (0, 12) ∪ [1, 32); then Kx = 1

6 , Ly = 1
7 ,Mx = −1

3 and Ny = 1
6 . Now

∫ d(Kx,Ly)

0
ϕ(t)dt = z5

∣∣∣∣ ι̇42
0

=

(
ι̇

42

)5

= 7.651622719× 10−9ι̇.

Also ∫ d(Ly,Mx)[1+d(Kx,Mx)d(Kx,Ny)]

0
ϕ(t)dt = z5

∣∣∣∣ 10ι̇21
[1− 1

2
.0]

0

=

(
10ι̇

21

)5

= 0.0244851927ι̇.

Hence for all λ ∈
[

1
3200000 , 1

)
we have∫ d(Kx,Ly)

0
ϕ(t)dt =7.651622719× 10−9ι̇

-λ0.0244851927ι̇

=λmax

(∫ d(Ly,Mx)[1+d(Kx,Mx)d(Kx,Ny)]

0
ϕ(t)dt,

∫ d(Kx,Ny)[1+d(Ly,Mx)d(Ly,Ny)]

0
ϕ(t)dt

)
.

Case 2. Let x, y ∈ [12 , 1); then Kx = Ly = 1
2 ,Mx = 1 − x and Ny = 2y − 1

2 . Now, for all λ ∈ [0, 1) we
have∫ d(Kx,Ly)

0
ϕ(t)dt = 0 - λmax

(∫ d(Ly,Mx)[1+d(Kx,Mx)d(Kx,Ny)]

0
ϕ(t)dt,

∫ d(Kx,Ny)[1+d(Ly,Mx)d(Ly,Ny)]

0
ϕ(t)dt

)
.
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Therefore from the above two cases, it follows that for all λ ∈
[

1
3200000 , 1

)
we have∫ d(Kx,Ly)

0
ϕ(t)dt - λ max

(∫ d(Ly,Mx)[1+d(Kx,Mx)d(Kx,Ny)]

0
ϕ(t)dt.

∫ d(Kx,Ny)[1+d(Ly,Mx)d(Ly,Ny)]

0
ϕ(t)dt

)
.

Also K(X) ⊆ N(X) and L(X) ⊆M(X) and the pairs (K,M) and (L,N) are weakly compatible. Thus
all the conditions of Theorem 2.11 are satisfied, and 1

2 is a unique common fixed point of K,L,M and N .

To illustrate Corollary 2.14, we furnish the following example.

Example 2.16. Let X = {−13 } ∪ [0, 1) be a metric space with metric d : X ×X → C defined by d(x, y) =
ι̇|x− y|, where x, y ∈ X. Define selfmaps K,L,M and N on X by

Kx =

{
0 if x ∈ [0, 12)
1
8 if x ∈ {−13 } ∪ [12 , 1)

; Lx =

{
0 if x ∈ [0, 12)
1
9 if x ∈ {−13 } ∪ [12 , 1)

;

Mx =

{
x if x ∈ [0, 12)
−1
3 if x ∈ {−13 } ∪ [12 , 1)

and Nx =

{
x if x ∈ [0, 12)
1
2 if x ∈ {−13 } ∪ [12 , 1)

.

Also define ϕ : R2 → C by ϕ(t) = 5z4, where t = (a, b) and z = a + ι̇b. Then by routine calculations,
one can verify all the conditions of Corollary 2.14 and 0 is a unique common fixed point of K,L,M and N .

Remark 2.17. The derived results generalize the results contained in [18].
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