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Abstract

Recently, Chen established a relation for the squared norm second fundamental form of warped product
immersion by using Codazzi equation. We establish a sharp inequality for a contact CR-warped product
submanifold in a cosymplectic space form by using the Gauss equation. The equality case is also discussed.
c©2016 All rights reserved.

Keywords: Warped product, contact CR-submanifold, inequality, cosymplectic manifold, NT -minimal
immersion.
2010 MSC: 53C40, 53C42, 53C15, 53D15.

1. Introduction

Let φ : N1 ×f N2 → M̃ be an isometric immersion of a warped product into a Riemannian manifold.
Denote by σ the second fundamental form of φ. Let trσ1 and trσ2 be the traces of σ restricted to N1 and
N2, respectively, i.e.,

trσ1 =

n1∑
i=1

σ(ei, ei), trσ2 =
n∑

k=n1+1

σ(ek, ek),

for orthonormal vector fields e1, · · · , en1 in Γ(TN1) and en1+1, · · · , en in Γ(TN2), where Γ(TN1) and Γ(TN2)
are sets of vector fields on N1 and N2, respectively. The immersion φ is called mixed totally geodesic if
σ(X,Z) = 0, for any X ∈ Γ(TN1) and Z ∈ Γ(TN2). The immersion is called Ni-minimal if trσi = 0,
i = 1, 2.

Recently, B.-Y. Chen used Codazzi equation to establish the following inequality for the second funda-
mental form in terms of warping function.
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Theorem 1.1 ([2]). Let M = Nh
T ×fN

p
⊥ be a CR-warped product in a complex space form M̃(4c) of constant

holomorphic sectional curvature c. Then we have

‖σ‖2 ≥ 2p{‖∇(ln f)‖2 + ∆(ln f) + 2hc}. (1.1)

If the equality sign in (1.1) holds identically, then NT is a totally geodesic submanifold and N⊥ is a totally

umbilical submanifold. Moreover, M is a minimal submanifold in M̃(4c).

Similar inequalities have been done for other spaces (see [1, 3]). In our research findings, the base
manifold is considered to be an invariant submanifold of the ambient manifold. In this paper, we use the
Gauss equation instead of Codazzi one to establish the following inequality.

Theorem 1.2. Let φ : M = NT ×f N⊥ → M̃ be an isometric immersion of a contact CR-warped product

into a cosymplectic space form M̃(c) of constant ϕ-sectional curvature c. Then, we have:

(i) The squared norm of the second fundamental form σ of M satisfies

‖σ‖2 ≥ n2

( c
4

(2n1 + 1)− 2
∆f

f

)
, (1.2)

where n1 = dimNT , n2 = dimN⊥ and ∆ is the Laplacian operator of NT .

(ii) If the equality sign in (1.2) holds identically, then NT is a totally geodesic submanifold and N⊥ is a

totally umbilical submanifold of M̃(c). Moreover, M is a minimal submanifold of M̃(c).

The paper is organized as follows: Section 2 is devoted to preliminaries. In Section 3, first we develop
some basic results for later use and then we prove Theorem 1.2.

2. Preliminaries

Let M̃ be a (2m+1)-dimensional almost contact manifold with almost contact structure (ϕ, ξ, η), i.e., a

structure vector field ξ, a (1, 1) tensor field ϕ and a 1-form η on M̃ such that ϕ2X = −X+η(X)ξ, η(ξ) = 1,

for any vector field X on M̃ .
We consider a product manifold M̃ × R, where R denotes the real line. Then a vector field on M̃ × R

is given by (X,λ d
dt), where X is a vector field tangent to M̃, t the coordinate of R and λ a smooth function

on M̃ × R.
Now, define a linear map J on the tangent space of M̃ × R by J(X,λ d

dt) = (ϕX − λξ, η(X) d
dt). Then,

we have J2 = −I, where I is the identity transformation on M̃ ×R and hence J is almost complex structure
on M̃ × R.

The manifold M̃ is said to be normal if J is integrable.
The condition for being normal is equivalent to vanishing of the torsion tensor [ϕ,ϕ] + 2dη ⊗ ξ, where

[ϕ,ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ]

for any vector fields X, Y tangent to M̃ is the Nijenhuis tensor of ϕ.
There always exists a compatible Riemannian metric g satisfying g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ),

for any vector fields X,Y tangent to M̃ . Thus the manifold M̃ is said to be almost contact metric manifold
and (ϕ, ξ, η, g) is its almost contact metric structure.

It is clear that η(X) = g(X, ξ). The fundamental 2-form Φ on M̃ is defined by Φ(X,Y ) = g(X,ϕY ),

for any vector fields X,Y tangent to M̃ .
The manifold M̃ is said to be almost cosymplectic if the forms η and Φ are closed, i.e., dη = 0 and

dΦ = 0, where d is an exterior differential operator.
An almost cosymplectic and normal manifold is cosymplectic.
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It is well known that an almost contact metric manifold M̃ is cosymplectic if and only if ∇̃Xϕ vanishes
identically, where ∇̃ is the Levi-Civita connection on M̃ .

A cosymplectic manifold M̃ with constant ϕ-sectional curvature c is called a cospymplectic space form
and denoted by M̃(c). Then the Riemannian curvature tensor R̃ is given by

R̃(X,Y ;Z,W ) =
c

4

{
g(X,W )g(Y,Z)− g(X,Z)g(Y,W ) + g(X,ϕW )g(Y, ϕZ)

− g(X,ϕZ)g(Y, ϕW )− 2g(X,ϕY )g(Z,ϕW )− g(X,W )η(Y )η(Z)

+ g(X,Z)η(Y )η(W )− g(Y,Z)η(X)η(W ) + g(Y,W )η(X)η(Z)
}
.

(2.1)

Let M be an n-dimensional Riemannian manifold isometrically immersed in a Riemannian manifold
M̃ . Then, the Gauss and Weingarten formulas are respectively given by ∇̃XY = ∇XY + σ(X,Y ) and
∇̃XN = −ANX +∇⊥XN , for any X,Y ∈ Γ(TM), where ∇ is the induced Riemannian connection on M , N

is a vector field normal to M̃ , σ is the second fundamental form of M , ∇⊥ is the normal connection in the
normal bundle TM⊥ and AN is the shape operator of the second fundamental form. They are related by
g(ANX,Y ) = g(σ(X,Y ), N) where g denotes the Riemannian metric on M̃ as well as the metric induced
on M .

Let M be an n-dimensional submanifold of an almost contact metric (2m + 1)-manifold M̃ such that
restricted to M , the vectors e1, · · · , en are tangent to M and hence en+1, · · · e2m+1 are normal to M . Let
{σrij}, i, j = 1, · · · , n; r = n+ 1, · · · , 2m+ 1. Then we have

σrij = g(σ(ei, ej), er) = g(Aerei, ej) and ‖σ‖2 =

n∑
i,j=1

g(σ(ei, ej), σ(ei, ej)). (2.2)

The mean curvature vector ~H is defined by

~H =
1

n
trσ =

1

n

n∑
i,j=1

σ(ei, ei), (2.3)

where {e1, · · · , en} is a local orthonormal frame of the tangent bundle TM of M . The squared mean

curvature is given by H2 = g( ~H, ~H). A submanifold M is called minimal in M̃ if its mean curvature

vector vanishes identically, and M is totally geodesic in M̃ , if σ(X,Y ) = 0, for all X,Y ∈ Γ(TM). If

σ(X,Y ) = g(X,Y )H for all X,Y ∈ Γ(TM), then M is a totally umbilical submanifold of M̃ .
For any X ∈ Γ(TM), we decompose ϕX as φX = PX + FX, where PX and FX are the tangential

and normal components of ϕX, respectively. Also, the squared norm of P is defined by

‖P‖2 =
n∑

i,j=1

(
g(ϕei, ej)

)2
. (2.4)

For a submanifold M of an almost contact manifold M̃ , if F is identically zero, then M is invariant,
and if P is identically zero, then M is anti-invariant.

Let R and R̃ denote the Riemannian curvature tensors of M and M̃ , respectively. The equation of
Gauss is given by

R(X,Y ;Z,W ) = R̃(X,Y, Z,W ) + g(σ(X,W ), σ(Y,Z))

− g(σ(X,Z), σ(Y,W ))
(2.5)

for vectors X,Y, Z,W tangent to M .
Let M be an n-dimensional Riemannian manifold and e1, · · · , en be an orthonormal frame field on M .

Then for a differentiable function ψ on M , the Laplacian ∆ψ of ψ is defined by

∆ψ =

n∑
i=1

{
(∇̃eiei)ψ − eieiψ

}
. (2.6)
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The scalar curvature of M at a point p in M is given by

τ(p) =
∑

1≤i<j≤n
K(ei, ej), (2.7)

where K(ei, ej) denotes the sectional curvature of the plane section spanned by ei and ej .
Due to behaviour of the tensor field ϕ, there are various classes of submanifolds. We mention the

following:

(1) A submanifold M , tangent to the structure vector field ξ, is called an invariant submanifold if ϕ
preserves any tangent space of M , i.e., ϕ(TpM) ⊆ TpM , for each p ∈M .

(2) A submanifold M , tangent to the structure vector field ξ, is said to be an anti-invariant submanifold
if ϕ maps any tangent space of M into the normal space, i.e., ϕ(TpM) ⊆ TpM⊥, for each p ∈M .

(3) A submanifold M , tangent to the structure vector field ξ, is called a contact CR-submanifold if it
admits an invariant distribution D whose orthogonal complementary distribution D⊥ is anti-invariant,
i.e., the tangent space of M is decomposed as TM = D⊕D⊥⊕〈ξ〉 with ϕDp = Dp and ϕD⊥p ⊆ TpM⊥,
for each p ∈ M , where 〈ξ〉 denotes a 1-dimensional distribution spanned by the structure vector field
ξ.

In this paper, we study contact CR-warped product submanifolds, therefore we are concerned with the
case (3). For a contact CR-submanifold M of an almost contact metric manifold M̃ , the normal bundle
TM⊥ is decomposed as

TM⊥ = ϕD⊥ ⊕ µ, ϕD⊥ ⊥ µ , (2.8)

where µ is an orthogonal complementary distribution of ϕD⊥ which is invariant normal subbundle of TM⊥

with respect to ϕ.

3. Proof of Theorem 1.2

Before proving the theorem, we need some lemmas and some basic formulas for a warped product. Let
M = N1 ×f N2 be a warped product. Then for unit vector fields X,Y ∈ Γ(TN1) and Z ∈ Γ(TN2), we have

∇XZ = ∇ZX = (X ln f)Z, g(∇XY, Z) = 0, (3.1)

which implies that (see [4, p. 210])

K(X ∧ Z) =
1

f

{
(∇XX)f −X2f

}
. (3.2)

If we choose a local orthonormal frame e1, · · · , en such that e1,· · · , en1 are tangent to N1 and en1+1,· · ·,en
are tangent to N2, then we have

∆f

f
=

n1∑
i=1

K(ei ∧ ej), (3.3)

for each j = n1 + 1, · · · , n.
The contact CR-warped product submanifolds of cosymplectic manifolds were studied in [1, 5]. In this

section, first we give the following lemma.

Lemma 3.1. Let M = NT ×f N⊥ be a contact CR-warped product submanifold of a cosymplectic manifold

M̃ such that ξ ∈ Γ(TNT ), where NT and N⊥ are the invariant and anti-invaraint submanifolds of M̃ ,
respectively. Then

g(σ(ϕX,ϕY ), N) = −g(σ(X,Y ), N), (3.4)

for any X,Y ∈ Γ(TNT ) and N ∈ Γ(TM⊥), where TM⊥ is the normal bundle of M .
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Proof. For any X,Y ∈ Γ(TNT ) and any N ∈ Γ(TM⊥), we have

g(σ(X,Y ), N) = g(∇̃XY,N)

= g(ϕ∇̃XY, ϕN)

= g(∇̃XϕY, ϕN)− g((∇̃Xϕ)Y, ϕN).

Using the cosymplectic character and the property of Riemannian connection, we derive

g(σ(X,Y ), N) = g(AϕNX,ϕY ) = g(σ(X,ϕY ), ϕN). (3.5)

Similarly, we have
g(σ(X,Y ), N) = g(σ(ϕX, Y ), ϕN). (3.6)

Interchanging X by ϕX and Y by ϕY in (3.6), we obtain

g(σ(ϕX,ϕY ), N) = −g(σ(X,ϕY ), ϕN). (3.7)

Thus the result follows from (3.5) and (3.6).

Also, for a contact CR-warped product submanifold M = NT ×f N⊥ of cosymplectic manifold M̃ , we
have [5]

g(σ(X,Y ), ϕZ) = 0 (3.8)

for any X,Y ∈ Γ(TNT ) and Z ∈ Γ(TN⊥).
Now, we have the following lemma:

Lemma 3.2. Let φ : NT ×f N⊥ → M̃ be a warped immersion into a cosymplectic manifold M̃ such that
ξ ∈ Γ(TNT ). Then φ is NT -minimal.

Proof. Let M = NT ×f N⊥ be an n-dimensional warped product submanifold isometrically immersed into

a (2m + 1)-cosymplectic manifold M̃ such that ξ is tangent to NT , where NT and N⊥ are invariant and

anti-invariant submanifold of M̃ with their real dimensions n1 and n2, respectively.
Let us consider the orthonormal frame fields of NT and N⊥, respectively, which are {e1, · · · , ep, ep+1 =

ϕe1, · · · e2p = ϕep, e2p+1 = en1 = ξ} and {en1+1, · · · , en}.
Then the orthonormal frame fields of the normal subbundle ϕD⊥ and µ of TM⊥, respectively, are

{en+1 = ϕen1+1, · · · , en+n2ϕen} and {en+n2+1, · · · , e2m+1}.
The dimensions of ϕD⊥ and µ are n2 and (2m+ 1− n− n2), respectively.
Then the squared norm of the mean curvature vector restricted to NT , say ‖H1‖2 is

‖H1‖2 =
2m+1∑
r=n+1

n1∑
i=1

σrii.

n1∑
j=1

σrjj =
2m+1∑
r=n+1

n1∑
i=1

(σrii)
2

=

2m+1∑
r=n+1

(
σr11 + · · ·+ σrn1n1

)2
.

Using (2.2) and (2.8), we find

‖H1‖2 =

n2∑
r=1

(
g(σ(e1, e1), ϕer) + · · ·+ g(σ(en1 , en1), ϕer)

)2
+

2m+1∑
r=n+n1+1

(
g(σ(e1, e1), er) + · · ·+ g(σ(en1 , en1), er)

)2
.
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The first sum in the right-hand side is identically zero by using (3.8), and hence from the frame fields
of NT (dimNT = n1 = 2p+ 1), we obtain

‖H1‖2 =

2m+1∑
r=n+n1+1

(
g(σ(e1, e1), er) + · · ·+ g(σ(ep, ep), er)

+ g(σ(ϕe1, ϕe1), er) + · · ·+ g(σ(ϕep, ϕep), er) + g(σ(ξ, ξ), er)
)2
.

Then the right-hand side vanishes identically by using (3.4) and the fact that σ(ξ, ξ) = 0 and hence
~H1 = 0, which proves the lemma.

Thus, from the above lemma the squared norm of the mean curvature vector H of M will be

‖ ~H‖2 =
1

n2

2m+1∑
r=n+1

(σr(n1+1)(n1+1) + · · ·+ σrnn)2. (3.9)

Lemma 3.3. Let φ : M = NT ×f N⊥ → M̃ be a warped product immersion into a cosymplectic manifold

M̃ such that ξ ∈ Γ(TNT ). Then, we have

(i) 1
2‖σ‖

2 ≥ τ̃(TM)− τ̃(TNT )− τ̃(TN⊥)− n2∆f
f , where τ̃(TM) =

∑
1≤i<j≤n K̃(ei∧ ej) denotes the scalar

curvature of the n-plane section and K̃(ei ∧ ej) is the sectional curvature of the plane section spanned

by the vectors ei and ej in the ambient manifold M̃ and n2 is the dimension of N⊥.

(ii) If the equality sign in (i) holds identically, then NT and N⊥ are totally geodesic and totally umbilical

submanifolds in M̃ , respectively.

Proof. We skip the proof of this lemma as we have proved it in [3] for a more general case such as for a
nearly trans-Sasakian manifold.

Now, by using the Gauss equation, some preliminaries formulas and Lemma 3.3, we are able to prove
our main theorem for cosymplectic space form M̃(c).

Proof of Theorem 1.2. For the unit orthonormal vectors X = ei = W and Y = ej = Z, from (2.1), we have

2τ̃(TNT ) =
c

4

∑
1≤i<j≤n1

{
g(ei, ei)g(ej , ej)− g(ei, ej)

2 + g(ei, ϕei)g(ej , ϕej)

− 3g(ei, ϕej)g(ej , ϕei)− η(ej)
2g(ei, ei)

+ 2η(ei)η(ej)g(ei, ej)− η(ei)
2g(ej , ej)

}
=
c

4

∑
1≤i 6=j≤n1

{
g(ei, ei)g(ej , ej)− g(ei, ej)

2 + 3g(ϕei, ej)
2

− η(ej)
2g(ei, ei) + 2η(ej)η(ei)g(ei, ej)− η(ei)

2g(ej , ej)
}

=
c

4
{n1(n1 − 1) + 3‖P‖2 − 2(n1 − 1)}.

Also, for an n1-dimensional invariant submanifold tangent to ξ = en1 , one can get ‖P‖2 = n1 − 1; thus
we derive

2τ̃(TNT ) =
c

4
{n1(n1 − 1) + (n1 − 1)}. (3.10)

On the other hand, by using the frame field of TN⊥ and Lemma 3.2, we have

2τ̃(TN⊥) =
c

4

∑
n1+1≤i<j≤n

{
g(ei, ei)g(ej , ej)− g(ei, ej)

2
}

=
c

4
n2(n2 − 1).

(3.11)
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Similarly, by using (2.1) and the frame field of TM , one can get

2τ̃(TM) =
c

4
{n(n− 1) + 3‖P‖2 − 2(n− 1)},

where ‖P‖2 =
∑n

i,j=1 g(Pei, ej)
2 = n− 1. Thus, we have

2τ̃(TM) =
c

4
{n(n− 1) + (n− 1)}, (3.12)

where n = n1 + n2. Then by Lemma 3.3 (ii), relations (3.10), (3.11) and (3.12) we have

‖σ‖2 ≥ c

4
n2(2n1 + 1)− 2n2

∆f

f
, (3.13)

which is the inequality (i) of the theorem. The equality case follows from Lemma 3.3.

The following corollaries are consequences of Theorem 1.2.

Corollary 3.4. Let M̃(c) be a cosymplectic space form with c ≤ 0. Then there does not exist any contact

CR-warped product submanifold NT ×f N⊥ in M̃(c) such that ln f is a harmonic function on NT .

Proof. Let us assume that there exists a contact CR-warped product submanifoldNT×fN⊥ in a cosymplectic

space form M̃(c) such that ln f is a harmonic function on NT . Then by Theorem 1.2, we get c > 0.

Corollary 3.5. Let M̃(c) be a cosymplectic space form with c ≤ 0. Then there does not exist a contact

CR-warped product submanifold NT ×f N⊥ in M̃(c) such that ln f is a nonnegative eigenfunction of the
Laplacian on NT corresponding to an eigenvalue λ1 > 0.

Now, we provide a nontrivial example of contact CR-warped products.

Example 3.6. Consider a submanifold of R7 with the coordinates (x1, y1, x2, y2, x3, y3, z) and the almost
contact structure

ϕ
( ∂

∂xi

)
= − ∂

∂yi
, ϕ

( ∂

∂yj

)
=

∂

∂xj
, ϕ

( ∂
∂z

)
= 0, 1 ≤ i, j ≤ 3.

Then for any vector field X = λi
∂
∂xi

+ µj
∂

∂yj
+ ν ∂

∂z ∈ Γ(TR7), we have

g(X,X) = λ2
i + µ2

j + ν2, g(ϕX,ϕX) = λ2
i + µ2

j

and

ϕ2(X) = −λi
∂

∂xi
− µj

∂

∂yj
= −X + η(X)ξ

for any i, j = 1, 2, 3. It is clear that g(ϕX,ϕX) = g(X,X) − η2(X). Thus, (ϕ, ξ, η, g) is an almost contact
metric structure on R7. Let us consider an isometric immersion x into R7 as follows

x(r, s, t, z) = (r sin t, s sin t, s, r, r cos t, s cos t, z).

If M is the corresponding submanifold of the immersion, then the tangent bundle TM of M is spanned
by the following orthogonal vector fields

Z1 = sin t
∂

∂x1
+

∂

∂y2
+ cos t

∂

∂x3
, Z2 = sin t

∂

∂y1
+

∂

∂x2
+ cos t

∂

∂y3
,

Z3 = r cos t
∂

∂x1
+ s cos t

∂

∂y1
− r sin t

∂

∂x3
− s sin t

∂

∂y3
; Z4 =

∂

∂z
.
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Then ϕZ3 is orthogonal to TM , thus D⊥ = span{Z3} is an anti-invariant distribution and D =
span{Z1, Z2} is an invariant distribution such that ξ = Z4 is tangent to M . Hence M is a contact CR-
submanifold of R7. It is clear that the invariant distribution D⊕〈ξ〉 and anti-invariant distribution D⊥ both
are integrable. If we denote the integral manifolds of D⊕ 〈ξ〉 and D⊥ by NT and N⊥, respectively, then the
metric tensor g of M is given by

g = 2dr2 + 2ds2 + dz2 + (r2 + s2)dt2 = g1 +
(√

r2 + s2
)2
g2,

where g1 = 2dr2 + 2ds2 + dz2 is the metric tensor of NT and g2 is the metric tensor of N⊥. Thus M is a
warped product CR-submanifold M = NT ×f N⊥ with warping function f =

√
r2 + s2.
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