
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 2922–2942

Research Article

Positive solutions for a class of fractional differential
coupled system with integral boundary value
conditions

Daliang Zhao, Yansheng Liu∗

Department of Mathematics, Shandong Normal University, Jinan, 250014, P. R. China.

Communicated by X. Liu

Abstract

This paper investigates the existence of positive solutions for the following high-order nonlinear fractional
differential boundary value problem (BVP, for short)

Dα
0+u(t) + f(t, v(t)) = 0, t ∈ (0, 1),

Dα
0+v(t) + g(t, u(t)) = 0, t ∈ (0, 1),

u(j)(0) = v(j)(0) = 0, 0 ≤ j ≤ n− 1, j 6= 1,

u′(1) = λ

∫ 1

0
u(t)dt, v′(1) = λ

∫ 1

0
v(t)dt,

where n − 1 < α ≤ n, n ≥ 3, 0 ≤ λ < 2, Dα
0+ is the Caputo fractional derivative. By using the monotone

method, the theory of fixed point index on cone for differentiable operators and the properties of Green’s
function, some new uniqueness and existence criteria for the considered fractional BVP are established. As
applications, some examples are worked out to demonstrate the main results. c©2016 All rights reserved.

Keywords: Fractional differential equations, differentiable operators, fixed point index theorems on cone,
integral boundary value conditions.
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1. Introduction

This paper aims to establish some existence results of positive solutions for the following high-order
nonlinear fractional differential coupled system with integral boundary value conditions:
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Dα

0+u(t) + f(t, v(t)) = 0, t ∈ (0, 1),
Dα

0+v(t) + g(t, u(t)) = 0, t ∈ (0, 1),

u(j)(0) = v(j)(0) = 0, 0 ≤ j ≤ n− 1, j 6= 1,

u′(1) = λ

∫ 1

0
u(t)dt, v′(1) = λ

∫ 1

0
v(t)dt,

(1.1)

where n−1 < α ≤ n, n ≥ 3, 0 ≤ λ < 2, Dα
0+ is the Caputo fractional derivative and f, g : [0, 1]× [0,+∞)→

[0,+∞) are continuous.
Recently, the subject of fractional calculus has gained considerable popularity and importance due mainly

to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engi-
neering. For details, see [8, 11, 17, 18, 19], and the references therein. Fractional models can present a more
vivid and accurate description over things than integral ones, that is, there are more degrees of freedom
in the fractional-order models. This is due to the fact that fractional differential equations enable the de-
scription of memory and hereditary properties inherent in various materials and processes. In consequence,
many meaningful results in these fields have been obtained. See [1, 2, 3, 4, 5, 12, 13, 15] for a good overview.

As we know, the attention drawn to the theory of the existence, uniqueness, and multiplicity of solutions
to boundary value problems for fractional order differential equations is evident from the increased number of
recent publications. For a detailed description of some recent results, we refer the reader to papers [7, 10, 13]
and [15]-[25] and the references therein. Some kinds of methods are presented, such as the Laplace transform
method [16], the upper and lower method [27], the Fourier transform method [14], and the Green’s function
method [13, 22], etc.

For example, in [26], Zhang et al. investigated higher order nonlocal fractional differential equations:
Dα

0+x(t) + f(t, x(t)) = 0, 0 < t < 1, n− 1 < α ≤ n,

x(k)(0) = 0, 0 ≤ k ≤ n− 2, x(1) =

∫ 1

0
x(s)dA(s),

where α ≥ 2, Dα
0+ is the standard Riemann-Liouville derivative, A is a function of bounded variation. The

authors obtained the existence and uniqueness of positive solutions by the monotone iterative technique.
In [24], by means of Banach fixed point theorem, nonlinear alternative of Leray-Schauder type and the

fixed point theorem of cone expansion and compression of norm type, Yang established sufficient condi-
tions for the existence and nonexistence of positive solutions for a coupled system of fractional differential
equations: 

Dαu(t) + a(t)f(t, v(t)) = 0, 0 < t < 1,
Dβv(t) + b(t)g(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =

∫ 1

0
φ(t)u(t)dt,

v(0) = 0, v(1) =

∫ 1

0
ψ(t)v(t)dt,

where 1<α, β≤2, a, b∈C((0, 1), [0,+∞)),φ, ψ ∈ L1[0, 1] are nonnegative, f, g ∈ C([0, 1]×[0,+∞), [0,+∞)),
and D is the standard Riemann-Liouville fractional derivative.

From all above works, we find the fact that the methods most of papers used to investigate the existence
of positive solutions of nonlinear fractional differential equations are fixed-point theorems, leray-Schauder
theory, and monotone iterative technique, etc. However, the differentiable operator method dealing with
the positive solutions of some fractional BVP is seldom considered. It is worth mentioning that there is
no paper investigating the positive solutions for the coupled system of fractional differential equations by
utilizing such method. In addition, to the best of our knowledge, no contribution exists for the existence
of positive solutions for fractional BVP (1.1). Compared to [24, 26], we allow the boundary conditions
involving a parameter.

Our main features of this paper are as follows. (i) By means of the theory of differentiable operators and
some corresponding fixed point index theorems on cone, we firstly study the existence of positive solutions
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for a high-order fractional coupled system with integral boundary value conditions, which enriches the
theoretical knowledge of the above mentioned considerations. (ii) We establish the uniqueness of positive
solution by using the monotone method together with the properties of Green’s function.

The rest of present paper is organized as follows. Section 2 gives some necessary preliminaries and
lemmas. In Section 3, we establish the uniqueness of positive solution for fractional BVP (1.1) by monotone
method together with the properties of Green’s function. In Section 4, we establish the existence of at
least one positive solutions for BVP (1.1) by using the theory of fixed point index on cone for differentiable
operators. Finally, some illustrative examples are presented to support the new results in Section 3 and
Section 4, respectively.

2. Preliminaries and Some lemmas

In this section, we introduce some preliminaries and lemmas for fractional calculus that will be used
in Section 3 and Section 4. Some presentation here can be found in, for example, [6, 9, 17, 19].

Definition 2.1. The Riemann-Liouville standard fractional integral of order α > 0 of a continuous function
u : (0,+∞)→ R is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1u(s)ds,

provided that the right side integral is pointwise defined on R+ =: (0,+∞).

Definition 2.2. The Caputo fractional derivative of order α > 0 of a continuous function u : (0,∞) → R
is given by

CDα
0+u(t) =

1

Γ(n− α)

∫ t

0

u(n)(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integer part of the real number α, and provided the right side integral
is pointwise defined on [0,∞).

Lemma 2.3. Let n− 1 < α ≤ n (n ∈ N). Then

Iα0+
CDα

0+u(t) = u(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

for some ci ∈ R, i = 0, 1, · · ·, n− 1, n = [α] + 1.

Let E = C[0, 1] denote the space of all continuous functions defined on [0,1]. Obviously, (E, ‖ · ‖) is a
Banach space with the maximum norm ‖u‖ = max{|u(t)| : t ∈ [0, 1]} for each u ∈ E.

Lemma 2.4. Let x ∈ C[0, 1] be a given function. Then the unique solution of system
Dα

0+u(t) + x(t) = 0, t ∈ (0, 1),

u(j)(0) = 0, 0 ≤ j ≤ n− 1, j 6= 1,

u′(1) = λ

∫ 1

0
u(s)ds,

(2.1)

where n− 1 < α ≤ n, n ≥ 3, 0 ≤ λ < 2, is given by

u(t) =

∫ 1

0
G(t, s)x(s)ds,

where G(t, s), the Green’s function of system (2.1) is given by

G(t, s) =



(α− 1)t(1− s)α−2 − λ
α(1− s)αt− (1− λ

2 )(t− s)α−1

(1− λ
2 )Γ(α)

, 0 ≤ s ≤ t ≤ 1,

(α− 1)t(1− s)α−2 − λ
α(1− s)αt

(1− λ
2 )Γ(α)

, 0 ≤ t ≤ s ≤ 1.

(2.2)
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Proof. By means of Lemma 2.3, we can reduce (2.1) to the following equivalent integral equation

u(t) = −Iα0+x(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1

= −
∫ t

0

(t− s)α−1

Γ(α)
x(s)ds+ c0 + c1t+ c2t

2 + · · ·+ cn−1t
n−1

for some ci ∈ R, i = 0, 1, 2, · · · , n− 1.
From the boundary conditions u(j)(0) = 0, 0 ≤ j ≤ n − 1, j 6= 1, we have c0 = c2 = · · · = cn−1 = 0.

Thus,

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
x(s)ds+ c1t,

and by the condition u′(1) = λ

∫ 1

0
u(s)ds, we have

c1 =

∫ 1

0

(1− s)α−2

Γ(α− 1)
x(s)ds+ λ

∫ 1

0
u(s)ds.

Then,

u′(1) = −
∫ 1

0

(1− s)α−2

Γ(α− 1)
x(s)ds+

(∫ 1

0

(1− s)α−2

Γ(α− 1)
x(s)ds+ λ

∫ 1

0
u(s)ds

)
, (2.3)

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
x(s)ds+ t

(∫ 1

0

(1− s)α−2

Γ(α− 1)
x(s)ds+ λ

∫ 1

0
u(s)ds

)
. (2.4)

Integrating the equation (2.4) from 0 to 1, one has∫ 1

0
u(s)ds = − 1

Γ(α)

∫ 1

0

∫ x

0
(x− s)α−1x(s)dsdx+

∫ 1

0
sds

(∫ 1

0

(1− s)α−2

Γ(α− 1)
x(s)ds+ λ

∫ 1

0
u(s)ds

)
= − 1

Γ(α)

∫ 1

0

∫ 1

s
(x− s)α−1x(s)dxds+

1

2

(∫ 1

0

(1− s)α−2

Γ(α− 1)
x(s)ds+ λ

∫ 1

0
u(s)ds

)
= − 1

Γ(α)

∫ 1

0

(1− s)α

α
x(s)ds+

1

2

(∫ 1

0

(1− s)α−2

Γ(α− 1)
x(s)ds+ λ

∫ 1

0
u(s)ds

)
.

(2.5)

From u′(1) = λ

∫ 1

0
u(s)ds together with (2.3) and (2.5), it follows that

−
∫ 1

0

(1− s)α−2

Γ(α− 1)
x(s)ds+

(∫ 1

0

(1− s)α−2

Γ(α− 1)
x(s)ds+ λ

∫ 1

0
u(s)ds

)
= − λ

Γ(α)

∫ 1

0

(1− s)α

α
x(s)ds+

λ

2

(∫ 1

0

(1− s)α−2

Γ(α− 1)
x(s)ds+ λ

∫ 1

0
u(s)ds

)
.

Hence, we can get∫ 1

0

(1− s)α−2

Γ(α− 1)
x(s)ds+ λ

∫ 1

0
u(s)ds =

∫ 1

0

(1− s)α−2

(1− λ
2 )Γ(α− 1)

x(s)ds−
∫ 1

0

λ(1− s)α

α(1− λ
2 )Γ(α)

x(s)ds.

From (2.4), the unique solution of (2.1) is

u(t) =−
∫ t

0

(t− s)α−1

Γ(α)
x(s)ds+

∫ 1

0

(1− s)α−2t

(1− λ
2 )Γ(α− 1)

x(s)ds−
∫ 1

0

λ
α(1− s)αt

(1− λ
2 )Γ(α)

x(s)ds
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=−
∫ t

0

(t− s)α−1

Γ(α)
x(s)ds+ (

∫ t

0
+

∫ 1

t
)

(1− s)α−2t

(1− λ
2 )Γ(α− 1)

x(s)ds− (

∫ t

0
+

∫ 1

t
)
λ
α(1− s)αt

(1− λ
2 )Γ(α)

x(s)ds

=

∫ t

0

(α− 1)t(1− s)α−2 − λ
α(1− s)αt− (1− λ

2 )(t− s)α−1

(1− λ
2 )Γ(α)

x(s)ds

+

∫ 1

t

(α− 1)t(1− s)α−2 − λ
α(1− s)αt

(1− λ
2 )Γ(α)

x(s)ds

=

∫ 1

0
G(t, s)x(s)ds.

This completes the proof.

The following properties of the Green’s function G(t, s) play an important role in this paper.

Lemma 2.5. The functions G(t, s) defined by (2.2) has the following properties:

(i) G(t, s) ≤ α− 1

(1− λ
2 )Γ(α)

t(1− s)α−2, ∀t, s ∈ [0, 1];

(ii) G(t, s) ≤ α− 1

(1− λ
2 )Γ(α)

(1− s)α−2, ∀t, s ∈ [0, 1];

(iii) G(t, s) ≥
α− 1− λ

α − (1− λ
2 )

(1− λ
2 )Γ(α)

t(1− s)α−2, ∀t, s ∈ (0, 1);

(iv) G(t, s) > 0, ∀t, s ∈ (0, 1).

Proof. Let K(s) =:
α− 1− λ

α − (1− λ
2 )

(1− λ
2 )Γ(α)

(1− s)α−2 and I(t, s) =:
G(t, s)

K(s)
.

For s ≤ t, it yields

I(1, s) =
(α− 1)(1− s)α−2 − λ

α(1− s)α − (1− λ
2 )(1− s)α−1(

α− 1− λ
α − (1− λ

2 )
)

(1− s)α−2

>
(α− 1)(1− s)α−2 − λ

α(1− s)α−2 − (1− λ
2 )(1− s)α−2(

α− 1− λ
α − (1− λ

2 )
)

(1− s)α−2
= 1,

I(s, s) =
(α− 1)s(1− s)α−2 − λ

α(1− s)αs(
α− 1− λ

α − (1− λ
2 )
)

(1− s)α−2
=

(α− 1− λ
α)(1− s)α−2s(

α− 1− λ
α − (1− λ

2 )
)

(1− s)α−2
> s,

and
∂2I(t, s)

∂t2
= −

(1− λ
2 )(α− 1)(α− 2)(t− s)α−3(

α− 1− λ
α − (1− λ

2 )
)

(1− s)α−2
≤ 0,

which implies that I(·, s) is concave on [s,1]. Thus, we obtain I(t, s) ≥ t.
For s ≥ t, we have I(0, s) = 0, and

I(s, s) =

(
(α− 1)(1− s)α−2 − λ

α(1− s)α
)
s(

α− 1− λ
α − (1− λ

2 )
)

(1− s)α−2
>

(α− 1− λ
α)(1− s)α−2s(

α− 1− λ
α − (1− λ

2 )
)

(1− s)α−2
> s,

∂I(t, s)

∂t
=

(α− 1)(1− s)α−2 − λ
α(1− s)α(

α− 1− λ
α − (1− λ

2 )
)

(1− s)α−2
>

(α− 1− λ
α)(1− s)α−2(

α− 1− λ
α − (1− λ

2 )
)

(1− s)α−2
> 1.

Hence, we can conclude that I(t, s) ≥ t.
From above, we conclude that (iii) and (iv) hold. On the other hand, it is easy to see that (i) and (ii)

are true from the expression of G(t, s) in (2.2).



D. Zhao, Y. Liu, J. Nonlinear Sci. Appl. 9 (2016), 2922–2942 2927

Lemma 2.6 ([6]). Let X be a Banach space, P be a cone in X and Ω(P ) be a bounded open subset in P .
Suppose that A : Ω(P )→ P is a completely continuous operator. Then the following results hold:

(i) If there exists u0 ∈ P\{θ} such that u 6= Au+λu0, for any u ∈ ∂Ω(P ), λ ≥ 0, then i(A,Ω(P ), P ) = 0.

(ii) If θ ∈ Ω(P ), Au 6= λu, for any u ∈ ∂Ω(P ), λ ≥ 1, then i(A,Ω(P ), P ) = 1.

Lemma 2.7 ([6]). Let P be a cone in a Banach space E, A : P → P be completely continuous, and Aθ = θ.
Suppose that A is differentiable at θ along P and 1 is not an eigenvalue of A

′
+(θ) corresponding to a positive

eigenvector. Moreover, if A
′
+(θ) has no positive eigenvectors corresponding to an eigenvalue greater than

one. Then there exists r0 > 0 such that i(A,Pr, P ) = 1, for 0 < r ≤ r0, where Pr = {x ∈ P : ||u|| < r}.

Lemma 2.8 ([6]). Let P be a cone in a Banach space E, A : P → P be completely continuous. Suppose
that A is differentiable at ∞ along P and 1 is not an eigenvalue of A

′
+(∞) corresponding to a positive

eigenvector. Moreover, if A
′
+(∞) has no positive eigenvectors corresponding to an eigenvalue greater than

one. Then there exists R0 > 0 such that i(A,PR, P ) = 1, for R ≥ R0, where PR = {x ∈ P : ||u|| < R}.

Lemma 2.9 ([6]). Let P be a cone of E, u0, v0 ∈ E with u0 ≤ v0 and A be a nondecreasing operator from
[u0, v0] = {x ∈ E : u0 ≤ x ≤ v0} into E such that u0 ≤ Au0 and Av0 ≤ v0. Assume that one of the following
two conditions is satisfied:

(a) P is normal and A is condensing.

(b) P is regular and A is semi-continuous.

Then, A has a minimal fixed point x∗ and a maximal fixed point x∗ in [u0, v0]; moreover, un → x∗ and
vn → x∗ as n→∞, where un = Aun−1 and vn = Avn−1(n = 1, 2, 3, · · · ) which satisfy

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ x∗ ≤ x∗ ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0.

Let
P = {u ∈ E : u(t) ≥Mt||u||, t ∈ [0, 1]},

where M =
α− 1− λ

α − (1− λ
2 )

α− 1
. It is easy to see that P is a cone in E. Let Pr = {u ∈ P : ||u|| < r} (r > 0).

Define an integral operators L by

Lu(t) =

∫ 1

0
G(t, s)u(s)ds, u ∈ E.

From Lemma 2.4, it follows that the system (1.1) is equal to

u(t) =

∫ 1

0
G(t, s)f(s, v(s))ds,

v(t) =

∫ 1

0
G(t, s)g(s, u(s))ds,

from which we get

u(t) =

∫ 1

0
G(t, s)f

(
s,

∫ 1

0
G(s, τ)g(τ, u(τ))dτ

)
ds.

Define an integral operators T on P by

Tu(t) =

∫ 1

0
G(t, s)f

(
s,

∫ 1

0
G(s, τ)g(τ, u(τ))dτ

)
ds, u ∈ P.

Lemma 2.10. L : P → P is completely continuous and the spectral radius r(L) > 0.
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Proof. By Lemma 2.5, we have
G(t, s) ≥MtG(τ, s), t, s, τ ∈ [0, 1]. (2.6)

Then, it shows

Lu(t) ≥Mt

∫ 1

0
G(τ, s)u(s)ds = MtLu(τ), u ∈ P,

which implies that
Lu(t) ≥Mt||Lu||, t ∈ [0, 1].

Hence, L(P ) ⊂ P. Next we show the complete continuity of L. For any bounded subset D ⊂ E, choose a
real constant C > 0 such that ||u|| ≤ C for all u ∈ D. By Lemma 2.5, for any t ∈ [0, 1], u ∈ D, one has

|Lu(t)| ≤
∫ 1

0
G(t, s)|u(s)|ds ≤ α− 1

(1− λ
2 )Γ(α)

∫ 1

0
(1− s)α−2ds||u|| ≤ C

(1− λ
2 )Γ(α)

,

which implies that ||Lu|| ≤ C

(1− λ
2 )Γ(α)

. So L is a bounded operator and we obtain the continuity of L.

It follows from the uniform continuity of G(t, s) and Arzela-Ascoli theorem that operator L is compact.
Consequently, L is completely continuous.

In the following, we show that r(L) > 0. For any u ∈ P\{θ}, t, τ ∈ [0, 1], from Lemma 2.5, we have

Lu(t) =

∫ 1

0
G(t, s)u(s)ds ≥M

∫ 1

0
G(t, s)sds||u|| ≥ tM2||u||

∫ 1

0
G(τ, s)sds.

Thus,

L2u(t) = L(Lu(t)) ≥M2||u||
∫ 1

0
G(τ, s)sds

∫ 1

0
G(t, s)sds ≥ tM3||u||

(∫ 1

0
G(τ, s)sds

)2

.

Repeating the process indicates

Lnu(t) ≥ tMn+1

(∫ 1

0
G(τ, s)sds

)n
||u||,

which means

||Ln|| ≥ ||L
nu||
||u||

≥Mn+1Mn
1 ,

where M1 = max
τ∈[0,1]

∫ 1

0
G(τ, s)sds > 0. Hence,

r(L) = lim
n→∞

||Ln||
1
n ≥ lim

n→∞
(Mn+1Mn

1 )
1
n = MM1 > 0.

The conclusion of this lemma follows.

Repeating a process similar to that of Lemma 2.10, we have the following lemma.

Lemma 2.11. T : P → P is completely continuous.

3. Uniqueness of Positive Solution for BVP (1.1)

In this section, we establish the uniqueness of positive solution for fractional BVP (1.1) by monotone
method together with the properties of Green’s function. As an application, an example is given to illustrate
our main result.
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Theorem 3.1. The fractional BVP (1.1) has a unique positive solution if the following condition is satisfied:

• (C) f ∈ C([0, 1]× [0,+∞), R+) is nondecreasing with respect to u and there exists a positive constant
µ1 < 1 such that f(t, ku) ≥ kµ1f(t, u), ∀0 ≤ k ≤ 1;

• g ∈ C([0, 1] × [0,+∞), R+) is nondecreasing with respect to u and there exists a positive constant
µ2 < 1 such that g(t, ku) ≥ kµ2g(t, u), ∀0 ≤ k ≤ 1.

Proof. We shall consider the existence of fixed point of operator T defined in Section 2.

Let ω0(t) = k1h(t), ν0(t) = k2h(t), where k1 ≤ min

{
1
I2
, I

µ1µ2
1−µ1µ2
1

}
, k2 ≥ min

{
1
I1
, I

µ1µ2
1−µ1µ2
2

}
and

I1 = min

{
1,

∫ 1

0

α− 1− λ
α − (1− λ

2 )

(1− λ
2 )Γ(α)

(1− s)α−2f

(
s,

∫ 1

0
G(s, τ)g(τ, τ)dτ

)
ds

}
,

I2 = max

{
1,

∫ 1

0

α− 1

(1− λ
2 )Γ(α)

(1− s)α−2f

(
s,

∫ 1

0
G(s, τ)g(τ, τ)dτ

)
ds

}
,

and

h(t) =

∫ 1

0
G(t, s)f

(
s,

∫ 1

0
G(s, τ)g(τ, τ)dτ

)
ds.

In view of Lemma 2.5, it shows that
tI1 ≤ h(t) ≤ tI2.

Thus, we can easily get

k1I1 ≤
ω0(s)

s
≤ k1I2 ≤ 1,

1

k2I2
≤ s

ν0(s)
≤ 1

k2I1
≤ 1.

From the condition (C), we have

f

(
t,

∫ 1

0
G(t, s)g(s, ω0(s))ds

)
=f

(
t,

∫ 1

0
G(t, s)g

(
s,
ω0(s)

s
s

)
ds

)
≥f
(
t,

∫ 1

0
G(t, s)

(
ω0(s)

s

)µ2
g(s, s)ds

)
≥f
(
t, (k1I1)µ2

∫ 1

0
G(t, s)g(s, s)ds

)
≥(k1I1)µ1µ2f

(
t,

∫ 1

0
G(t, s)g(s, s)ds

)
≥k1f

(
t,

∫ 1

0
G(t, s)g(s, s)ds

)
,

and

k2f

(
t,

∫ 1

0
G(t, s)g(s, s)ds

)
=k2f

(
t,

∫ 1

0
G(t, s)g

(
s,

s

ν0(s)
ν0(s)

)
ds

)
≥k2f

(
t,

∫ 1

0
G(t, s)

(
s

ν0(s)

)µ2
g(s, ν0(s))ds

)
≥k2(k2I2)−µ1µ2f

(
t,

∫ 1

0
G(t, s)g(s, ν0(s))ds

)
≥f
(
t,

∫ 1

0
G(t, s)g(s, ν0(s))ds

)
,
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which implies

ω0(t) =k1

∫ 1

0
G(t, s)f

(
s,

∫ 1

0
G(s, τ)g(τ, τ)dτ

)
ds

=

∫ 1

0
G(t, s)k1f

(
s,

∫ 1

0
G(s, τ)g(τ, τ)dτ

)
ds

≤
∫ 1

0
G(t, s)f

(
s,

∫ 1

0
G(s, τ)g(τ, ω0(τ))dτ

)
ds

=Tω0(t)

and

ν0(t) =k2

∫ 1

0
G(t, s)f

(
s,

∫ 1

0
G(s, τ)g(τ, τ)dτ

)
ds

=

∫ 1

0
G(t, s)k2f

(
s,

∫ 1

0
G(s, τ)g(τ, τ)dτ

)
ds

≥
∫ 1

0
G(t, s)f

(
s,

∫ 1

0
G(s, τ)g(τ, ν0(τ))dτ

)
ds

=Tν0(t).

So, we obtain
ω0 ≤ Tω0 < Tν0 ≤ ν0.

By Lemma 2.9, T has a minimal fixed point u∗ and a maximal fixed point u∗.
Next, we shall prove u∗ = u∗. Indeed, if the claim is false, we have u∗ > u∗. Then, ω0 ≤ u∗ < u∗ ≤ ν0,

that is

k1

∫ 1

0
G(t, s)f(s,

∫ 1

0
G(s, τ)g(τ, τ)dτ)ds ≤ u∗ < u∗ ≤ k2

∫ 1

0
G(t, s)f(s,

∫ 1

0
G(s, τ)g(τ, τ)dτ)ds.

By Lemma 2.5, we can obtain
k1c1t ≤ u∗(t) < u∗(t) ≤ k2c2t,

where

c1 =

∫ 1

0

α− 1− λ
α − (1− λ

2 )

(1− λ
2 )Γ(α)

(1− s)α−2f

(
s,

∫ 1

0
G(s, τ)g(τ, τ)dτ

)
ds,

c2 =

∫ 1

0

(α− 1)(1− s)α−2

(1− λ
2 )Γ(α)

f

(
s,

∫ 1

0
G(s, τ)g(τ, τ)dτ

)
ds.

Let c = min
{
k1c1,

1
k2c2

, 1
2

}
. It is easy to see that

ct ≤ u∗(t) < u∗(t) ≤ 1

c
t,

and

c2u∗(t) < u∗(t) ≤ 1

c2
u∗(t).

Put

δ∗ = sup

{
δ : δu∗(t) < u∗(t) ≤ 1

δ
u∗(t), ∀t ∈ [0, 1]

}
.

Obviously, 0 < δ∗ < 1, and

δ∗u∗(t) < u∗(t) ≤ 1

δ∗
u∗(t).



D. Zhao, Y. Liu, J. Nonlinear Sci. Appl. 9 (2016), 2922–2942 2931

Then, from the assumptions of Theorem 3.1, we have

u∗(t) =

∫ 1

0
G(t, s)f

(
s,

∫ 1

0
G(s, τ)g(τ, u∗(τ))dτ

)
ds

≥
∫ 1

0
G(t, s)f

(
s,

∫ 1

0
G(s, τ)g(τ, δ∗u∗(τ))dτ

)
ds

≥
∫ 1

0
G(t, s)f

(
s, (δ∗)µ2

∫ 1

0
G(s, τ)g(τ, u∗(τ))dτ

)
ds

≥(δ∗)µ1µ2
∫ 1

0
G(t, s)f

(
s,

∫ 1

0
G(s, τ)g(τ, u∗(τ))dτ

)
ds

=(δ∗)µ1µ2u∗(t)

>(δ∗)(µ1µ2+ε0)u∗(t),

where ε0 satisfies 0 < ε0 < 1− µ1µ2.
A similar way shows u∗(t) ≥ (δ∗)µ1µ2u∗. Since 0 < δ∗, µ1µ2 < 1 and 0 < µ1µ2 + ε0 < 1, we get a

contradiction with the definition of δ∗. Thus, T has a unique fixed point u∗. Put v∗ =

∫ 1

0
G(t, s)g(s, u∗(s))ds.

Therefore, the fractional BVP (1.1) has a unique positive solution (u∗, v∗).

Remark 3.2. The unique fixed point u∗ of operator T can be approximated by the following iterative schemes:
for any u0 ∈ [ω0, ν0], taking un = Tun−1, n = 1, 2, · · · , one always obtains un → u∗.

Example 3.3. Consider the following BVP of fractional differential equations:
D

13
4

0+
u(t) + 1

2 + cos t+ v
1
3 (t) sin t = 0, t ∈ (0, 1),

D
13
4

0+
v(t) + 1 + 1

2 t+ u
1
5 (t) cos t = 0, t ∈ (0, 1),

u(j)(0) = v(j)(0) = 0, 0 ≤ j ≤ 3, j 6= 1,

u′(1) =
3

2

∫ 1

0
u(t)dt, v′(1) =

3

2

∫ 1

0
v(t)dt.

(3.1)

Then BVP (3.1) has a unique positive solution.

Proof. (3.1) can be regarded as a BVP of the form (1.1), where

f(t, v) =
1

2
+ cos t+ v

1
3 sin t, g(t, u) = 1 +

1

2
t+ u

1
5 cos t,

and α = 13
4 (n = 4), λ = 3

2 , µ1 = 1
3 , µ2 = 1

5 . Since k
1
3 , k

1
5 ≤ 1 for 0 ≤ k ≤ 1. It is easy to verify that

f(t, kv) =
1

2
+ cos t+ (kv)

1
3 sin t ≥ 1

2
k

1
3 + k

1
3 cos t+ k

1
3 v

1
3 sin t = k

1
3 f(t, v)

and

g(t, ku) = 1 +
1

2
t+ (ku)

1
5 cos t ≥ k

1
5 +

1

2
k

1
5 t+ k

1
5u

1
5 cos t = k

1
5 g(t, u).

By Theorem 3.1, BVP (3.1) has a unique positive solution.

4. Existence of Positive Solution for BVP (1.1)

In this section, we establish the existence of positive solutions for (1.1) by using the theory of fixed point
index on cone for differentiable operators. We assume that f, g ∈ C([0, 1]× [0,+∞), [0,+∞)) in this section.
As applications, two examples are worked out to demonstrate our main results.

For the sake of convenience, we list the main assumptions and some notations to be used in the paper
as follows:
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(H1) f(t, 0) = 0, g(t, 0) = 0 and fu, gu ∈ C([0, 1]× [0,+∞)) and fu(t, 0) > 0, gu(t, 0) > 0 for t ∈ [0,1].

(H2)

(∫ 1

0
t(1− t)α−2fu(t, 0)dt

)(∫ 1

0
t(1− t)α−2gu(t, 0)dt

)
<

(1− λ
2 )2Γ2(α)

(α− 1)2
.

(H3) There exists φ1, φ2 ∈ C([0, 1], [0,+∞)), φ1, φ2 6≡ 0 such that lim
u→+∞

f(t, u)

u
= φ1(t) and

lim
u→+∞

g(t, u)

u
= φ2(t) uniformly hold with respect to t on [0,1], and

(∫ 1

0
t(1− t)α−2φ1(t)dt

)(∫ 1

0
t(1− t)α−2φ2(t)dt

)
<

(1− λ
2 )2Γ2(α)

(α− 1)2
.

Let M0 = max
t∈[0,1]

∫ 1

0
G(t, s)ds, and

zσ = lim inf
u→σ

min
t∈[0,1]

z(t, u)

u
, zσ = lim sup

u→σ
max
t∈[0,1]

z(t, u)

u
,

where z denotes f or g, and σ denotes 0 or +∞.

Lemma 4.1. Assume that (H1) and (H2) hold. Then the operator T is differentiable at θ along P, Tθ = θ,
and

T
′
+(θ)u =

∫ 1

0
G(t, s)

(
fu(s, 0)

∫ 1

0
G(s, τ)gu(τ, 0)u(τ)dτ

)
ds, u ∈ P.

Moreover, operator T
′
+(θ) has no positive eigenvectors corresponding to an eigenvalue greater than or equal

to one.

Proof. It is easy to see that Tθ = θ by f(t, 0) = 0 and g(t, 0) = 0. Fix a constant δ0 > 0. Let C0 = M0G0,
where G0 = max

(t,u)∈[0,1]×[0,δ0]
g(t, u)+1. Then for any (t, u) ∈ [0, 1]× [0, C0], the mean value theorem guarantees

that
f(t, u) = f(t, u)− f(t, 0) = fu(t, ξ)u

for some ξ ∈ (0, u). Since fu ∈ C([0, 1] × [0,+∞)), we know that for any ε > 0, there exists a constant
δ1 ∈ (0, δ0) such that

|fu(s, u)− fu(s, 0)| <
(1− λ

2 )Γ(α)

2(α− 1)C1
ε, ∀u ∈ (0, δ1), s ∈ [0, 1], (4.1)

where C1 = max
t∈[0,1]

∫ 1

0
G(t, s)gu(s, 0)ds.

Similarly, the mean value theorem indicates

g(t, u) = g(t, u)− g(t, 0) = gu(t, η)u (4.2)

for some η ∈ (0, u). Since gu ∈ C([0, 1]× [0,+∞)), for above mentioned ε > 0, there exists a constant δ2 > 0
such that

|gu(t, u)− gu(t, 0)| <
(1− λ

2 )2Γ2(α)

2(α− 1)2C2
ε, ∀u ∈ (0, δ2), t ∈ [0, 1], (4.3)

where C2 = max
(t,u)∈[0,1]×[0,δ1]

|fu(t, u)|. Thus, from (4.2) and (4.3), we can obtain

|g(t, u)− gu(t, 0)| <
(1− λ

2 )2Γ2(α)

2(α− 1)2C2
uε, ∀u ∈ (0, δ2), t ∈ [0, 1]. (4.4)
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Note that g(t, 0) = 0, g ∈ C([0, 1]× [0,+∞), [0,+∞)), there exists a constant δ3 > 0 such that

g(t, u) <
(1− λ

2 )Γ(α)

α− 1
δ1, ∀u ∈ (0, δ3), t ∈ [0, 1].

This together with Lemma 2.5 implies

0 < ξ <

∫ 1

0
G(s, τ)g(τ, u(τ))dτ <

∫ 1

0
G(s, τ)dτ

(1− λ
2 )Γ(α)

α− 1
δ1 = δ1. (4.5)

Choose a positive constant δ < min{δ1, δ2, δ3}. Then, for any u ∈ P, ||u|| < δ, from (4.1), (4.4) and (4.5),
it follows that∣∣∣∣f (s, ∫ 1

0
G(s, τ)g(τ, u(τ))dτ

)
− fu(s, 0)

∫ 1

0
G(s, τ)gu(τ, 0)u(τ)dτ

∣∣∣∣
≤
∣∣∣∣f (s, ∫ 1

0
G(s, τ)g(τ, u(τ))dτ

)
− fu(s, ξ)

∫ 1

0
G(s, τ)g(τ, u(τ))dτ

∣∣∣∣
+

∣∣∣∣fu(s, ξ)

∫ 1

0
G(s, τ)g(τ, u(τ))dτ − fu(s, 0)

∫ 1

0
G(s, τ)gu(τ, 0)u(τ)dτ

∣∣∣∣
=

∣∣∣∣fu(s, ξ)

∫ 1

0
G(s, τ)g(τ, u(τ))dτ − fu(s, 0)

∫ 1

0
G(s, τ)gu(τ, 0)u(τ)dτ

∣∣∣∣
≤
∣∣∣∣fu(s, ξ)

∫ 1

0
G(s, τ)g(τ, u(τ))dτ − fu(s, ξ)

∫ 1

0
G(s, τ)gu(τ, 0)u(τ)dτ

∣∣∣∣
+

∣∣∣∣fu(s, ξ)

∫ 1

0
G(s, τ)gu(τ, 0)u(τ)dτ − fu(s, 0)

∫ 1

0
G(s, τ)gu(τ, 0)u(τ)dτ

∣∣∣∣
≤|fu(s, ξ)|

∫ 1

0
G(s, τ)|g(τ, u(τ))− gu(τ, 0)u(τ)|dτ

+ |fu(s, ξ)− fu(s, 0)|
∫ 1

0
G(s, τ)gu(τ, 0)u(τ)dτ

≤|fu(s, ξ)|
∫ 1

0
G(s, τ)dτ

(1− λ
2 )2Γ2(α)

2(α− 1)2C2
||u||ε+

∫ 1

0
G(s, τ)gu(τ, 0)dτ

(1− λ
2 )Γ(α)

2(α− 1)C1
||u||ε

≤
(1− λ

2 )Γ(α)

2(α− 1)
||u||ε+

(1− λ
2 )Γ(α)

2(α− 1)
||u||ε

=
(1− λ

2 )Γ(α)

α− 1
||u||ε.

This together with Lemma 2.5 indicates∣∣∣∣Tu(t)−
∫ 1

0
G(t, s)

(
fu(s, 0)

∫ 1

0
G(s, τ)gu(τ, 0)u(τ)dτ

)
ds

∣∣∣∣
≤
∫ 1

0
G(t, s)

∣∣∣∣f (s, ∫ 1

0
G(s, τ)g(τ, u(τ))dτ

)
− fu(s, 0)

∫ 1

0
G(s, τ)gu(τ, 0)u(τ)dτ

∣∣∣∣ ds
≤

(1− λ
2 )Γ(α)

α− 1
ε||u||

∫ 1

0
G(t, s)ds ≤ ε||u||

for any u ∈ P with ||u|| < δ, which implies that

T
′
+(θ)u =

∫ 1

0
G(t, s)

(
fu(s, 0)

∫ 1

0
G(s, τ)gu(τ, 0)u(τ)dτ

)
ds, u ∈ P.
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In the following, we shall prove that T
′
+(θ) has no positive eigenvectors corresponding to an eigenvalue

greater than or equal to one. Suppose this is not true. Then there exist u∗ ∈ P\{θ} and λ∗ ≥ 1 such that
T
′
+(θ)u∗ = λ∗u∗. So, we have

u∗(t) ≤λ∗u∗(t) =

∫ 1

0
G(t, s)

(
fu(s, 0)

∫ 1

0
G(s, τ)gu(τ, 0)u∗(τ)dτ

)
ds

≤ (α− 1)2

(1− λ
2 )2Γ2(α)

t

∫ 1

0
s(1− s)α−2

(
fu(s, 0)

∫ 1

0
(1− τ)α−2gu(τ, 0)u∗(τ)dτ

)
ds

=
(α− 1)2

(1− λ
2 )2Γ2(α)

t

(∫ 1

0
s(1− s)α−2fu(s, 0)ds

)(∫ 1

0
(1− τ)α−2gu(τ, 0)u∗(τ)dτ

)
.

Since gu(t, 0) > 0, one has

(1− t)α−2gu(t, 0)u∗(t)

≤ (α− 1)2

(1− λ
2 )2Γ2(α)

t(1− t)α−2gu(t, 0)

(∫ 1

0
s(1− s)α−2fu(s, 0)ds

)(∫ 1

0
(1− τ)α−2gu(τ, 0)u∗(τ)dτ

)
.

(4.6)

Integrate (4.6) from 0 to 1 with respect to t to obtain∫ 1

0
(1− t)α−2gu(t, 0)u∗(t)dt

≤ (α− 1)2

(1− λ
2 )2Γ2(α)

∫ 1

0
t(1− t)α−2gu(t, 0)dt

(∫ 1

0
s(1− s)α−2fu(s, 0)ds

)(∫ 1

0
(1− τ)α−2gu(τ, 0)u∗(τ)dτ

)
.

By fu(s, 0) > 0, we have

s(1− s)α−2fu(s, 0)

∫ 1

0
(1− t)α−2gu(t, 0)u∗(t)dt

≤ (α− 1)2

(1− λ
2 )2Γ2(α)

s(1− s)α−2fu(s, 0)

∫ 1

0
t(1− t)α−2gu(t, 0)dt

×
(∫ 1

0
s(1− s)α−2fu(s, 0)ds

)(∫ 1

0
(1− τ)α−2gu(τ, 0)u∗(τ)dτ

)
.

(4.7)

Integrating (4.7) with respect to t on [0,1] gives(∫ 1

0
s(1− s)α−2fu(s, 0)ds

)(∫ 1

0
(1− t)α−2gu(t, 0)u∗(t)dt

)
≤ (α− 1)2

(1− λ
2 )2Γ2(α)

(∫ 1

0
s(1− s)α−2fu(s, 0)ds

)(∫ 1

0
t(1− t)α−2gu(t, 0)dt

)
×
(∫ 1

0
s(1− s)α−2fu(s, 0)ds

)(∫ 1

0
(1− τ)α−2gu(τ, 0)u∗(τ)dτ

)
.

The fact

∫ 1

0
s(1− s)α−2fu(s, 0)ds > 0 and

∫ 1

0
(1− t)α−2gu(t, 0)u∗(t)dt > 0 imply

(α− 1)2

(1− λ
2 )2Γ2(α)

(∫ 1

0
s(1− s)α−2fu(s, 0)ds

)(∫ 1

0
t(1− t)α−2gu(t, 0)dt

)
≥ 1.

This is in contradiction with (H2) and our conclusion follows.
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Lemma 4.2. Assume that (H3) holds. Then the operator T is differentiable at ∞ along P and

T
′
+(∞)u =

∫ 1

0
G(t, s)φ1(s)

(∫ 1

0
G(s, τ)φ2(τ)u(τ)dτ

)
ds, u ∈ P.

Moreover, operator T
′
+(∞) has no positive eigenvectors corresponding to an eigenvalue greater than or equal

to one.

Proof. By (H3), for any ε ∈ (0, 1), there exists R > 0 such that

|f(t, u)− φ1(t)u| < εu

3
(
M2

0 (||φ1||+ ||φ2||+ 1) + 1
||φ1||

)
+ 1

, ∀u > R, t ∈ [0, 1].

Let F = max
(t,u)∈[0,1]×[0,R]

|f(t, u)− φ1(t)u|. Thus, for any u ∈ [0,+∞), t ∈ [0, 1], we have

|f(t, u)− φ1(t)u| < F +
εu

3
(
M2

0 (||φ1||+ ||φ2||+ 1) + 1
||φ1||

)
+ 1

.

Similarly, for above mentioned ε > 0, we can choose a constant G such that

|g(t, u)− φ2(t)u| < G+
εu

3
(
M2

0 (||φ1||+ ||φ2||+ 1) + 1
||φ1||

)
+ 1

, ∀u ∈ [0,+∞), t ∈ [0, 1].

For convenience, we let ε
′

= ε

3
(
M2

0 (||φ1||+||φ2||+1)+ 1
||φ1||

)
+1
. It is easy to see that 0 < ε

′
< ε < 1. Then, for

any u ∈ P, t ∈ [0, 1], we have∣∣∣∣Tu(t)−
∫ 1

0
G(t, s)φ1(s)

(∫ 1

0
G(s, τ)φ2(τ)u(τ)dτ

)
ds

∣∣∣∣
≤
∫ 1

0
G(t, s)

∣∣∣∣f (s, ∫ 1

0
G(s, τ)g(τ, u(τ))dτ

)
− φ1(s)

(∫ 1

0
G(s, τ)φ2(τ)u(τ)dτ

)∣∣∣∣ ds
≤
∫ 1

0
G(t, s)

∣∣∣∣f (s, ∫ 1

0
G(s, τ)g(τ, u(τ))dτ

)
− φ1(s)

∫ 1

0
G(s, τ)g(τ, u(τ))dτ

∣∣∣∣ ds
+

∫ 1

0
G(t, s)

(
φ1(s)

∫ 1

0
G(s, τ)|g(τ, u(τ))− φ2(τ)u(τ)|dτ

)
ds

≤
∫ 1

0
G(t, s)

(
F + ε

′
∫ 1

0
G(s, τ)g(τ, u(τ))dτ + φ1(s)

∫ 1

0
G(s, τ)

(
G+ ε

′
u(τ)

)
dτ

)
ds

≤
∫ 1

0
G(t, s)

(
F + ε

′
∫ 1

0
G(s, τ)

(
φ2(τ)u(τ) +G+ ε

′
u(τ)

)
dτ + φ1(s)

∫ 1

0
G(s, τ)

(
G+ ε

′
u(τ)

)
dτ

)
ds

≤
∫ 1

0
G(t, s)

(
F + ε

′
M0

(
(||φ2||+ ε

′
)||u||+G

)
+ ||φ1||M0(G+ ε

′ ||u||)
)
ds

≤FM0 + ε
′
M2

0

(
(||φ2||+ ε

′
)||u||+G

)
+ ||φ1||M2

0 (G+ ε
′ ||u||).

Therefore, if ||u|| > max{3FM0, 3||φ1||M2
0G}

ε
, we get∣∣∣Tu(t)−

∫ 1
0 G(t, s)φ1(s)

(∫ 1
0 G(s, τ)φ2(τ)u(τ)dτ

)
ds
∣∣∣

||u||

≤FM0

||u||
+ ε

′
M2

0

(||φ2||+ ε
′
)||u||+G

||u||
+ ||φ1||M2

0

G+ ε
′ ||u||

||u||
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≤FM0

||u||
+M2

0 (||φ2||+ ε
′
)ε
′
+
M2

0G

||u||
ε
′
+
||φ1||M2

0G

||u||
+ ||φ1||M2

0 ε
′

≤ε
3

+M2
0 (||φ2||+ 1)ε

′
+

1

||φ1||
ε
′
+
ε

3
+ ||φ1||M2

0 ε
′

≤ε
3

+
ε

3
+

(
M2

0 (||φ1||+ ||φ2||+ 1) +
1

||φ1||

)
ε
′

<
ε

3
+
ε

3
+
ε

3
= ε,

which implies that

T
′
+(∞)u =

∫ 1

0
G(t, s)φ1(s)

(∫ 1

0
G(s, τ)φ2(τ)u(τ)dτ

)
ds, u ∈ P.

In the following, we shall show that T
′
+(∞) has no positive eigenvectors corresponding to an eigenvalue

greater than or equal to one. If not, there exist u∗ ∈ P\{θ} and λ∗ ≥ 1 such that T
′
+(∞)u∗ = λ∗u∗. Then

u∗(t) ≤ λ∗u∗(t) =

∫ 1

0
G(t, s)φ1(s)

(∫ 1

0
G(s, τ)φ2(τ)u∗(τ)dτ

)
ds

≤ (α− 1)2

(1− λ
2 )2Γ2(α)

t

∫ 1

0
s(1− s)α−2φ1(s)

(∫ 1

0
(1− τ)α−2φ2(τ)u∗(τ)dτ

)
ds.

Since φ1, φ2 ∈ C([0, 1], [0,+∞)), φ1, φ2 6≡ 0, repeating arguments similar to that of Lemma 4.1, we can
obtain

(α− 1)2

(1− λ
2 )2Γ2(α)

(∫ 1

0
s(1− s)α−2φ1(s)ds

)(∫ 1

0
s(1− s)α−2φ2(s)ds

)
≥ 1,

which contradicts (H3). This completes the proof.

Theorem 4.3. Assume that (H1) and (H2) hold. In addition, suppose f∞ > r−1(L) and g∞ = ∞. Then
BVP (1.1) has at least one positive solution.

Proof. By Lemma 2.10, Lemma 4.1, and Lemma 2.7, we can choose a constant r0 > 0 such that

i(T, Pr0 , P ) = 1. (4.8)

To make better use of the spectrum theory of bounded positive operator and fixed point index theory,
we shall consider the following operators:

Lεu(t) =

∫ 1−ε

ε
G(t, s)u(s)ds, ε ∈ (0,

1

2
).

Repeating arguments similar to that of Lemma 2.10, we can show that Lε : P → P is completely continuous
and the spectral radius r(Lε) > 0.

Choose εn ∈ (0, 1
2) (n = 1, 2, · · · ) such that ε1 ≥ ε2 ≥ · · · ≥ εn ≥ · · · , εn → 0 (n→∞).

It is easy to see that Lεnu(t) ≤ Lu(t) for any u ≥ 0, and then r(Lεn) ≤ r(L). Denote λεn = r−1(Lεn), λ1 =
r−1(L) and lim

n→∞
λεn = λ0. Obviously, λ0 ≥ λ1.

We shall prove λ0 = λ1. Let uεn be the positive eigenfunction corresponding to λεn with ||uεn || = 1.
Then {uεn} is uniformly bounded and

uεn(t) = λεn

∫ 1−εn

εn

G(t, s)uεn(s)ds = λεnLεnuεn(t). (4.9)
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Notice that {λεn} is bounded. From this together with the continuity of G(t, s) and Arzela-Ascoli
theorem, it follows that {uεn} has a subsequence converging to some u0 as n→∞ with ||u0|| = 1. Without
loss of generality, we can assume that uεn → u0, n→∞.

From (4.9), it follows

u0(t) = λ0

∫ 1

0
G(t, s)u0(s)ds = λ0Lu0(t).

Hence, λ0 is the eigenvalue of L.
Suppose λ0 > λ1. Put

ζ∗ =: sup{ζ|u0 ≥ ζu1},

where u1 ≥ 0 is the eigenfunction of L corresponding to λ1. Clearly, u1 6= u0. From ui = λiLui, i = 0, 1
and Lemma 2.5, we have u0 ≥ λ0c0t, u1 ≤ λ1c1t, where

c0 =
α− 1− λ

α − (1− λ
2 )

(1− λ
2 )Γ(α)

∫ 1

0
(1− s)α−2u0(s)ds, c1 =

α− 1

(1− λ
2 )Γ(α)

∫ 1

0
(1− s)α−2u1(s)ds.

Thus, it follows

u0(t) ≥ λ0c0

λ1c1
u1(t). (4.10)

This implies 0 < ζ∗ < +∞ and u0 − ζ∗u1 ≥ 0. So, it shows

L(u0 − ζ∗u1) =
1

λ0
u0 − ζ∗

1

λ1
u1 ≥ 0.

Namely, u0 ≥ λ0
λ1
ζ∗u1, which contradicts the definition of ζ∗. Therefore, λ0 = λ1. Then, there exist N0 and

ε0 such that λεN0
< λ1 + ε0, that is

r(LεN0
) >

1

r−1(L) + ε0
. (4.11)

By Krein-Rutman theorem, there exists a function ψεN0
∈ E\{θ} with ψεN0

≥ 0 such that

ψεN0
(t) = r−1(LεN0

)

∫ 1−εN0

εN0

G(t, s)ψεN0
(s)ds. (4.12)

Hence, by (2.6), we get

ψεN0
(t) ≥Mtr−1(LεN0

)

∫ 1−εN0

εN0

G(τ, s)ψεN0
(s)ds

=MtψεN0
(τ), ∀t, τ ∈ [0, 1].

So, ψεN0
(t) ≥Mt||ψεN0

|| holds. That is to say ψεN0
(t) ∈ P\{θ}.

In addition, by f∞ > r−1(L), there exists a constant R1 > 0 such that

f(t, u) > (r−1(L) + ε0)u, ∀u ≥ R1, t ∈ [0, 1]. (4.13)

By g∞ =∞, we know that there exists a constant R2 > 0 such that

g(t, u) > %u, ∀u ≥ R2, t ∈ [0, 1], (4.14)

where % =
(1− λ

2 )(α− 1)Γ(α)(
α− 1− λ

α − (1− λ
2 )
)2
εN0

∫ 1−εN0
εN0

t(1− t)α−2dt
.
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Let R0 > max

{
r0, R1,

(α−1)R2

(α−1− λ
α
−(1−λ

2
))εN0

}
. Then, for any u ∈ ∂PR0 , we have

u(t) ≥Mt||u|| = MtR0 > R2, t ∈ [εN0 , 1− εN0 ],

which together with (4.14) implies that∫ 1

0
G(s, τ)g(τ, u(τ))dτ

≥%
∫ 1−εN0

εN0

α− 1− λ
α − (1− λ

2 )

(1− λ
2 )Γ(α)

s(1− τ)α−2u(τ)dτ

≥%
∫ 1−εN0

εN0

α− 1− λ
α − (1− λ

2 )

(1− λ
2 )Γ(α)

s(1− τ)α−2α− 1− λ
α − (1− λ

2 )

α− 1
τR0dτ

≥%
(
α− 1− λ

α − (1− λ
2 )
)2
R0

(1− λ
2 )(α− 1)Γ(α)

εN0

∫ 1−εN0

εN0

τ(1− τ)α−2dτ

=R0 > R1

(4.15)

for any u ∈ ∂PR0 , s ∈ [εN0 , 1− εN0 ].
Now, we claim

u(t)− Tu(t) 6= µψεN0
(t), ∀u ∈ ∂PR0 , µ ≥ 0, t ∈ [0, 1].

Indeed, if the claim is false, then there exist u2 ∈ ∂PR0 and µ0 > 0 such that

u2(t)− Tu2(t) = µ0ψεN0
(t), t ∈ [0, 1] (4.16)

and thus u2(t) ≥ µ0ψεN0
(t), t ∈ [0, 1].

Let
µ∗ = sup{µ|u2(t) ≥ µψεN0

(t), t ∈ [0, 1]}.

Clearly, 0 < µ0 ≤ µ∗ < +∞ and u2(t) ≥ µ∗ψεN0
(t), t ∈ [0, 1]. Therefore, by (4.13) and (4.15), we have

f

(
t,

∫ 1

0
G(t, s)g(s, u2(s))ds

)
>(r−1(L) + ε0)

∫ 1

0
G(t, s)g(s, u2(s))ds

≥(r−1(L) + ε0)

∫ 1−εN0

εN0

G(t, s)%u2(s)ds

≥%µ∗(r−1(L) + ε0)

∫ 1−εN0

εN0

G(t, s)ψεN0
(s)ds

=%µ∗(r−1(L) + ε0)r(LεN0
)ψεN0

(t), ∀t ∈ [εN0 , 1− εN0 ].

From this together with (4.11)-(4.16), it follows that

u2(t) =Tu2(t) + µ0ψεN0
(t)

=

∫ 1

0
G(t, s)f

(
s,

∫ 1

0
G(s, τ)g(τ, u2(τ))dτ

)
ds+ µ0ψεN0

(t)

≥%µ∗(r−1(L) + ε0)r(LεN0
)

∫ 1−εN0

εN0

G(t, s)ψεN0
(s)ds+ µ0ψεN0

(t), ∀t ∈ [0, 1].

(4.17)

Put ς =
∫ 1−εN0
εN0

τ(1− τ)α−2dτ. We shall show that

%µ∗(r−1(L) + ε0)r(LεN0
)

∫ 1−εN0

εN0

G(t, s)ψεN0
(s)ds > µ∗ψεN0

(t). (4.18)
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Otherwise, from Lemma 2.5, it follows that

%µ∗(r−1(L) + ε0)r(LεN0
)
α− 1− λ

α − (1− λ
2 )

(1− λ
2 )Γ(α)

t

∫ 1−εN0

εN0

(1− s)α−2ψεN0
(s)ds ≤ µ∗ψεN0

(t),

namely

(α−1)t

(α−1− λ
α
−(1−λ

2
))εN0

ς
µ∗(r−1(L) + ε0)r(LεN0

)

∫ 1−εN0

εN0

(1− s)α−2ψεN0
(s)ds ≤ µ∗ψεN0

(t),

and then

(α−1)t(1−t)α−2

(α−1− λ
α
−(1−λ

2
))εN0

ς
µ∗(r−1(L) + ε0)r(LεN0

)

∫ 1−εN0

εN0

(1− s)α−2ψεN0
(s)ds ≤ µ∗(1− t)α−2ψεN0

(t). (4.19)

Integrating (4.19) with respect to t on [εN0 , 1− εN0 ] gives

(α−1)
∫ 1−εN0
εN0

t(1−t)α−2dt

(α−1− λ
α
−(1−λ

2
))εN0

ς
µ∗(r−1(L) + ε0)r(LεN0

)
∫ 1−εN0
εN0

(1− s)α−2ψεN0
(s)ds ≤ µ∗

∫ 1−εN0
εN0

(1− t)α−2ψεN0
(t)dt,

which implies
α− 1(

α− 1− λ
α − (1− λ

2 )
)
εN0

(r−1(L) + ε0)r(LεN0
) ≤ 1.

From (4.11), we know (r−1(L) + ε0)r(LεN0
) > 1. Notice εN0 ∈ (0, 1

2). Then, it is easy to see that

α− 1(
α− 1− λ

α − (1− λ
2 )
)
εN0

> 2.

We get the contradiction. Hence, (4.17) holds. Therefore, (4.17) and (4.18) imply u2(t) > (µ0 + µ∗)ψεN0
(t),

t ∈ [0, 1], which contradicts the definition of µ∗. By Lemma 2.6, we have i(T, PR0 , P ) = 0. Combining this
with (4.8), we find

i(T, PR0\P r0 , P ) = i(T, PR0 , P )− i(T, Pr0 , P ) = −1.

Hence, the operator T has at least one fixed point u∗ on PR0\P r0 .

Put v∗ =

∫ 1

0
G(t, s)g(s, u∗(s))ds. Consequently, (1.1) has at least one positive solution (u∗, v∗).

Theorem 4.4. Assume that (H3) holds and g0 <
(1−λ

2
)Γ(α)

α−1 . In addition, suppose there exists r > 0 such
that

f(t, u) > M−1
0 r, ∀u ∈ [0, r], t ∈ [0, 1].

Then BVP (1.1) has at least one positive solution.

Proof. By Lemma 2.11, Lemma 4.2, and Lemma 2.8, we can choose a constant R > r such that

i(T, PR, P ) = 1. (4.20)

By a similar way in the proof of Theorem 4.3, we can suppose that ψ(t) ∈ P\{θ} is the eigenfunction of L

corresponding to r(L). Noticing g0 <
(1−λ

2
)Γ(α)

α−1 , we know that there exists a constant r0 ∈ (0, r) such that

g(t, u) <
(1− λ

2 )Γ(α)

α− 1
u, ∀u ∈ [0, r0], t ∈ [0, 1].



D. Zhao, Y. Liu, J. Nonlinear Sci. Appl. 9 (2016), 2922–2942 2940

Thus, for u ∈ ∂Pr0 , we have∫ 1

0
G(s, τ)g(τ, u(τ))dτ ≤ α− 1

(1− λ
2 )Γ(α)

(1− λ
2 )Γ(α)

α− 1
u(τ) ≤ r0 < r.

This together with the assumption of Theorem 4.4 implies

f

(
s,

∫ 1

0
G(s, τ)g(τ, u(τ))dτ

)
> M−1

0 r.

Hence, it follows

Tu(t) =

∫ 1

0
G(t, s)f

(
s,

∫ 1

0
G(s, τ)g(τ, u(τ))dτ

)
ds >

∫ 1

0
G(t, s)ds ·M−1

0 r,

which yields ||Tu|| > max
t∈[0,1]

∫ 1
0 G(t, s)ds ·M−1

0 r = r. Then, for u ∈ ∂Pr, µ > 0, we can obtain ||Tu+ µψ|| ≥

||Tu|| > r. This means u 6= Tu+ µψ, for u ∈ ∂Pr, µ > 0. By Lemma 2.6, we get

i(T, Pr, P ) = 0. (4.21)

From (4.20) and (4.21), we have

i(T, PR\P r, P ) = i(T, PR, P )− i(T, Pr, P ) = 1,

which implies that the operator T has at least one fixed point u∗ on PR0\P r0 .

Let v∗ =

∫ 1

0
G(t, s)g(s, u∗(s))ds. Therefore, (1.1) has at least one positive solution (u∗, v∗).

Example 4.5. Consider the following BVP of fractional differential system:

D
7
2

0+
u(t) +

2

3

√
1 + t

(
2v(t) + sin2 v(t)

)
+

1

ln(1 + t2)
v(t)(e3v(t) − 1) = 0, t ∈ (0, 1),

D
7
2

0+
v(t) +

1

6

(
t+

1

2

)
u(t)eu(t) +

1 + arctan t

2
u2(t) = 0, t ∈ (0, 1),

u(j)(0) = v(j)(0) = 0, 0 ≤ j ≤ 3, j 6= 1,

u′(1) =
2

3

∫ 1

0
u(t)dt, v′(1) =

2

3

∫ 1

0
v(t)dt.

(4.22)

Then BVP (4.22) has at least one positive solution.

Proof. (4.22) can be regarded as a BVP of the form (1.1), where

f(t, v) =
2

3

√
1 + t(2v + sin2 v) +

1

ln(1 + t2)
v(e3v − 1), g(t, u) =

1

6

(
t+

1

2

)
ueu +

1 + arctan t

2
u2

and α = 7
2 (n = 4), λ = 2

3 . It is easy to check that fv, gu ∈ C([0, 1] × [0,+∞)), and f(t, 0) = g(t, 0) =
0, fu(t, 0) = 4

3

√
1 + t > 0, gu(t, 0) = 1

6

(
t+ 1

2

)
> 0, t ∈ [0, 1].

In addition, direct calculation gives(∫ 1

0
t(1− t)α−2fu(t, 0)dt

)(∫ 1

0
t(1− t)α−2gu(t, 0)dt

)
=

(∫ 1

0
t(1− t)

3
2

4

3

√
1 + tdt

)(∫ 1

0
t(1− t)

3
2

1

6
(t+

1

2
)dt

)
<

4
√

2

3
· 1

4
=

√
2

3
<
π

4
=

(1− λ
2 )2Γ2(α)

(α− 1)2

and f∞ = +∞, g∞ = +∞. By Theorem 4.3 BVP (4.22) has at least one positive solution.
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Example 4.6. Consider the following BVP of fractional differential system:

D
9
2

0+
u(t) + cos2 v(t) + (1 + v(t))e

t
2 = 0, t ∈ (0, 1),

D
9
2

0+
v(t) +

1

2
t2u(t) +

2

5
sinu(t) = 0, t ∈ (0, 1),

u(j)(0) = v(j)(0) = 0, 0 ≤ j ≤ 4, j 6= 1,

u′(1) =
4

3

∫ 1

0
u(t)dt, v′(1) =

4

3

∫ 1

0
v(t)dt.

(4.23)

Then BVP (4.23) has at least one positive solution.

Proof. (4.23) is a BVP of type (1.1), where

f(t, v) = cos2 v + (1 + v)e
t
2 , g(t, u) =

1

2
t2u+

2

5
sinu,

and α = 9
2 (n = 5), λ = 4

3 . By direct calculation, we get

lim
v→+∞

f(t, v)

v
= e

t
2 = φ1(t), lim

u→+∞

g(t, u)

u
=

1

2
t2 = φ2(t)

uniformly holds with respect to t on [0,1], and(∫ 1

0
t(1− t)α−2φ1(t)dt

)(∫ 1

0
t(1− t)α−2φ2(t)dt

)
=

(∫ 1

0
t(1− t)

5
2 e

t
2dt

)(∫ 1

0
t(1− t)

1
2 t2dt

)
<e

1
2 · 1

2
< 1.21 =

(1− λ
2 )2Γ2(α)

(α− 1)2

and g0 = 0.9 < 1.1 =
(1− λ

2 )Γ(α)

α− 1
.

In addition, by Lemma 2.5, we get M−1
0 =

(
max
t∈[0,1]

∫ 1

0
G(t, s)ds

)−1

≤ 0.47. Take r = 1.2, we obtain

f(t, v) > e
t
2 > 0.47 ·1.2 > M−1

0 r, for any v ∈ [0, 1.2], t ∈ [0, 1]. Hence, our conclusion follows from Theorem
4.4
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