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Abstract

Using variational methods, we investigate the solutions to the boundary value problems for fractional
order differential equations. First, we consider the eigenvalue problem associated with it. Then, we obtain
the existence of at least two weak solutions for every real number via Brezis and Nirenberg’s Linking
Theorem. Furthermore, for every positive integer k, the existence criteria of k pairs of weak solutions are
established by using Clark Theorem. At last, some examples are also given to illustrate the results. c©2016
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1. Introduction

Fractional calculus provide a powerful tool for the description of hereditary properties of various materials
and memory processes [6, 24]. Fractional differential equations have recently proved to be strong tools in
the modeling of medical, physics, economics and technical sciences. For more details on fractional calculus
theory, one can see the monographs of Kilbas et al. [11], Lakshmikantham et al. [12], Podlubny [16] and
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Tarasov [20]. Fractional differential equations are involving the Riemann-Liouville fractional derivative or
the Caputo fractional derivative have been paid more and more attentions.

In recent years, some fixed point theorems and monotone iterative methods have been applied successfully
to investigate the existence of solutions for nonlinear fractional boundary value problems, see for example,
[1, 2, 7, 14, 22] and the references therein. On the other hand, critical point theory and the variational
methods have been very useful in dealing with the existence and multiplicity of solutions for integer order
differential equations with some boundary conditions. But until now, there are few works that deal with the
fractional differential equations via the variational methods; see [3, 5, 8–10, 13, 15, 18, 19, 21, 23]. It is often
very difficult to establish a suitable space and variational functional for fractional boundary value problem for
several reasons. First and foremost, the composition rule in general fails to be satisfied by fractional integral
and fractional derivative operators. Furthermore, the fractional integral is a singular integral operator and
fractional derivative operator is non-local. Besides, the adjoint of a fractional differential operator is not the
negative of itself. By means of critical point theory, Jiao and Zhou [9] considered the following fractional
boundary value problems {

tD
α
T (0D

α
t u(x)) = ∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where α ∈ (0, 1), 0D
α
t and tD

α
T are the left and right Riemann-Loiuville fractional derivatives respectively.

F : [0, T ] × RN → R ( with N ≥ 1) is a suitable given function and ∇F (t, x) is the gradient of F with
respect to x.

In [13], the authors investigated the following nonlinear fractional boundary value problems

− d

dt
(
1

2 0D
β
t +

1

2 tD
β
T )u′(t) = λu(t) +∇F (t, u(t)) = 0,

u(0) = u(T ) = 0,

where β ∈ (0, 1), 0D
β
t and tD

β
T are the left and right Rieman-Liouville fractional integrals of order β

respectively, and λ ∈ R is a parameter, F : [0, T ]×RN → R is a suitable given function and ∇F (t, x) is the
gradient of F with respect to x. The main tools are variational methods and critical point theorems.

In [3], the authors studied the following nonlinear fractional boundary value problems{
tD

α
T (0D

α
t u(x)) = λa(t)f(u(t)) + µg(t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where α ∈ (0, 1], 0D
β
t and tD

β
T are the left and right Rieman-Liouville fractional integrals of order α

respectively, and λ and µ are non-negative parameters, a : [0, T ] → R, f : R → R, g : [0, T ] → R are three
given continuous functions. By means of the variational methods and a critical point theorem, the authors
get the existence of infinitely many solutions.

Motivated by the work above, in this article, we consider the following fractional differential equations{
tD

α
T (a(t) 0D

α
t u(x)) = λu(t)∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,
(1.1)

where α ∈ (0, 1], 0D
β
t and tD

β
T are the left and right Rieman-Liouville fractional integrals of order α

respectively, and λ ∈ R is a parameter, F : [0, T ]×RN → R, and ∇F (t, x) is the gradient of F with respect
to x, a : [0, T ]→ R is a continuous function.

First, we consider the eigenvalue problem associated with it. A characterization of the first eigenvalue
is also given. Then, we obtain the existence of at least two weak solutions for every real number via Brezis
and Nirenberg’s Linking Theorem. Furthermore, for every positive integer k, the existence criteria of k pairs
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of weak solutions are established by using Clark Theorem. At last, some examples are given to illustrate
the results. Our methods and results are different from those in [3]. The rest of this paper is organized as
follows. In Section 2, some definitions and lemmas which are essential to prove our main results are stated.
In Section 3, we give the main results. And, two examples are offered to demonstrate the application of our
main results.

2. Preliminaries

This section is devoted to introduce some necessary definitions and properties of the fractional calculus,
which are used further in this paper.

Definition 2.1 ([11]). Let f be a function defined on [a, b]. The left and right Riemann-Liouville fractional
derivatives of order α for function f denoted by aD

α
t and tD

α
b function, respectively, are defined by

aD
α
t f(t) =

dn

dtn aD
α−n
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a
(t− s)n−α−1f(s)ds, t ∈ [a, b], α > 0,

tD
α
b f(t) = (−1)n

dn

dtn tD
α−n
b f(t) =

(−1)n

Γ(n− α)

dn

dtn

∫ b

t
(s− t)n−α−1f(s)ds, t ∈ [a, b], α > 0,

provided that the right-hand side integral is pointwise defined on [a, b].

Definition 2.2 ([11]). If α ∈ (n − 1, n) and f ∈ ACn([a, b], R), then the left and right Caputo fractional
derivatives of order α of a function f denoted by aD

α
t f(t) and tD

α
b f(t) function, respectively, are defined by

C
aD

α
t f(t) = aD

α−n
t

dn

dtn
f(t) =

1

Γ(n− α)

∫ t

a
(t− s)n−α−1f (n)(s)ds, t ∈ [a, b], α > 0,

C
tD

α
b f(t) = (−1)n tD

α−n
b

dn

dtn
f(t) =

(−1)n

Γ(n− α)

∫ b

t
(s− t)n−α−1f (n)(s)ds, t ∈ [a, b], α > 0,

where t ∈ [a, b].

Lemma 2.3 ([11]). The left and right Riemann-Liouville fractional integral operators have the property of
a semigroup; that is, ∫ b

a
[aD

−α
t f(t)]g(t)dt =

∫ b

a
[tD
−α
b g(t)]f(t)dt, α > 0,

provided that f ∈ Lp([a, b], R), g ∈ Lq([a, b], R) and p ≥ q, q ≥ 1, 1
p + 1

q ≤ 1+α or p 6= 1, q 6= 1, 1
p + 1

q = 1+α.

Lemma 2.4 ([11]). The left and right Riemann-Liouville fractional integral operators have the property of
a semigroup; that is, ∫ b

a
[aD

−α
t f(t)]g(t)dt =

∫ b

a
[tD
−α
b g(t)]f(t)dt, α > 0,

provided that f(a) = f(b) = 0, f ′ ∈ L∞([a, b], RN ) and g ∈ L1([a, b], RN ) or g(a) = g(b) = 0, f ′ ∈
L∞([a, b], RN ) and f ∈ L1([a, b], RN ).

Lemma 2.5 ([11]). Assume that n− 1 < α < n and f ∈ Cn[a, b]. Then

aD
−α
t (CaD

α
t f(t)) = f(t)−

n−1∑
j=0

f (j)(a)

j!
(t− a)j ,

tD
−α
b (CtD

α
b f(t)) = f(t)−

n−1∑
j=0

(−1)jf (j)(b)

j!
(b− t)j

for t ∈ [a, b].
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Lemma 2.6 ([11]). Assume that n− 1 < α < n and f ∈ Cn[a, b]. Then

C
aD

α
t f(t) = aD

−α
t f(t)−

n−1∑
j=0

f (j)(a)

Γ(j − α+ 1)
(t− a)j−α,

C
tD

α
b f(t) = tD

−α
b f(t)−

n−1∑
j=0

(−1)jf (j)(b)

Γ(j − α+ 1)
(b− t)j−α

for t ∈ [a, b].

In order to establish a variational structure which enables us to reduce the existence of solutions of
problem (1.1) to one of finding the critical points of corresponding functional, it is necessary to construct
appropriate function spaces.

Let us recall that for any fixed t ∈ [0, T ] and 1 ≤ p ≤ ∞,

‖u‖∞ = max
t∈[0,T ]

|u(t)|, ‖u‖Lp = (

∫ T

0
|u(s)|pds)

1
p ,

where T > 0 is given in (1.1).
Let 0 < α ≤ 1, we define the fractional derivative spaces Eα0 by the closure of C∞0 ([0, T ], R) with respect

to the weighted norm

‖u‖α = (

∫ T

0
a(t)| 0Dα

t u(t)|2dt+

∫ T

0
|u(t)|2dt)

1
2 , ∀u ∈ Eα0 , (2.1)

where C∞0 ([0, T ], R) = {u ∈ C∞([0, T ], R) : u(0) = u(T )}. The fractional derivative spaces Eα0 is similar to
the space Eα,p0 with p = 2 which is defined in [9]. Clearly, the fractional derivative space Eα0 is the space of
functions u ∈ L2[0, T ] having an α order fractional derivative 0D

α
t u(t) ∈ L2[0, T ] and u(0) = u(T ).

Lemma 2.7 ([9]). Let 1
2 < α ≤ 1; for all u ∈ Eα0 , one has

(I) ‖u‖L2 ≤
Tα

Γ(α+ 1)
‖ 0D

α
t u(t)‖L2 , (II) ‖u‖∞ ≤

Tα−1/2

Γ(α)
√

2α− 1
‖ 0D

α
t u(t)‖L2 .

Let a(t) ≥ 0 and a0 = min
t∈[0,T ]

a(t), from Lemma 2.7, one has

‖u‖L2 ≤
Tα

Γ(α+ 1)
√
a0

(

∫ T

0
a(t)| 0Dα

t u(t)|2dt)
1
2 , (2.2)

‖u‖∞ ≤
Tα−1/2

Γ(α)
√
a0(2α− 1)

(

∫ T

0
a(t)| 0Dα

t u(t)|2dt)
1
2 . (2.3)

By (2.2),(2.3), we can also define

‖u‖α = (

∫ T

0
a(t)| 0Dα

t u(t)|2dt)
1
2 , ∀u ∈ Eα0 . (2.4)

Then we conclude that ‖u‖α defined in (2.1) is equivalent to the norm ‖u‖α defined in (2.4). In the sequel,
we will consider Eα0 with the norm ‖u‖α defined in (2.4). Obviously, Eα0 is a reflexive and separable Hilbert
space with the norm ‖u‖α.

It follows from (2.2)-(2.4) that

‖u‖L2 ≤
Tα

Γ(α+ 1)
√
a0
‖u‖α, ‖u‖∞ ≤

Tα−1/2

Γ(α)
√
a0(2α− 1)

‖u‖α. (2.5)

Similar to some properties in [9], we have the following results.
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Lemma 2.8. Let α ∈ (0, 1]. The fractional derivative space Eα0 is a reflexive and separable Banach space.

Lemma 2.9. Let α ∈ (0, 1] and the sequence {uk} converges weakly to u in Eα0 . Then uk → u in C([0, T ], R);
that is, ‖un − u‖∞ → 0, as k →∞.

Definition 2.10. u ∈ Eα0 is called a weak solution of problem (1.1) if∫ T

0
a(t) 0D

α
t u(t) 0D

α
t v(t)dt− λ

∫ T

0
u(t)v(t)dt−

∫ T

0
∇F (t, u(t))v(t)dt = 0

for all v ∈ Eα0 .

Throughout this paper, we assume that the following assumption (H1) is satisfied.
(H1). F (t, x) is continuous in t ∈ [0, T ] for every x ∈ R and continuously differentiable in x and F (t, 0) = 0
for all t ∈ [0, T ], a : [0, T ]→ R is a continuous non-negative function.

We consider the functional I : X → R, defined by

I(u) =
1

2

∫ T

0
[a(t)| 0Dα

t u(t)|2 − λu2(t)]dt−
∫ T

0
F (t, u(t))dt. (2.6)

Then I is continuously differentiable under the assumption (H1), and

〈I ′(u), v〉 =

∫ T

0
a(t) 0D

α
t u(t) 0D

α
t v(t)dt− λ

∫ T

0
u(t)v(t)dt−

∫ T

0
∇F (t, u(t))v(t)dt (2.7)

for all v ∈ Eα0 . Hence the critical point of I is the weak solution of problem (1.1). Next, we consider the
critical point of I.

Finally, we need the following results in critical point theory.

Definition 2.11. Let E be a real Banach space, and ϕ ∈ C1(E,R). We say that ϕ satisfies the (PS)
condition if any {um} ⊂ E for which ϕ(um) is bounded and ϕ′(um) → 0 as m → ∞ posses a convergent
subsequence.

Next is the Brezis and Nirenbergs linking Theorem.

Lemma 2.12 ([4]). Let E have a direct sum decomposition E = X ⊕ Y , where dimx ≤ ∞, and ϕ be a C1

functional on E with ϕ(0) = 0, satisfying (PS) and assume that, for some r > 0,

ϕ(x) ≤ 0, ∀x ∈ X, ‖x‖ ≤ r, ϕ(y) ≥ 0, ∀y ∈ Y, ‖y‖ ≤ r.

Also assume that ϕ is bounded below and inf
E
ϕ < 0. Then ϕ has at least two nonzero critical points.

Lemma 2.13 (Clark Theorem [17]). Let E be a real Banach space, and ϕ ∈ C1(E,R), even, bounded from
below and satisfying (PS). Suppose ϕ(0) = 0, there is a set E′ ⊂ E such that E′ is homeomorphic to Sj−1

(j − 1 dimension unit sphere) by an odd map, and sup
E
ϕ < 0. Then ϕ possesses at least j distinct pairs of

critical points.

3. Main results

First, we investigate the eigenvalue problem{
tD

α
T (a(t) 0D

α
t u(t)) = λu(t), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,
(3.1)

and u ∈ Eα0 is a weak solution of problem (3.1) if∫ T

0
a(t) 0D

α
t u(t) 0D

α
t v(t)dt− λ

∫ T

0
u(t)v(t)dt = 0 (3.2)

for all v ∈ Eα0 .
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Theorem 3.1. The eigenvalues of (3.1) are all real and can be denoted by 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · ,
with λk → ∞ as k → ∞, if we repeat each eigenvalue according to its multiplicity. λ1 can be characterized
as

λ1 = inf
u∈Eα\{0}

∫ T
0 a(t)| 0Dα

t u(t)|2dt∫ T
0 u2(t)dt

. (3.3)

Furthermore, there exists an orthogonal basis {wk}∞k=1 of Eα0 , where wk ∈ Eα0 is a eigenfunction correspond-
ing to λk for k = 1, 2, . . . .

Proof. From (H1), we know a(t) ≥ 0. Then, it is easy to see Eα0 is a Banach space with the norm ‖u‖α =

(
∫ T

0 a(t)| 0Dα
t u(t)|2dt)

1
2 , ∀u ∈ Eα0 which is defined in (2.4), and an inner product can be induced by the

norm ‖u‖α, we denote

〈u, v〉α =

∫ T

0
a(t) 0D

α
t u(t) 0D

α
t v(t)dt.

Then Eα0 is a Hilbert space with this inner product.
From Hölder inequality and (2.5), for given u ∈ L2(0, T ) and any v ∈ Eα0 , we have

|
∫ T

0
〈u, v〉dt| ≤ ‖u‖L2‖v‖L2 ≤

Tα

T (α+ 1)
√
a0
‖u‖L2‖v‖α.

According to the Riesz Theorem, there exists a unique w ∈ Eα0 such that∫ T

0
〈u, v〉dt = 〈w, v〉α, ∀v ∈ Eα0 .

Then we can define the operator K : L2(0, T )→ Eα as Ku = w.
By the above proof, one has

‖Ku‖α = ‖w‖α ≤
Tα

T (α+ 1)
√
a0
‖u‖L2 .

Then it is easy to see that K is a bounded linear operator from L2(0, T ) to Eα. Let S : Eα → L2(0, T ) be
an embedding operator. From Lemma 2.9, S is compact, which shows w = KSu. So (3.2) can be transform
into the following operator equation

〈u, v〉α = (λw, v)α = (λKSu, v)α, ∀v ∈ Eα0 ,

which implies 〈u − λKSu, v〉α = 0, ∀v ∈ Eα0 . It follows that (I − λKS)u = 0. Therefore, we can conclude
KS is symmetric and compact. From Lemma 2.8, we know Eα0 is separable. Then by Riesz-Schauder theory,
we can obtain that all eigenvalue {λk} of KS are positive real numbers and there are corresponding to the
eigenfunctions {wk}∞k=1 which make up an orthogonal basis of Eα, and λ1 can be characterized as

λ1 = inf
u∈Eα\{0}

∫ T
0 a(t)| 0Dα

t u(t)|2dt∫ T
0 u2(t)dt

.

This completes the proof.

The following result is based on Brezis and Nirenberg’s Linking Theorem.

Theorem 3.2. Let (H1) hold, and the following assumptions (H2) and (H3) are satisfied.
(H2). There are constants c1 > 0 and 0 < p < 2 such that

F (t, x) ≤ −λ
2
|x|2 + c1|x|p, x ∈ R, t ∈ [0, T ].
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(H3). There are k ∈ N and r1 > 0 such that,

λk − λ
2
|x|2 ≤ F (t, x), for |x| ≤ r1, t ∈ [0, T ].

Then (1.1) possesses at least two weak solutions for λ ∈ R.

Proof. We show all the conditions of Lemma 2.12 are satisfied.
From (H2) and (2.5), for u ∈ Eα, one has

I(u) =
1

2

∫ T

0
[a(t)| 0Dα

t u(t)|2 − λu2(t)]dt−
∫ T

0
F (t, u(t))dt

≥ 1

2
‖u‖2α −

λ

2
‖u‖2L2 +

λ

2
‖u‖2L2 − c1T‖u‖p∞

≥ 1

2
‖u‖2α − c1T (

Tα−1/2

Γ(α)
√
a0(2α− 1)

‖u‖α)p

= [
1

2
− c1‖u‖p−2

α T (
Tα−1/2

Γ(α)
√
a0(2α− 1)

)p]‖u‖2α.

(3.4)

From (3.4), we know I is bounded from below. If {un} is a (PS) sequence, i.e., I(un) is bounded and
I ′(un) → 0, as n → ∞, then (3.4) implies {un} is bounded. From the reflexivity of Eα, we know {un} has
a weakly convergent subsequence. Without loss of generality, we assume that uk converges weakly to u in
Eα0 . By Lemma 2.9, we can obtain that un → u in C([0, T ], R), as n→∞, that is,

‖un − u‖∞ → 0, as n→∞. (3.5)

From (2.7), we have

〈I ′(u), u〉 =

∫ T

0
a(t) 0D

α
t u(t) 0D

α
t u(t)dt− λ

∫ T

0
u(t)u(t)dt−

∫ T

0
∇F (t, u(t))u(t)dt

= ‖u‖2α − λ
∫ T

0
u2(t)dt−

∫ T

0
∇F (t, u(t))u(t)dt.

Then

‖un − u‖2α ≤ 〈I ′(u)− I ′(un), u− un〉+ λ‖un − u‖∞
∫ T

0
|un(t) + u(t)|dt

+

∫ T

0
(∇F (t, un(t))−∇F (t, u(t)))dt‖un − u‖∞.

(3.6)

By (H1), (3.5), it easy to see that∫ T

0
(∇F (t, un(t))−∇F (t, u(t)))dt‖un − u‖∞ → 0, as n→∞. (3.7)

From (3.5) and I ′(un)→ 0 as n→∞, we have

〈I ′(un)− I ′(u), un − u〉 = 〈I ′(un), un − u〉 − 〈I ′(u), un − u〉
≤ ‖I ′(un)‖α‖un − u‖α − 〈I ′(u), un − u〉 → 0, as k →∞.

(3.8)
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By (3.5), we can also easily get

λ‖un − u‖∞
∫ T

0
|un(t) + u(t)|dt→ 0, as n→∞. (3.9)

In view of (3.6)-(3.9), we know that ‖un − u‖α → 0, as k → ∞. Then uk converges strongly to u in Eα0 .
Therefore I satisfies (P.S) condition.

Set V = span{w1, . . . , wk} and X = V ⊥, where {wi}(i = 1, . . . , k) are eigenfunctions of (3.1). From
Theorem 3.1, we know Eα0 = V ⊕X.

For u ∈ V with ‖u‖α ≤
T (α)
√
a0(2α−1)

Tα−1/2 r1, from (2.5), we can conclude ‖u‖∞ ≤ r1. Together with (H3),
one has

I(u) =
1

2

∫ T

0
[a(t)| 0Dα

t u(t)|2 − λu2(t)]dt−
∫ T

0
F (t, u(t))dt

≤ 1

2
‖u‖2α −

λ

2

∫ T

0
u2(t)dt−

∫ T

0

(λk − λ)

2
u2(t)dt

≤ 1

2
‖u‖2α −

∫ T

0

λk
2
u2(t)dt.

(3.10)

Theorem 3.1 implies λk > λ1. From (3.3), we have

λk ≥
∫ T

0 a(t)| 0Dα
t u(t)|2dt∫ T

0 u2(t)dt
=
‖u‖2α
‖u‖2

L2

, for u ∈ V, ‖u‖∞ ≤ r1.

It follows from (3.10) that
I(u) ≤ 0, for u ∈ V, ‖u‖∞ ≤ r1. (3.11)

Notice that X = V ⊥. For u ∈ X, ‖u‖∞ ≤ r1, by (H2), one has

I(u) =
1

2

∫ T

0
[a(t)| 0Dα

t u(t)|2 − λu2(t)]dt−
∫ T

0
F (t, u(t))dt

≥ 1

2
‖u‖2α −

λ

2
‖u‖2L2 +

λ

2
‖u‖2L2 − c1T‖u‖2∞‖u‖p−2

∞

≥ 1

2
‖u‖2α[1− c1Tr

p−2
1

T 2α−1

Γ2(α)a0(2α− 1)
].

If we choose r1 ≥ {c1T
T 2α−1

Γ2(α)a0(2α−1)
}

1
2−p , it follows that

I(u) ≥ 0, for u ∈ X, ‖u‖∞ ≤ r1. (3.12)

If inf
E
I(u) < 0, all the conditions of Lemma 2.12 hold. By virtue of Lemma 2.12, we can conclude that

problem (1.1) has at least two non-trivial weak solutions.
On the other hand, if inf

E
I(u) ≥ 0, from (3.11), we have I(u) = 0, for all u ∈ V, ‖u‖∞ ≤ r1. Then all

u ∈ V , ‖u‖∞ ≤ r1 are weak solutions of problem (1.1).

The next results are based on Lemma 2.13 (Clark Theorem[17]).

Theorem 3.3. Suppose (H1) hold, then problem (1.1) possesses at least k distinct pairs of weak solutions
for λ > λk, k = 1, 2, . . ., if the following assumptions are satisfied,
(H2)′. There are constants c1, c2 > 0 and 0 < p < 2 such that

F (t, x) ≤ −λ
2
|x|2 + c1|x|p + c2, x ∈ R, t ∈ [0, T ].
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(H4).There exist ε, r2 > 0, such that F (t, x) ≥ ε , for |x| ≤ r2;
(H5). F (t, x) = F (t,−x)

Proof. Our aim is to apply Lemma 2.13 to the problem (1.1). So we verify all the assumptions of Lemma
2.13 hold.

From F (t, 0) = 0 for all t ∈ [0, T ], it easy to see that I(0) = 0. The assumption (H5) shows that I(u) is
even. From (H2)′, we have

I(u) =
1

2

∫ T

0
[a(t)| 0Dα

t u(t)|2 − λu2(t)]dt−
∫ T

0
F (t, u(t))dt

≥ 1

2
‖u‖2α −

λ

2
‖u‖2L2 +

λ

2
‖u‖2L2 − c1T‖u‖p∞ − c2T

≥ 1

2
‖u‖2α − c1T (

Tα−1/2

Γ(α)
√
a0(2α− 1)

‖u‖α)p − c2T

= [
1

2
− c1‖u‖p−2

α T (
Tα−1/2

Γ(α)
√
a0(2α− 1)

)p]‖u‖2α − c2T.

Therefore I(u) is bounded from below. Next, similarly to the proof of Theorem 3.2, we can verify I
satisfies the (PS) condition.

From Theorem 3.1, we have the eigenfunctions {wj} of (3.1) corresponding to the eigenvalues {λj} . We
select the space E′ by

E′ = {u : u =
k∑
j=1

αjwj , αj ∈ R with
k∑
j=1

α2
j =

Γ(α)
√
a0(2α− 1)

T (α−1)/2
r2}.

Then the space E′ is homeomorphic to the k− 1 dimension unit sphere Sk−1 by an odd homeomorphic map
which is injective, surjective and continuous with its inverse map is also continuous.

For all u ∈ E′, from the definition of u ∈ E′ and that {wj} are orthogonal basis, we can get

‖u‖α =
Γ(α)

√
a0(2α− 1)

Tα−1/2
r2,

together with (H4), it shows ‖u‖∞ ≤ r2 . Also from the condition λ > λk, then one has

I(u) =
1

2

∫ T

0
[a(t)| 0Dα

t u(t)|2 − λu2(t)]dt−
∫ T

0
F (t, u(t))dt

≤ 1

2
‖u‖2α −

λ

2
‖u‖2L2 − εT

≤ 1

2
‖u‖2α −

λk
2
‖u‖2L2 − εT.

(3.13)

From Theorem 3.1, we have

λk ≥
∫ T

0 a(t)| 0Dα
t u(t)|2dt∫ T

0 u2(t)dt
=
‖u‖2α
‖u‖2

L2

, for ‖u‖∞ ≤ r2. (3.14)

It should be noted that r2 has no direct relation to r1. Then it follows from (3.13) and (3.14) that
I(u) < 0, for ‖u‖∞ ≤ r2. Hence, it easy to get supE < 0. Then all the conditions of Lemma 2.13 are
satisfied. From the assertion of Lemma 2.13, we know that I(u) possesses at least k distinct pairs of critical
points which correspond to the weak solutions of the problem (1.1).
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Finally, we give some examples to illustrate the usefulness of our main result. Consider the following
system of fractional differential equations.

Example 3.4. {
tD

2
3
1 (0D

2
3
t u(t)) = λu+∇F (t, u(t)), t ∈ [0, 1],

u(0) = u(1) = 0.
(3.15)

Let F (t, u(t)) = −λ
2 |u|

2 + (c1 − 1)|u|p, then (H1), (H2) hold.

We choose r1 <
2(c1−1)
λk

, it follows that |u|2−p ≤ 2(c1−1)
λk

, which implies

λk − λ
2
|u|2 ≤ −λ

2
|u|2 + (c1 − 1)|u|p = F (t, u).

Then (H3) is satisfied. According to Theorem 3.1, problem (3.15) has at least two non-trivial solution.

Example 3.5. {
tD

3
4
1 (0D

3
4
t u(t)) = 2u(t) +∇F (t, u(t)), t ∈ [0, 1],

u(0) = u(1) = 0.
(3.16)

Let F (t, u(t)) = −2u2 + 1. Obviously (H1), (H2)′, are satisfied with

F (t, u(t)) = −2u2 + 1 ≤ −|u|2 + |u|+ 1.5,

where λ = 2, c1 = 1, c2 = 1.5, p = 1.

Let ε = r2 = 1
2 > 0, then we have F (t, u(t)) = −2u2 + 1 ≥ 1

2 , for |u| ≤ 1
2 . So (H4) holds. And

F (t, u(t)) = −2u2 + 1 is even, that is (H5) is satisfied. Then our results can be applied to problem (3.16),
which shows problem (3.16) has at least k distinct pairs of distinct solutions.
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