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Abstract

A nondifferentiable analytical solution of the n-dimensional diffusion equation in fractal heat transfer is
investigated using the local fractional Adomian decomposition method. c©2016 All rights reserved.
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1. Introduction

Fractional differential equations play the master role in various fields, like diffusion theory, transport
theory, scattering theory, rheology, quantitative biology etc. where those equations can be successfully
applied to define and explain a number of phenomena. But fractional calculus is not perfectly applicable in
the case of fractal functions. In order to deal with fractal problems in various fields, the concept of local
fractional derivative was developed. The local fractional calculus was introduced by Yang [4, 5] and further
applications of this derivative can be found in [1, 3, 6, 8] and in the references contained in [7]. The local
fractional derivative (local fractional differential operator) of order α is defined at x = x0 by (see [4, 5, 7])

f (α) (x0) =
dα

dxα
f (x)|x=x0

= lim
x→x0

∆α (f (x)− f (x0))

(x− x0)α
, (1.1)

where ∆α (f (x)− f (x0)) ∼= Γ (α+ 1) (f (x)− f (x0).
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Let a = t0 < t1 < t2 < · · · < tN = b be a partition of [a, b], ∆tj = tj+1− tj and ∆t = max{∆t0,∆t1, . . . };
then local fractional integral of f(x) in the interval [a, b] is given by (see [4, 5, 7])

aI
(α)
b f (x) =

1

Γ (1 + α)

b∫
a

f (t) (dt)α =
1

Γ (1 + α)
lim

∆t→0

N−1∑
j=0

f (tj)(∆tj)α. (1.2)

The n-D diffusion model in fractal heat transfer, involving local fractional derivatives (LFD) was presented
by

ηα∇2αΦ (x, y, z, τ) =
∂αΦ (x, y, z, τ)

∂τα
, (1.3)

subject to the initial and boundary conditions

Φ (x1, x2, . . . xn, 0) = f (x1, x2, . . . xn)

Φ (0, x2, . . . xn, τ) = Φ (a1, x2, . . . xn, , τ) = g1 (x2, . . . xn, τ)

Φ (x1, 0, . . . xn, τ) = Φ (x1, a2, . . . xn, , τ) = g2 (x1, . . . xn, τ)

...

Φ (x1, x2, . . . an, τ) = Φ (x1, x2, . . . an, , τ) = gn (x1, . . . xn−1, τ) ,

(1.4)

where the local fractional n-dimensional Laplace operator, which is a generalization of local fractional
Laplace operator studied in [1]–[7], is defined by

∇2α =

n∑
i=1

∂2α

∂x2α
i

, (1.5)

where ηα is a nondifferentiable diffusion coefficient, and Φ(x1, x2, . . . , xn, τ) is the nondifferentiable con-
centration distribution. Recently, the authors [8] suggested the local fractional Adomian decomposition
method (LFADM) to deal with 1-D diffusion equation on Cantor time-space. Yang et al. [6, 7] developed
nondifferential solution to wave equation on Cantor sets within the LFD. Further, 3-D diffusion equation was
considered by Fan et al. [2]. In this paper we implement local fractional Adomian decomposition method
(LFADM) on the n-D diffusion model in fractal heat transfer.

2. n-Dimensional diffusion model in fractal heat transfer

We first rewrite the problem (1.3) in the local fractional operator form:

L
(α)
t Φ = ηα

[
m∑
i=1

L2α
xixiΦ

]
, (2.1)

where the local fractional differential operator is defined by

L(2α)
xixi (.) =

∂2α

∂x2
i

(.), L(α)
τ (.) =

∂α

∂τ
(.), i = 1, 2, ...,m. (2.2)

Taking the inverse operator L−ατ to both sides of (2.1) and using the initial condition leads to

L
(−α)
t L

(α)
t Φ = ηαL

(−α)
t

[
n∑
i=1

L(2α)
xixiΦ

]
. (2.3)

Hence, we get

Φ(x1, x2, . . . , xn, τ) = ηαL
(−α)
t

[
n∑
i=1

L(2α)
xixiΦ(x1, x2, . . . , xn, τ)

]
+ Φ(x1, x2, . . . , xn, 0). (2.4)
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According to the LFADM we decompose the unknown function Φ(x1, x2, . . . , xn, τ) in an infinite series

Φ(x1, x2, . . . , xn, τ) =

∞∑
m=0

Φm(x1, x2, . . . , xn, τ). (2.5)

Substituting (2.5) into (2.4) yields

∞∑
m=0

Φm = ηαL
(−α)
t

[
n∑
i=1

L(2α)
xixi

( ∞∑
m=0

Φm

)]
+ Φ(x1, x2, . . . , xn, 0). (2.6)

The components Φm(x1, x2, . . . , xn, τ),m ≥ 0 can be completely determined by

Φ0(x1, x2, . . . , xn, τ) = Φ(x1, x2, . . . , xn, 0)

Φm+1(x1, x2, . . . , xn, τ) = ηαL
(−α)
t

[
n∑
i=1

L(2α)
xixiΦm(x1, x2, . . . , xn, τ)

]
, m ≥ 0.

(2.7)

If we take the following initial and boundary conditions

Φ(x1, x2, . . . , xn, 0) =

n∏
i=1

cosα(xαi )

Φ(0, x2, . . . , xn, τ) = Φ(π, x2, . . . , xn, τ) = nEα(− (ητ)α)
n∏

i=2,i 6=1

cosα(xαi )

Φ(x1, 0, . . . , xn, τ) = Φ(x1, π, . . . , xn, τ) = nEα(− (ητ)α)

n∏
i=1,i 6=2

cosα(xαi )

...

Φ(x1, x2, . . . , 0, τ) = Φ(x1, x2, . . . , π, τ) = nEα(− (ητ)α)
n−1∏
i=1

cosα(xαi ),

(2.8)

then we get

Φ0(x1, x2, . . . , xn, τ) = Φ(x1, x2, . . . , xn, 0) =
n∏
i=1

cosα(xαi ) (2.9)

Φm+1(x1, x2, . . . , xn, τ) = ηαL
(−α)
t

[
n∑
i=1

L(2α)
xixiΦm(x1, x2, . . . , xn, τ)

]
, m ≥ 0. (2.10)

Puting m = 0 into equation (2.10), we obtain

Φ1(x1, x2, . . . , xn, τ) = ηαL
(−α)
t

[
n∑
i=1

L(2α)
xixiΦ0(x1, x2, . . . , xn, τ)

]

= − n(ητ)α

Γ(1 + α)

n∏
i=1

cosα(xαi ),

(2.11)

Φ2(x1, x2, . . . , xn, τ) = ηαL
(−α)
t

[
n∑
i=1

L(2α)
xixiΦ1(x1, x2, . . . , xn, τ)

]

=
n(ητ)2α

Γ(1 + 2α)

n∏
i=1

cosα(xαi ),

(2.12)
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Φ3(x1, x2, . . . , xn, τ) = ηαL
(−α)
t

[
n∑
i=1

L(2α)
xixiΦ2(x1, x2, . . . , xn, τ)

]

= − n(ητ)3α

Γ(1 + 3α)

n∏
i=1

cosα(xαi ),

(2.13)

and proceeding the same way, we get the following solution in the series form

Φ(x1, x2, . . . , xn, τ) =
∞∑
m=0

Φm(x1, x2, . . . , xn, τ)

=
∞∑
m=0

n(ητ)α

Γ(1 +mα)

n∏
i=1

cosα(xαi )

= nEα [− (ητ)α]
n∏
i=1

cosα(xαi ).

(2.14)

3. Conclusion

We have successfully applied the LFADM to solve the n-dimensional diffusion model in fractal heat
transfer involving LFD. Analytical solutions of n-dimensional diffusion model on Cantor sets involving local
fractional derivatives are efficiently developed.
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