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Abstract

We extend the notion of omega open set in ordinary topological spaces to generalized topological spaces.
We obtain several characterizations of omega open sets in generalized topological spaces and prove that they
form a generalized topology. Using omega open sets we introduce characterizations of Lindelöf, compact, and
countably compact concepts generalized topological spaces. Also, we generalize the concepts of continuity
in generalized topological spaces via omega open sets. c©2016 All rights reserved.
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1. Introduction and preliminaries

Let (X, τ) be a topological space and A a subset of X. A point x ∈ X is called a condensation point
of A [18] if for each U ∈ τ with x ∈ U , the set U ∩ A is uncountable. In 1982, Hdeib defined ω-closed
sets and ω-open sets as follows: A is called ω-closed [19] if it contains all its condensation points. The
complement of an ω-closed set is called ω-open. The family of all ω-open subsets of X forms a topology on
X, denoted by τω. Many topological concepts and results related to ω-closed and ω-open sets appeared in
[1, 2, 5, 6, 7, 8, 10, 11, 20, 29, 31] and in the references therein. In 2002, Császár [12] defined generalized
topological spaces as follows: the pair (X,µ) is a generalized topological space if X is a nonempty set and
µ is a collection of subsets of X such that ∅ ∈ µ and µ is closed under arbitrary unions. For a generalized
topological space (X,µ), the elements of µ are called µ-open sets, the complements of µ-open sets are called
µ-closed sets, the union of all elements of µ will be denoted by Mµ, and (X,µ) is said to be strong if Mµ = X.
Recently many topological concepts have been modified to give new concepts in the structure of generalized
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topological spaces, see [3, 4, 9, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 30] and others. In this paper,
we introduce the notion of ω-open sets in generalized topological spaces, and we use them to introduce new
classes of mappings in generalized topological spaces. We present several characterizations, properties, and
examples related to the new concepts. In Section 2, we introduce and study ω-open sets in generalized
topological spaces. In Section 3, we introduce and study the concept of ω-(µ1, µ2)-continuous function.

Definition 1.1 ([15]). Let (X,µ) be a generalized topological space and B a collection of subsets of X such
that ∅ ∈ B. Then B is called a base for µ if {

⋃
B′ : B′ ⊆ B} = µ. We also say that µ is generated by B.

Definition 1.2. Let (X,µ) be a generalized topological space.

a. [30] A collection F of subsets of X is said to be a cover of Mµ if Mµ is a subset of the union of the
elements of F .

b. [30] A subcover of a cover F is a subcollection G of F which itself is a cover.

c. [30] A cover F of Mµ is said to be a µ-open cover if the elements of F are µ-open subsets of (X,µ).

d. [30] (X,µ) is said to be µ-compact if each µ-open cover of Mµ has a finite µ-open subcover.

e. (X,µ) is said to be countably compact if each countable µ-open cover of Mµ has a finite µ-open
subcover.

f. (X,µ) is said to be Lindelöf if each µ-open cover of Mµ has a countable µ-open subcover.

Definition 1.3 ([3]). Suppose (X,µ) is a generalized topological space and A a nonempty subset of X. The
subspace generalized topology of A on X is generalized topological µA = {A ∩ U : U ∈ µ} on A. The pair
(A,µA) is called a subspace generalized topological space of (X,µ).

A function f : (X,µ1) −→ (Y, µ2) is called a function on generalized topological spaces if (X,µ1) and
(Y, µ2) are generalized topological spaces. From now on, each function is a function on generalized topological
spaces unless otherwise stated.

Definition 1.4 ([12]). A function f : (X,µ1) −→ (Y, µ2) is called (µ1, µ2)-continuous at a point x ∈ X, if
for every µ2-open set V containing f(x) there is a µ1-open set U containing x such that f(U) ⊆ V . If f is
(µ1, µ2)-continuous at each point of X, then f is said to be (µ1, µ2)-continuous.

Definition 1.5 ([16]). A function f : (X,µ1) −→ (Y, µ2) is called (µ1, µ2)-closed if f(C) is µ2-closed in
(Y, µ2) for each µ1-closed set C.

2. ω-Open sets in generalized topological spaces

In this section, we introduce and study ω-open sets in generalized topological spaces. We obtain several
characterizations of omega open sets in generalized topological spaces and prove that they form a general-
ized topology. Using omega open sets we introduce characterizations of Lindelöf, compact, and countably
compact concepts in generalized topological spaces.

Definition 2.1. Let (X,µ) be a generalized topological space and B a subset of X.

a. A point x ∈ X is a condensation point of B if for all A ∈ µ such that x ∈ A, A ∩B is uncountable.

b. The set of all condensation points of B is denoted by Cond(B).

c. B is ω-µ-closed if Cond(B) ⊆ B.

d. B is ω-µ-open if X −B is ω-µ-closed.
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e. The family of all ω-µ-open sets of (X,µ) will be denoted by µω.

Theorem 2.2. A subset G of a generalized topological space (X,µ) is ω-µ-open if and only if for every
x ∈ G there exists a U ∈ µ such that x ∈ U and U −G is countable.

Proof. G is ω-µ-open if and only if X −G is ω-µ-closed if and only if Cond(X −G) ⊆ X −G if and only if
for each x ∈ G, x /∈ Cond(X −G) if and only if for each x ∈ G, there exists a U ∈ µ such that x ∈ U and
U ∩ (X −G) = U −G is countable.

Corollary 2.3. A subset G of a generalized topological space (X,µ) is ω-µ-open if and only if for every
x ∈ G there exists a U ∈ µ and a countable set C ⊆Mµ such that x ∈ U − C ⊆ G.

Proof. =⇒) Suppose G is ω-µ-open and let x ∈ G. By Theorem 2.2, there exists a U ∈ µ such that x ∈ U
and U −G is countable. Set C = U −G. Then C is countable, C ⊆Mµ and x ∈ U −C = U − (U −G) ⊆ G.
⇐=) Let x ∈ G. Then by assumption there exists a U ∈ µ and a countable set C ⊆ Mµ such that

x ∈ U − C ⊆ G. Since U −G ⊆ C, then U −G is countable, which ends the proof.

Corollary 2.4. Let (X,µ) be a generalized topological space. Then µ ⊆ µω.

Proof. Let G ∈ µ and x ∈ G. Set U = G, C = ∅. Then U ∈ µ, C ⊆ Mµ such that x ∈ U − C ⊆ G.
Therefore, by Corollary 2.3, it follows that G ∈ µω.

Theorem 2.5. For any generalized topological space (X,µ), µω is a generalized topology on X.

Proof. By Corollary 2.4, ∅ ∈ µω. Let {Gα : α ∈ J} be a collection of ω-µ-open subsets of (X,µ) and
x ∈

⋃
α∈J Gα. There exists an α◦ ∈ J such that x ∈ Gα◦ . Since Gα◦ is ω-µ-open set, then by Corollary 2.4,

there exist U ∈ µ and a countable set C ⊆ Mµ such that x ∈ U − C ⊆ Gα◦ ⊆
⋃
α∈J Gα. By Corollary 2.4,

it follows that
⋃
α∈J Gα is ω-µ-open.

The following example shows that µ 6= µω in general.

Example 2.6. Consider X = R and µ = {∅, [−3,−1] , [−2, 0] ∪ N, [−3, 0] ∪ N}. Then (X,µ) is a generalized
topological space. Let A = [−2, 0]. It is easy to check that Cond(R− A) = ((R−A)− N) ⊆ R− A. Then
A ∈ µω − µ.

Theorem 2.7. Let (X,µ) be a generalized topological space. Then Mµ = Mµω .

Proof. Since µ ⊆ µω, then Mµ ⊆Mµω . On the other hand, let x ∈Mµω . Since Mµω ∈ µω by Corollary 2.3,
there exists a U ∈ µ and a countable set C ⊆ Mµ such that x ∈ U − C ⊆ Mµω . Since U ⊆ Mµ, it follows
that x ∈Mµ.

For a nonempty set X, we denote the cocountable topology on X by (τcoc)X .

Theorem 2.8. Let (X,µ) be a generalized topological space. Then (τcoc)U ⊆ µω for all U ∈ µ− {∅}.

Proof. Let U ∈ µ−{∅}, V ∈ (τcoc)U and x ∈ V . Since V ⊆ U , we have x ∈ U . Also, as U − V is countable,
then by Theorem 2.2, it follows that V ∈ µω.

Theorem 2.9. Let (X,µ) be a generalized topological space. Then µ = µω if and only if (τcoc)U ⊆ µ for all
U ∈ µ− {∅}.

Proof. =⇒) Suppose µ = µω and U ∈ µ− {∅}. Then by Theorem 2.8, (τcoc)U ⊆ µω = µ.
⇐=) Suppose (τcoc)U ⊆ µ for all U ∈ µ− {∅}. It is enough to show that µω ⊆ µ. Let A ∈ µω − {∅}. By

Corollary 2.3, for each x ∈ A there exists a Ux ∈ µ and a countable set Cx ⊆Mµ such that x ∈ Ux−Cx ⊆ A.
Thus, Ux−Cx ∈ (τcoc)Ux ⊆ µ for all x ∈ A, and so Ux−Cx ∈ µ. It follows that A =

⋃
{Ux − Cx : x ∈ A} ∈

µ.
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Definition 2.10. A generalized topological space (X,µ) is called locally countable if Mµ is nonempty and
for every point x ∈Mµ, there exists a U ∈ µ such that x ∈ U and U is countable.

Theorem 2.11. If (X,µ) is a locally countable generalized topological space, then µω is the discrete topology
on Mµ.

Proof. We show that every singleton subset of Mµ is ω-µ-open. For x ∈Mµ, since (X,µ) is locally countable,
there exists a U ∈ µ such that x ∈ U and U is countable. By Theorem 2.8, (τcoc)U ⊆ µω. Hence
U − (U − {x}) = {x} ∈ µω.

Corollary 2.12. If (X,µ) is generalized topological space such that Mµ is a countable nonempty set, then
µω is the discrete topology on Mµ.

Proof. Since Mµ is countable, it follows directly that (X,µ) is locally countable. By Theorem 2.11, it follows
that µω is the discrete topology on Mµ.

Corollary 2.13. If (X,µ) is a generalized topological space such that X is a countable nonempty set and
Mµ is nonempty, then µω is the discrete topology on Mµ.

Theorem 2.14. Let (X,µ) be a generalized topological space. Then (X,µω) is countably compact if and
only if Mµ is finite.

Proof. =⇒) Suppose (X,µω) is countably compact and suppose on the contrary that Mµ is infinite. Choose a
denumerable subset {an : n ∈ N} with ai 6= aj when i 6= j ofMµ. For each n ∈ N, set An = Mµ−{ak : k ≥ n}.
Then {An : n ∈ N} is a µω-open cover of Mµω = Mµ and so it has a finite subcover, say {An1 , An2 , . . . , Ank}
where n1 < n2 < · · · < nk. Thus

⋃k
i=1Ani = Ank = Mµω = Mµ, a contradiction.

⇐=) Suppose Mµ is finite. If Mµ = ∅, we are done. If Mµ 6= ∅, then by Corollary 2.12, µω is the discrete
topology on Mµ where Mµ is finite. Hence (X,µω) is countably compact.

Corollary 2.15. Let (X,µ) be a generalized topological space. Then (X,µω) is compact if and only if Mµ

is finite.

The following lemma will be used in the next main result; its proof is obvious and left to the reader.

Lemma 2.16. Let (X,µ) be a generalized topological space and let B be a base of µ. Then (X,µ) is Lindelöf
if and only if every µ-open cover of Mµ consisting of elements of B has a countable subcover.

Theorem 2.17. A generalized topological space (X,µ) is Lindelöf if and only if (X,µω) is Lindelöf.

Proof. =⇒) Suppose (X,µ) is Lindelöf. Set B = {U − C : U ∈ µ and C is countable}. By Corollary 2.3, B
is a base of µω. We are going to apply Lemma 2.16. Let A ⊆ B such that

⋃
A = Mµω , say

A = {Uα − Cα : where Uα ∈ µ and Cα is a countable subset of Mµ : α ∈ ∆}

for some index set ∆. By Theorem 2.7, Mµ = Mµω . Since
⋃
{Uα : α ∈ ∆} = Mµ and (X,µ) is Lindelöf,

there exists a ∆1 ⊆ ∆ such that ∆1 is countable and
⋃
{Uα : α ∈ ∆1} = Mµ. Put C =

⋃
{Cα : α ∈ ∆1}.

Then C is countable and C ⊆ Mµ = Mµω =
⋃
A. Therefore, for each x ∈ C there exists an αx ∈ ∆ such

that x ∈ Uαx −Cαx . Set H = {Uα − Cα : α ∈ ∆1} ∪ {Uαx − Cαx : x ∈ C}. Then H ⊆ A, H is countable and⋃
H =Mµω .
⇐=) Suppose (X,µω) is Lindelöf. By Theorem 2.7, Mµ = Mµω and by Corollary 2.4, µ ⊆ µω. It follows

that (X,µ) is Lindelöf.

Theorem 2.18. Let A be a subset of a generalized topological space (X,µ). Then (µA)ω = (µω)A.

Proof. (µA)ω ⊆ (µω)A. Let B ∈ (µA)ω and x ∈ B. By Corollary 2.3, there exists a V ∈ µA and a countable
subset C ⊆ MµA such that x ∈ V − C ⊆ B. Choose U ∈ µ such that V = U ∩ A. Then U − C ∈ µω,
x ∈ U − C, and (U − C) ∩A = V − C ⊆ B. Therefore, B ∈ (µω)A.

(µω)A ⊆ (µA)ω. Let G ∈ (µω)A. Then there exists an H ∈ µω such that G = H ∩ A. If x ∈ G, then
x ∈ H and there exist a U ∈ µ and a countable subset D ⊆ Mµ such that x ∈ U − D ⊆ H. We put
V = U ∩A. Then V ∈ µA and x ∈ V −D ⊆ G. It follows that G ∈ (µA)ω.
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3. Continuity via ω-open sets in generalized topological spaces

In this section, we introduce ω-(µ1, µ2)-continuous functions between generalized topological spaces. We
obtain several characterizations of them and we introduce composition and restriction theorems.

Definition 3.1. Let (X,µ1) and (Y, µ2) be two generalized topological spaces. A function f : (X,µ1) −→
(Y, µ2) is called ω-(µ1, µ2)-continuous at a point x ∈ X, if for every µ2-open set V containing f(x) there is
an ω-µ1-open set U containing x such that f(U) ⊆ V . If f is ω-(µ1, µ2)-continuous at each point of X, then
f is said to be ω-(µ1, µ2)-continuous.

Theorem 3.2. Let (X,µ1) and (Y, µ2) be two generalized topological spaces. If f : (X,µ1) −→ (Y, µ2) is
(µ1, µ2)-continuous at x ∈ X, then f is ω-(µ1, µ2)-continuous at x.

Proof. Let V be a µ2-open set with f(x) ∈ V . Since f is (µ1, µ2)-continuous at x, there is a µ1-open set U
containing x such that f(U) ⊆ V . By Corollary 2.4, U is ω-µ1-open. It follows that f is ω-(µ1, µ2)-continuous
at x.

It is clear that every (µ1, µ2)-continuous function is ω-(µ1, µ2)-continuous. The following is an example
of ω-(µ1, µ2)-continuous function that is not (µ1, µ2)-continuous.

Example 3.3. Let X = Y = R, µ1 = {∅} ∪ {A ⊆ R : A is infinite}, and µ2 = {∅, {3} ,R}. Define f :
(X,µ1) −→ (Y, µ2) by f(x) = x + 2. Take V = {3}. Then V ∈ µ2 with f(1) = V . On the other hand, for
each U ∈ µ1 with 1 ∈ U , U is infinite and so f(U) " V . Therefore, f is not (µ1, µ2)-continuous at x = 1
and hence f is not (µ1, µ2)-continuous. To see that f is ω-(µ1, µ2)-continuous, let x ∈ X and V ∈ µ2 such
that f(x) ∈ V . Since {x} = (Z ∪ {x}) − (Z− {x}), (Z ∪ {x}) ∈ µ1, and Z − {x} is countable, then {x} is
ω-µ1-open. Take U = {x}. Then U is ω-µ1-open, x ∈ U and f(U) = f ({x}) = {f(x)} ⊆ V . It follows that
f is ω-(µ1, µ2)-continuous.

The proof of the following theorem is obvious and left to the reader.

Theorem 3.4. Let f : (X,µ1) −→ (Y, µ2) be a function. Then the following conditions are equivalent:

a. The function f is ω-(µ1, µ2)-continuous.

b. For each µ2-open set V ⊆ Y , f−1(V ) is ω-µ1-open in X.

c. For each µ2-closed set M ⊆ Y , f−1(M) is ω-µ1-closed in X.

The following theorem is an immediate consequence of Theorem 3.4.

Theorem 3.5. A function f : (X,µ1) −→ (Y, µ2) is ω-(µ1, µ2)-continuous if and only if f : (X, (µ1)ω) −→
(Y, µ2) is ((µ1)ω , µ2)-continuous.

Theorem 3.6. If f : (X,µ1) −→ (Y, µ2) is ω-(µ1, µ2)-continuous and g : (Y, µ2) −→ (Z, µ3) is (µ1, µ2)-
continuous, then g ◦ f : (X,µ1) −→ (Z, µ3) is ω-(µ1, µ2)-continuous.

Proof. Let V ∈ µ3. Since g is a (µ1, µ2)-continuous function, then g−1(V ) ∈ µ2. Since f is ω-(µ1, µ2)-
continuous, then f−1

(
g−1(V )

)
is ω-µ1-open in X. Thus (g ◦ f)−1 (V ) = f−1

(
g−1(V )

)
is ω-µ1-open and

hence (g ◦ f) is ω-(µ1, µ2)-continuous.

Theorem 3.7. If A is a subset of a generalized topological space (X,µ1) and f : (X,µ1) −→ (Y, µ2) is
ω-(µ1, µ2)-continuous, then the restriction of f to A, f |A : (A, (µ1)A) −→ (Y, µ2) is an ω-((µ1)A , µ2)-
continuous function.

Proof. Let V be any µ2-open set in Y . Since f is ω-(µ1, µ2)-continuous, then f−1(V ) ∈ µω and so
(f |A )−1 (V ) = f−1(V )∩A ∈ (µω)A. Therefore, by Theorem 2.18, (f |A )−1 (V ) ∈ (µA)ω. It follows thatf |A
is ω-((µ1)A , µ2)-continuous.
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Lemma 3.8. Let (X,µ) be a strong generalized topological space and A a nonempty subset of X. Then a
subset C ⊆ A is µA-closed, if and only if there exists a µ-closed set H such that C = H ∩A.

Proof. C is µA-closed, if and only if A− C is µA-open, which is true if and only if there is a µ-open set U
such that A− C = A ∩ U , but in this case X − U is µ-closed, and C = (X − U) ∩A.

Theorem 3.9. Let f : (X,µ1) −→ (Y, µ2) be a function and X = A ∪ B, where A and B are ω- µ1-closed
subsets of (X,µ1) and f |A : (A, (µ1)A) −→ (Y, µ2), f |B : (B, (µ1)B) −→ (Y, µ2) are ω-(µ1, µ2)-continuous
functions. Then f is ω-(µ1, µ2)-continuous.

Proof. We will use Theorem 3.4. Let C be a µ2-closed subset of (Y, µ2). Then

f−1(C) = f−1(C) ∩X = f−1(C) ∩ (A ∪B) =
(
f−1(C) ∩A

)
∪
(
f−1(C) ∩B

)
.

Since f |A : (X, (µ1)A) −→ (Y, µ2) and f |B : (X, (µ1)B) −→ (Y, µ2) are ω-(µ1, µ2)-continuous functions,
then (f |A )−1 (C) = f−1(C) ∩A is ω-(µ1)A-closed in (A, (µ1)A) and (f |B )−1 (C) = f−1(C) ∩B is ω-(µ1)B-
closed. By Lemma 3.8, it follows that (f |A )−1 (C) and (f |B )−1 (C) are ω-µ1-closed in (X,µ1). It follows
that f is ω-(µ1, µ2)-continuous.

For any two generalized topological spaces (X,µ1) and (Y, µ2), we call the generalized topology on X×Y
having the family {A×B : A ∈ µ1 and B ∈ µ2} as a base, the product of (X,µ1) and (Y, µ2) and denote it
by µprod [17].

Lemma 3.10. Let (X,µ1) and (Y, µ2) be two generalized topological spaces. Then the projection functions
πx : (X × Y, µprod) −→ (X,µ1) on X and πy : (X × Y, µprod) −→ (Y, µ2) on Y are (µprod, µ1)-continuous
and (µprod, µ2)-continuous, respectively.

Proof. Let U be a µ1-open set in (X,µ1). Then π−1x (U) = U ×Y and U ×Y is µprod-open in (X × Y, µprod).
It follows that the projection function πx is (µprod, µ1)-continuous. Similarly, we can show that πy is
(µprod, µ2)-continuous.

Theorem 3.11. Let f : (X,µ1) −→ (Y, µ2) and g : (X,µ1) −→ (Z, µ3) be two functions. If the function
h : (X,µ1) −→ (Y × Z, µprod) defined by h(x) = (f(x), g(x)) is ω-(µ1, µprod)-continuous, then f is ω-
(µ1, µ2)-continuous and g is ω-(µ2, µ3)-continuous.

Proof. Assume that h is ω-(µ1, µprod)-continuous. Since f = πy ◦ h, where πy : (Y × Z, µprod) −→ (Y, µ2) is
the projection function on Y , by Lemma 3.10 and Theorem 3.6, it follows that f is ω-(µ1, µ2)-continuous.
Similarly we can show that g is ω-(µ1, µ3)-continuous.

Theorem 3.12. Let f : (X,µ1) −→ (Y, µ2) be a function and let H ⊆ X such that (µ1)H ⊆ µ1. If there is
an x ∈ H such that the restriction of f to H, f |H : (H, (µ1)H) −→ (Y, µ2) is ω-((µ1)H , µ2)-continuous at
x, then f is ω-(µ1, µ2)-continuous at x.

Proof. Let V be any set in (Y, µ2) containing f(x). Since f |H is ω-((µ1)H , µ2)-continuous at x, it follows
that there is a G ∈ (µ1)H such that x ∈ G and f(G) ⊆ V . Since by assumption (µ1)H ⊆ µ1, then G ∈ µ1.
It follows that f is ω-(µ1, µ2)-continuous.

Corollary 3.13. Let f : (X,µ1) −→ (Y, µ2) be a function. Let {Hα : α ∈ ∆} be a cover of X such that
for each α ∈ ∆, (µ1)Hα ⊆ µ1 and f |Hα is ω-(µ1, µ2)-continuous at each point of Hα. Then f is ω-(µ1, µ2)-
continuous.

Proof. Let x ∈ X. We show that f : (X,µ1) −→ (Y, µ2) is ω-(µ1, µ2)-continuous at x. Since {Hα : α ∈ ∆}
is a µ1-open cover of X, then there exists an α◦ ∈ ∆ such that x ∈ Hα◦ . Therefore, by Theorem 3.12, it
follows that f is ω-(µ1, µ2)-continuous at x. Then f is ω-(µ1, µ2)-continuous.
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Lemma 3.14. Every µ-closed subspace of a Lindelöf generalized topological space is Lindelöf.

Proof. Let (X,µ) be a Lindelöf generalized topological space and A a µ-closed subset of (X,µ). Let A be a
µ-open cover of A. Then B = A∪ {X −A} is a µ-open cover of (X,µ). Since (X,µ) is Lindelöf, then there
exists a countable subfamily C of B such that X =

⋃
C. Put D = C − {X −A}. Then D is countable and

A ⊆
⋃
D. This shows that A is a Lindelöf subset of (X,µ).

Theorem 3.15. Any ω-µ-closed subset of a Lindelöf generalized topological space is Lindelöf.

Proof. Let (X,µ) be a Lindelöf generalized topological space and A an ω-µ-closed subset. By Theorem 2.17,
(X,µω) is Lindelöf. Since A is µ-closed in the Lindelöf generalized topological space (X,µω), by Lemma
3.14, A is Lindelöf subset of (X,µω). Since µ ⊆ µω, then A is Lindelöf subset of (X,µ).

Theorem 3.16. Let f : (X,µ1) −→ (Y, µ2) be (µ1, µ2)-continuous and surjective. If (X,µ1) is Lindelöf,
then (Y, µ2) is Lindelöf.

Proof. Suppose (X,µ1) is Lindelöf and let A be a µ2-open cover of (Y, µ2). Since f is (µ1, µ2)-continuous,{
f−1(A) : A ∈ A

}
⊆ µ1, then

{
f−1(A) : A ∈ A

}
is a µ1-open cover of (X,µ1). Since (X,µ1) is Lindelöf, there

exists a countable subfamily B ⊆ A such that
⋃{

f−1(A) : A ∈ B
}

= X. Thus
⋃
{f(A) : A ∈ B} = f(X).

Since f is surjective, then f(X) = Y .

Corollary 3.17. Let f : (X,µ1) −→ (Y, µ2) be ω-(µ1, µ2)-continuous and surjective. If (X,µ1) is Lindelöf
then (Y, µ2) is Lindelöf.

Proof. Since f : (X,µ1) −→ (Y, µ2) is ω-(µ1, µ2)-continuous, then by Theorem 3.6, f : (X, (µ1)ω) −→ (Y, µ2)
is ((µ1)ω , µ2)-continuous. Also, since (X,µ1) is a Lindelöf, then by Theorem 2.17, (X, (µ1)ω) is Lindelöf.
Theorem 3.16, ends the proof.

Definition 3.18. A function f : (X,µ1) −→ (Y, µ2) is called ω-(µ1, µ2)-closed function if it maps µ1-closed
sets onto ω-µ2-closed sets.

Theorem 3.19. If f : (X,µ1) −→ (Y, µ2) is ω-(µ1, µ2)-closed function such that for each y ∈ Y , f−1 ({y})
is a Lindelöf subset of (X,µ1), and (Y, µ2) is Lindelöf, then (X,µ1) is Lindelöf.

Proof. Let {Uα : α ∈ ∆} be a µ1-open cover of (X,µ1). For each y ∈ Y , f−1 ({y}) is a Lindelöf subset of
(X,µ1) and there exists a countable subset ∆1(y) of ∆ such that f−1 ({y}) ⊆

⋃
{Uα : α ∈ ∆1(y)}. For each

y ∈ Y , put U(y) =
⋃
{Uα : α ∈ ∆1(y)} and V (y) = Y − f (X − U(y)). Since f is ω-(µ1, µ2)-closed, then for

each y ∈ Y , V (y) is ω-µ2-open in (Y, µ2) with y ∈ Y and f−1 (V (y)) ⊆ U(y). Since V (y) is ω-µ2-open in
(Y, µ2), there exists a µ2-open set W (y) such that y ∈W (y) and W (y)−V (y) is countable. For each y ∈ Y ,
we have W (y) ⊆ (W (y)− V (y)) ∪ V (y) and so

f−1 (W (y)) ⊆ f−1 (W (y)− V (y)) ∪ f−1 (V (y)) ⊆ f−1 (W (y)− V (y)) ∪ U(y).

Since W (y)−V (y) is countable and f−1 ({y}) is a Lindelöf subset of (X,µ1), there exists a countable subset
∆2(y) of ∆ such that f−1 (W (y)− V (y)) ⊆

⋃
{Uα : α ∈ ∆2(y)} and hence

f−1 (W (y)) ⊆
[⋃
{Uα : α ∈ ∆2(y)}

]
∪ [U(y)] .

Since {W (y) : y ∈ Y } is µ2-open cover of the Lindelöf generalized topological space (Y, µ2), there exists a
countable points y1, y2, y3, . . . such that Y =

⋃
{W (yi) : i ∈ N}. Therefore,

X =
⋃{

f−1 (W (yi)) : i ∈ N
}

=
⋃
i∈N

[⋃
{Uα : α ∈ ∆2 (yi)}

]
∪
[⋃
{Uα : α ∈ ∆1 (yi)}

]
=
⋃
{Uα : α ∈ ∆1 (yi) ∪∆2 (yi) : i ∈ N} .

This shows that (X,µ1) is Lindelöf.
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