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Abstract

We consider the semilinear Schrödinger equation{
−4 u+ V (x)u = K(x)|u|2∗−2u+ f(x, u), x ∈ RN ,
u ∈ H1(RN ),

where N ≥ 4, 2∗ := 2N/(N − 2) is the critical Sobolev exponent, V,K, f is 1-periodic in xj for j = 1, ..., N ,
f(x, u) is subcritical growth. We develop a direct approach to find ground state solutions of Nehari-Pankov
type for the above problem. The main idea is to find a minimizing Cerami sequence for the energy functional
outside the Nehari-Pankov manifold by using the diagonal method. c©2016 All rights reserved.
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1. Introduction

Consider the following semilinear Schrodinger equation which also have been studied in [3, 4, 5, 10, 14,
17, 23, 24, 26, 27] {

−4 u+ V (x)u = K(x)|u|2∗−2u+ f(x, u), x ∈ RN ,
u ∈ H1(RN ),

(1.1)

where V : RN → R and f : RN ×R→ R satisfy the following standard assumptions, respectively:
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(V0) V ∈ C(RN )
sup[σ(−∆ + V ) ∩ (−∞, 0)] < 0 < Λ := inf[σ(−∆ + V ) ∩ (0,∞)], (1.2)

where σ denotes the spectrum in L2(RN ), V is 1-periodic in each of x1, x2, ..., xN ;

(V1) K ∈ C(RN ), k0 := infx∈RNK(x) > 0 and K is 1-periodic in xj for j = 1, ..., N ;

(V2) K(x0) := maxx∈RNK(x) and K(x)−K(x0) = o(|x− x0|2) as x→ x0 and V (x0) < 0;

(F1) f ∈ C(RN ×R) is 1-periodic in each of x1, x2, ..., xN , f(x, t) = o(|t|), as |t| → 0, uniformly in x ∈ RN ,
and F (x, t) :=

∫ t
0 f(x, s)ds ≥ 0;

(F2) |f(x, u)| ≤ c0(1 + |u|p−1) on RN ×R for some c0 ≥ 0 and p ∈ (2, 2∗);

(F3) lim|t|→∞
|F (x,t)|
t2

=∞, a.e. x ∈ RN ;

(F4) ∃ θ0 ∈ (0, 1), s.t. 1−θ2
2 tf(x, t) ≥

∫ t
θt f(x, s)ds, ∀ θ ∈ [0, θ0], (x, t) ∈ RN ×R.

We point out that the condition (F4) is weaker than the following Nehari type assumption:
(Ne) t 7→ f(x, t)/|t| is strictly increasing on R− {0}.

The existence of a nontrivial solution of (1.1) has been obtained in [1, 2, 11, 12, 13] under different
conditions. But very few people discuss whether the problem (1.1) has a ground state solution of Nehari-
Pankov type or not. Indeed solutions of (1.1) correspond to critical points of the functional

Φ(u) =
1

2

∫
RN

(|∇u|2 + V (x)u2)dx− 1

2∗

∫
RN

K|u|2∗dx−
∫
RN

F (x, u)dx. (1.3)

Note that 2∗ = 2N/(N − 2) is the limiting Sobolev exponent for embedding H1
0 (Ω) ⊂ L2∗(Ω). Since this

embedding is not compact, the functional Φ does not satisfy the (C)c condition that any sequence un such
that

Φ(un)→ c, ‖Φ′(un)‖(1 + ‖un‖)→ 0,

have a convergent subsequence. Hence there are serious difficulties when trying to find critical points by
standard variational methods. Our main existence result will be based on the following critical point theorem
[10]:

Lemma 1.1 ([3]:Theorem 4.5, [9]:Theorem 2.1 in, [8]). Let X be a real Hilbert space with X = X−
⊕
X+

(where X−, X+ similar to the positive space E+ and negative space E− behind the paper) and X− ⊥ X+ (
where ⊥ means ”orthogonal” ) and let ϕ ∈ C1(X,R) of the form

ϕ(u) =
1

2
(‖u+‖2 − ‖u−‖2)− ψ(u), u = u− + u+ ∈ X− ⊕X+.

Suppose that the following assumptions are satisfied:

(LS1) ψ ∈ C1(X,R) is bounded from below and weakly sequentially lower semi-continuous;

(LS2) ψ′ is weakly sequentially continuous;

(LS3) there exist r > ρ > 0 and e ∈ X+ with ‖e‖ = 1 such that

k := inf ϕ(S+
ρ ) > supϕ(∂Q),

where
S+
ρ = {u ∈ X+ : ‖u‖ = ρ}, Q = {w + se : w ∈ X−, s ≥ 0, ‖w + se‖ ≤ r}.

Then for some c ∈ [k, supΦ(Q)], there exists a sequence {un} ⊂ X satisfying

ϕ(un)→ c, ‖ϕ′(un)‖(1 + ‖un‖)→ 0. (1.4)

Such a sequence is called a Cerami sequence on the level c, or a (C)c.
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2. Preliminaries

Let A = −∆ + V . Then A is self-adjoint in L2(RN ) with domain D(A) = H2(RN ) (see [7], Theorem
4.26). Let {F(λ) : −∞ < λ < +∞} and |A| be the spectral family and the absolute value of A, respectively,
and |A|1/2 be the square root of |A| . Set U = id − F(0) − F(0−). Then U commutes with A (see [6],
Theorem IV 3.3). Let

E = D(|A|1/2), E− = F(0)E, E+ = [id−F(0)]E. (2.1)

For any u ∈ E, it is easy to see that u = u− + u+, where

u− := F(0)u ∈ E−, u+ := [id−F(0)]u ∈ E+, (2.2)

and
Au− = −|A|u−, Au+ = |A|u+, ∀u ∈ E ∩ D(A). (2.3)

Define an inner product
(u, v) = (|A|1/2u,A|1/2v)L2 , u, v ∈ E, (2.4)

and the corresponding norm
‖u‖ =

∥∥|A|1/2u∥∥
2
, u ∈ E, (2.5)

where(·, ·)L2 denotes the inner product of L2(RN ), By(V1), E and H1(RN ) have equivalent norms. There-
fore, E embeds continuously in Ls(RN ) for all 2 ≤ s ≤ 2∗. In addition, one has the decomposition
E = E− ⊕ E+ orthogonal with respect to both (·, ·)L2 and (·, ·).

〈Φ′(u), v〉 =

∫
RN

(∇u∇v + V (x)uv)dx−
∫
RN

K|u|2∗−1vdx−
∫
RN

f(x, u)vdx, ∀u, v ∈ E, (2.6)

and

〈Φ′(u), u〉 = ‖u+‖2 − ‖u−‖2 −
∫
RN

K|u|2∗−1udx−
∫
RN

f(x, u)udx, ∀u = u− + u+ ∈ E− ⊕ E+ = E, (2.7)

and

Φ(u) =
1

2
(‖u+‖2 − ‖u−‖2)− 1

2∗

∫
RN

K|u|2∗−1udx−
∫
RN

F (x, u)dx, ∀u = u− + u+ ∈ E− ⊕E+ = E. (2.8)

Now, we are in a position to state the main result of this paper.

Theorem 2.1. Assume that V and f satisfy (V0), (V1), (F1), (F2), (F3) and (F4). Then problem (1.1)
has a nontrivial solution u0 ∈ E such that Φ(u0) = infN 0 Φ > 0 , where

N 0 = {u ∈ E\E− : 〈Φ′(u), u〉 = 〈Φ′(u), v〉 = 0, ∀v ∈ E−}. (2.9)

The set N 0 was first introduced by Pankov [15, 16], which is a subset of the Nehari manifold

N = {u ∈ E\{0} : 〈Φ′(u), u〉 = 0}. (2.10)

The remainder of this paper is organized as follows. In Sections 3, 4, some crucial lemmas are presented.
The proof of Theorems 2.1 is given in Section 5.

3. Existence of a Palais-Smale sequence

Lemma 3.1. Suppose that (V1),(F1),(F2) and (F3) are satisfied. Then for u ∈ E,

Φ(u) ≥ Φ(tu+ w) +
1

2
‖w‖2

+
1− t2

2
〈Φ′(u), u〉 − t〈Φ′(u), w〉, ∀t ≥ 0, w ∈ E−.

(3.1)
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Proof. For any x ∈ RN and τ 6= 0, (F3) yields

1− t2

2
τK(x)|τ |2∗−2u+ f(x, τ) ≥

∫ τ

tτ
[K(x)|s|2∗−2s+ f(x, s)]ds, t ≥ 0. (3.2)

It follows that(1− t2

2
τ − tτ

)
K(x)|τ |2∗−2τ + f(x, τ) ≥

∫ τ

tτ+σ
[K(x)|s|2∗−2s+ f(x, s)]ds, t ≥ 0, σ ∈ R. (3.3)

We let b : E × E → R denote the symmetric bilinear form given by

b(u, v) =

∫
RN

(5u5 v + V (x)uv)dx, ∀u, v ∈ E. (3.4)

By virtue of (1.3) and (2.6), one has

Φ(u) =
1

2
b(u, u)− 1

2∗

∫
RN

K|u|2∗dx−
∫
RN

F (x, u)dx, ∀u ∈ E. (3.5)

and

〈Φ′(u), v〉 = b(u, v)−
∫
RN

K|u|2∗−1vdx−
∫
RN

f(x, u)vdx, ∀u, v ∈ E. (3.6)

Thus, by (1.3),(3.3)–(3.6), one has

Φ(u)− Φ(tu+ w) =
1

2
[b(u, u)− b(tu+ w, tu+ w)]

+
1

2∗

∫
RN

K(|tu+ w|2∗ − |u|2∗)dx+

∫
RN

[F (x, tu+ w)− F (x, u)]dx

=
1− t2

2
b(u, u)− tb(u,w)− 1

2
b(w,w)

+
1

2∗

∫
RN

K(|tu+ w|2∗ − |u|2∗)dx+

∫
RN

[F (x, tu+ w)− F (x, u)]dx

= −1

2
b(w,w) +

1− t2

2
〈Φ′(u), u〉 − t〈Φ′(u), w〉

+

∫
RN

[
(
1− t2

2
u− tw)[K(x)|u|2∗−2u+ f(x, u)]−

∫ u

tu+w
[K(x)|s|2∗−2s+ f(x, s)]ds

]
dx

=
1

2
‖w‖2 +

1− t2

2
〈Φ′(u), u〉 − t〈Φ′(u), w〉

+

∫
RN

[
(
1− t2

2
u− tw)[K(x)|u|2∗−2 −

∫ u

tu+w
[K(x)|s|2∗−2s+ f(x, s)]ds

]
dx

≥ 1

2
‖w‖2 +

1− t2

2
〈Φ′(u), u〉 − t〈Φ′(u), w〉, ∀t ≥ 0, w ∈ E−.

This shows that (3.1) holds.

Lemma 3.2.

(i) Let e ∈ E+, then there exist α, ρ > 0 and R > ρ (R depending on e), such that

m = inf
N 0

Φ ≥ κ := inf{Φ(u) : u ∈ E+, ‖u‖ = ρ} > 0,

and ‖u+‖ ≥ max{‖u−‖,
√

2m} for all u ∈ N 0.
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(ii) Φ(u) ≤ 0 for all u ∈ ∂Q, there

Q = {w + se : w ∈ E−, s ≥ 0, ‖w + se‖ ≤ r}.

(iii) We set

Ψ(u) := (2∗)−1
∫
RN

K|u|2∗dx+

∫
RN

F (x, u)dx, u ∈ E. (3.7)

We have

Φ(u) =
1

2
(‖u+‖2 − ‖u−‖2)−Ψ(u), u ∈ E. (3.8)

Then Ψ is nonnegative, weakly sequentially lower semi-continuous, and Ψ′ is weakly sequentially contin-
uous.

Proof. (i) Let u ∈ E+, ‖u‖ = ρ, then

Φ(u) =
1

2
‖u‖2 − 1

2∗

∫
RN

K(x)|u|2∗dx−
∫
RN

F (x, u)dx.

It follows from (F2) and (F3), that for every ε > 0 there exists a constant Cε > 0 such that

|F (x, s)| ≤ εs2 + Cε|s|p

for all s ∈ R. Applying the Sobolev embedding theorem we get that∫
RN

F (x, u)dx ≤ C(ε‖u‖2 + Cε‖u‖p),

for some constant C > 0 . Consequently,

Φ(u) ≥ 1

2
‖u‖2 − K(x0)

2∗
‖u‖2 − C(ε‖u‖2 + Cε‖u‖p).

Choosing ε > 0 and ρ > 0 sufficiently small, the result

m = inf
N 0

Φ ≥ κ := inf{Φ(u) : u ∈ E+, ‖u‖ = ρ} > 0,

readily follows.
From Lemma 3.1, ∀u ∈ N 0, w ∈ E−, t ≥ 0 we have

Φ(u) ≥ Φ(tu+ w),

so
‖u+‖ ≥ ‖u−‖, u = u− + u+ ∈ N 0,

and when u ∈ E+, we have

‖u+‖2 = 2Φ(u) +
2

2∗

∫
RN

K(x)|u|2∗dx+ 2

∫
RN

F (x, u)dx ≥ 2m.

(ii) (V1), (F1) yields that K ≥ 0 and F (x, t) ≥ 0 for all (x, t) ∈ RN ×R, and when u ∈ E−, from (2.8)
we have:

Φ(u) = −1

2
‖u−‖2 − 1

2∗

∫
RN

K|u|2∗dx−
∫
RN

F (x, u)dx ≤ 0.

Next, it is sufficient to show that Φ(u)→ −∞ as u ∈ E−⊕Re. Arguing indirectly, assume that for some
sequence {wn + sne} ⊂ E− ⊕ Re with ‖wn + sne‖ → ∞, there is M > 0 such that Φ(wn + sne) ≥ −M for
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all n ∈ N . Set vn = (wn + sne)/‖wn + sne‖ = v−n + tne, then ‖v−n + tne‖ = 1. Passing to a subsequence, we
may assume that vn ⇀ v in E, then vn → v a.e. on RN , v−n ⇀ v− in E, tn → t, and

− M

‖wn + sne‖2
≤ Φ(wn + sne)

‖wn + sne‖2

=
t2n
2
− 1

2
‖v−n ‖2 −

1

2∗

∫
RN

K‖wn + sne‖2
∗−2dx−

∫
RN

F (x,wn + sne)

‖wn + sne‖2
dx.

(3.9)

If t = 0, then it follows from (3.9) that

0 ≤ 1

2
‖v−n ‖2 +

1

2∗

∫
RN

K‖wn + sne‖2
∗−2dx+

∫
RN

F (x,wn + sne)

‖wn + sne‖2
dx ≤ t2

2
+

M

‖wn + sne‖2
→ 0,

which yields ‖v−n ‖ → 0, and so 1 = ‖vn‖ → 0, a contradiction.
If t 6= 0, then v 6= 0, it follows from (3.9), (F3) and Fatou’s lemma that

0 ≤ lim sup
n→∞

[ t2n
2
− 1

2
‖v−n ‖2 −

1

2∗

∫
RN

K‖wn + sne‖2
∗−2dx−

∫
RN

F (x,wn + sne)

‖wn + sne‖2
d
]

≤ lim sup
n→∞

[ t2n
2
− 1

2
‖v−n ‖2 −

∫
RN

F (x,wn + sne)

(wn + sne)2
v2ndx

]
≤ t

2

2
−
∫
RN

lim inf
n→∞

F (x,wn + sne)

(wn + sne)2
v2ndx

= −∞,

a contradiction.
(iii) For convenience,

Ψ(u) := (2∗)−1
∫
RN

K|u|2∗dx+

∫
RN

F (x, u)dx, u ∈ E.

By (F1) and (F2), for any ε > 0, there is Cε > 0 such that

|f(x, u)| ≤ ε|u|+ Cε|u|q−1 and |F (x, u)| ≤ ε

2
|u|2 +

Cε
q
|u|q. (3.10)

For any u, v ∈ E and 0 < |t| < 1, by mean value theorem and (3.10), there exists 0 < θ < 1 such that

|F (x, u+ tv)− F (x, u)|
|t|

≤ |f(x, u+ θtv)v|

≤ ε|u+ θtv||v|+ Cε|u+ θtv|q−1|v|
≤ ε|u||v|+ ε|v|2 + Cε|u+ θtv|q−1|v|
≤ ε|u||v|+ ε|v|2 + 2q−1Cε(|u|q−1|v|+ |v|q),

and
|u+ tv|2∗ − |u|2∗

2∗|t|
≤ |u+ θtv|2∗−1|v|

≤ (2∗ − 1)|u|2∗−1|v|2∗ .

The Hölder inequality implies that

ε|u||v|+ ε|v|2 + 2q−1Cε(|u|q−1|v|+ |v|q) +K(2∗ − 1)|u|2∗−1|v|2∗ ∈ L1(RN ).
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Consequently, by the Lebesgue’s Dominated Theorem, we have

〈Ψ′(u), v〉 =

∫
RN

K|u|2∗−1vdx+

∫
RN

f(|x|, u)vdx, ∀ u, v ∈ E.

Next, we show that Ψ′ : E → E∗ is weak continuous. Assume that un ⇀ u in E, by Sobolev embedding
theorem, we get

un ⇀ u in Lp(RN ), for p ∈ (2, 2∗s)

and
un → u in C∞0 (RN ), for p ∈ (2, 2∗s),

there C∞0 (RN ) is dense in Lp(RN ).
By the Hölder inequality, we have

‖Ψ′(un)−Ψ′(u)‖E∗ = sup
‖v‖≤1

|〈Ψ′(un)−Ψ′(u), v〉|

≤ sup
‖v‖≤1

∫
RN

(|f(|x|, un)− f(|x|, u)|+K||un|2
∗−1 − |u|2∗−1|)|v|dx→ 0 as n→∞.

Lemma 3.3. Suppose that (V1),(F1),(F2) (F3) and (F4) are satisfied. Then there exist a constant
c ∈ [κ, sup Φ(Q)] and a sequence {un} ⊂ E satisfying

Φ(un)→ c, ‖Φ′(un)‖(1 + ‖un‖)→ 0, as n→∞. (3.11)

Proof. Lemma 3.3 is a direct corollary of Lemma 1.1 and Lemma 3.2.

Lemma 3.4 ([18, 19, 20, 21, 22]). Suppose that (V1),(F1),(F2) (F3) and (F4) are satisfied. Then there
exist a constant c∗ ∈ [κ,m] (where κ and m are stated as Lemma 3.2) and a sequence {un} ⊂ E satisfying

Φ(un)→ c∗, ‖Φ′(un)‖(1 + ‖un‖)→ 0, as n→∞. (3.12)

Proof. Choose vk ∈ N 0 such that

m ≤ Φ(vk) < m+
1

k
, k ∈ N. (3.13)

By Lemma 3.2 (i) , ‖v+k ‖ ≥
√

2m > 0. Set ek = v+k /‖v
+
k ‖. Then ek ∈ E+ and ‖ek‖ = 1. In view of Lemma

3.2, there exists rk > max{ρ, ‖vk‖} such that sup Φ(∂Qk) ≤ 0, where

Qk = {w + sek : w ∈ E−, s ≥ 0, ‖w + sek‖ ≤ rk}, k ∈ N. (3.14)

Hence, applying Lemma 1.1 to the above set Qk, there exist a constant ck ∈ [κ, sup Φ(Qk)] and a sequence
{uk,n}n∈N ⊂ E satisfying

Φ(uk,n)→ ck, ‖Φ′(uk,n)‖(1 + ‖uk,n‖)→ 0, as n→∞, k ∈ N. (3.15)

By virtue of Lemma 3.1, one can get that

Φ(vk) ≥ Φ(tvk + w), ∀t ≥ 0, w ∈ E−. (3.16)

Since tvk + w ∈ Qk, it follows that Φ(vk) = sup Φ(Qk). Hence, by (3.13) and (3.15), one has

Φ(uk,n)→ ck < m+
1

k
, ‖Φ′(uk,n)‖(1 + ‖uk,n‖)→ 0, as n→∞, k ∈ N. (3.17)
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Now, we can choose a sequence {nk} ⊂ N such that

Φ(uk,nk
) < m+

1

k
, ‖Φ′(uk,nk

)‖(1 + ‖uk,nk
‖) < 1

k
, k ∈ N. (3.18)

Let uk = uk,nk
, k ∈ N . Then, going if necessary to a subsequence, by using the diagonal method, we have

Φ(un)→ c∗ ∈ [κ,m], ‖Φ′(un)‖(1 + ‖un‖)→ 0, as n→∞. (3.19)

The proof of Lemma 3.4 is completed.

Lemma 3.5. The Cerami sequence above is bounded.

This result is essentially contained in [1] (Proposition 3.2), but for the reader’s convenience we choose
to write it in detail.

Proof. It follows from (F1)–(F3) that for each ε > 0 there exists c1(ε) such that |f(x, u)| ≤ ε|u|+c1(ε)|u|2
∗−1.

By (F4),

c+ 1 + ‖un‖ ≥ Φ(un)− 1

2
〈Φ′(un), un〉 ≥

1

N

∫
RN

K|un|2
∗
dx,

for almost all n, and since K(x) is bounded below by a positive constant,

‖un‖2
∗

2∗ ≤ c2 + c3‖un‖, (3.20)

Using the Hölder and Sobolev inequalities we obtain, for large n,

‖u+n ‖2 = 〈Φ′(un), u+n 〉+
∫
RN K|un|2

∗−2unu
+
n dx+

∫
RN f(x, un)u+n dx

≤ ‖u+n ‖+ c4‖un‖2
∗−1

2∗ ‖u+n ‖+ c5(ε‖un‖+ c1ε‖un‖2
∗−1

2∗ )‖u+n ‖.

Hence by (3.4),
‖u+n ‖ ≤ c6(ε) + c7(ε)‖un‖(2

∗−1)/2∗ + c5ε‖un‖

and a similar inequality holds for ‖u−n ‖. Choosing ε sufficiently small, we see that (un) must be bounded.

Lemma 3.6 ([20, 21, 22]). Suppose that (V0)–(V2) and (F1)–(F4) are satisfied. Then for any u ∈ E\E−,
there exist t(u) > 0 and w(u) ∈ E− such that t(u)u + w(u) ∈ N 0. Consequently, N 0 ∩ (E− ⊕ R+u) 6= ∅.
where R+u means the space {ru : r ∈ R+, u ∈ E\E−}.

Proof. By view of Lemma 3.2, there exists a constant R > 0 such that

Φ(v) ≤ 0 ∀v ∈ (E− ⊕R+u)\BR(0),

where BR(0) is the ball center of 0 and it’s radius is R.
By Lemma 3.2 (i) , Φ(tu) > 0 for small t > 0. Thus we have, 0 < sup Φ(E− ⊕ R+u) < ∞. It is

easy see that Φ is weakly upper semicontinuous on E− ⊕ R+u; therefore, Φ(u0) = sup Φ(E− ⊕ R+u) for
some u0 ∈ E− ⊕ R+u. This u0 is a critical point of Φ|E−⊕R+u, so 〈Φ′(u0), u0〉 = 〈Φ′(u0), v〉 = 0 for all
v ∈ E− ⊕R+u. Consequently, u0 ∈ N 0 ∩ (E− ⊕R+u).

4. Estimates for critical levels

Lemma 4.1. Let

S := inf
E\{0}

‖∇u‖22
‖u‖22∗

.

If 0 < c < d := SN/2

N‖K‖(N−2)/2
∞

, then the Cerami sequence (un) cannot be vanishing.
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Proof. see [1] (Proposition 4.1), we also give the proof as follow. If (un) is vanishing, then it follows from
P. L. Lions’ lemma ([23]:Lemma 1.21) that un → 0 in Lr whenever 2 < r < 2∗. Let (zn) be a bounded
sequence in E. Since for each ε > 0 there is c1(ε) such that |f(x, u)| ≤ ε|u|+ c1(ε)|u|p−1,∫

RN

|f(x, un)||zn|dx ≤ c2ε‖un‖‖zn‖+ c3(ε)‖un‖p−1p ‖zn‖.

Using this and a similar argument for F we see that∫
RN f(x, un)zndx→ 0, n→∞,∫
RN F (x, un)dx→ 0, n→∞.

(4.1)

Hence

Φ(un)− 1

2
〈Φ′(un), un〉 =

1

N

∫
RN

K|un|2
∗
dx+ o(1)→ c, n→∞. (4.2)

Let r be such that (2∗ − 1)/r + 1/q = 1. Then 2 < r < 2∗. Since ‖u−n ‖q is bounded and un → 0 in Lr,
we obtain using (4.1), (4.2) and the Hölder inequality that

‖u−n ‖2 = −〈Φ′(un), u−n 〉 −
∫
Rn K|un|2

∗−2unu
−
n dx−

∫
RN f(x, un)u−n dx

≤ K(x0)‖un‖2
∗−1
r ‖u−n ‖q + o(1)→ 0.

Similarly,

‖wn‖2 =

∫
RN

K|un|2
∗−2unwndx+ o(1)→ 0.

Hence
un − zn = wn + u−n → 0, (4.3)

and therefore
‖zn‖2 =

∫
RN (|∇zn|2 + V z2n)dx =

∫
RN K|un|2

∗−2unzndx+ o(1)

=
∫
RN K|un|2

∗
dx+ o(1).

(4.4)

Furthermore, for each δ > 0 we may find µ > 0 such that

(1− δ)
∫
RN

|∇zn|2dx ≤
∫
RN

(|∇zn|2 + V z2n)dx. (4.5)

Indeed, since zn ∈ (I − E(µ))L2 ∩ E, we have
∫
RN (|∇zn|2 + V z2n)dx ≥ µ‖zn‖22 and

δ

∫
RN

(|∇zn|2dx ≥ δ(µ− ‖V ‖∞)‖zn‖22 ≥ −
∫
RN

V z2ndx,

whenever µ is large enough. Combining (4.1), (4.3), (4.4) and (4.5) gives

(1−δ)S‖K‖−2/2∗∞ (

∫
RN

K|un|2
∗
dx)2/2

∗

≤ (1− δ)S‖un‖22∗
= (1− δ)S‖zn‖22∗ + o(1)

≤ (1− δ)
∫
RN

|∇zn|2dx+ o(1)

≤
∫
RN

K|un|2
∗
dx+ o(1).

(4.6)
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Passing to the limit and using (4.6) we obtain

(1− δ)S‖K‖−2/2∗∞ (cN)2/2
∗ ≤ cN.

Hence either c = 0 which is impossible or (1− δ)N/2c∗ ≤ c < c∗ which is also impossible because δ may
be chosen arbitrarily small. Let

ϕε(x) :=
cNψ(x)ε(N−2)/2

(ε2 + |x|2)(N−2)/2
,

where cN = (N(N−2))(N−2)/4, ε > 0 and ψ ∈ C∞0 (RN , [0, 1]) with ψ(x) = 1 if |x| ≤ r/2; ψ(x) = 0 if |x| ≥ r,
r small enough (cf. e.g. pp. 35 and 52 of [25]). We need the following asymptotic estimates as ε→ 0+ (see
e.g. pp.35 and 52 in [23]):

‖∇ϕε‖22 = SN/2 +O(εN−2), ‖∇ϕε‖1 = O(ε(N−2)/2),

‖ϕε‖2
∗

2∗ = SN/2 +O(εN−2), ‖ϕε‖2
∗−1

2∗−1 = O(ε(N−2)/2), ‖ϕε‖1 = O(ε(N−2)/2),

(4.7)

and
‖ϕε‖22 = bε2|logε|+O(ε2), ifN = 4,
‖ϕε‖22 = bε2 +O(εN−2), ifN ≥ 5,

(4.8)

where b is a positive constant. Finally, Let

Zε := E− ⊕Rϕε ≡ E− ⊕Rϕ+
ε .

We may assume without loss of generality that K(0) = ‖K‖∞ and V (0) < 0. Moreover, r in the
definition of ϕε may be chosen so that V (x) ≤ −β for some β > 0 and all x with |x| ≤ r.

Lemma 4.2. If ε > 0 is small enough, then supZε
Φ < d. So in particular, if z0 = ϕ+

ε with ε small enough,
then c∗ ≤ m ≤ supΦ(Q) < d.

Proof. From Lemma 3.4 and Lemma 3.6, we can see c∗ ≤ m and m ≤ supΦ(Q). Let

I(u) :=
1

2
‖u+‖2 − 1

2
‖u−‖2 − 1

2∗

∫
RN

K|u|2∗dx.

Since I(u) ≥ Φ(u) for all u, it suffices to show that supzεI < d .
In what follows we adapt the argument on [25] (pp.52-53). If u 6= 0, then

max
t≥0

I(tu) =
1

N

(
∫
RN (|∇u|2 + V u2)dx)N/2

(
∫
RN K|u|2∗dx)(N−2)/2

, (4.9)

whenever the integral in the numerator above is positive, and the maximum is 0 otherwise. Let ‖u‖2∗2∗,K :=∫
RN K|u|2

∗
dx. It is easy to see from (4.9) that if

mε := sup
u∈Zε,‖u‖2∗,K=1

∫
RN

(|∇u|2 + V u2)dx <
S

‖K‖(N−2)/N∞
, (4.10)

then supZεΦ ≤ supZεI < d. So it remains to show (4.10) is satisfied for all small ε > 0.
Below we shall repeatedly use (4.7) and (4.8). Since∫

RN

(|∇ϕ−ε |2 + V (ϕ−ε )2)dx ≤ 0,
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and ∫
RN

(|∇ϕ−ε |2dx ≤ c1‖ϕ−ε ‖22 ≤ c1‖ϕε‖22 → 0 as ε→ 0,

therefore
‖ϕ−ε ‖2∗ ≤ c2‖ϕ−ε ‖ → 0,

and
‖ϕ+

ε ‖2
∗

2∗ → SN/2.

Suppose ‖u‖2∗,K = 1 and write
u = u− + sϕε = (u− + sϕ−ε ) + sϕ+

ε ,

We have ‖u−‖2∗ ≤ c3 and |s| ≤ c3 for some constant c3 independent of ε. By convexity of ‖ · ‖2∗,K , we
obtain

1 = ‖u‖2∗2∗,K ≥ ‖sϕε‖2
∗

2∗,K + 2∗
∫
RN

(sϕε)
2∗−1u−dx

≥ ‖sϕε‖2
∗

2∗,K − c4‖ϕε‖2
∗−1

2∗−1‖u
−‖2.

(4.11)

Moreover, ∫
RN (∇ϕε · ∇u− + V ϕεu

−)dx ≤ c5(‖∇ϕε‖1 + ‖ϕε‖1)‖u−‖2
= O(ε(N−2)/2)‖u−‖2.

(4.12)

Since V (x) ≤ −β < 0 for x ∈ suppϕε and K(x)−K(0) = o(|x|2) as x→ 0,∫
RN V ϕ

2
εdx ≤ (−dε2) (ifN ≥ 5),∫

RN V ϕ
2
εdx ≤ (−dε2|logε|) (ifN = 4)

(4.13)

for some d > 0 and
‖ϕε‖2

∗
2∗,K = ‖K‖∞

∫
RN ϕ

2∗
ε dx+

∫
RN (K(x)−K(0))ϕ2∗

ε dx

= ‖K‖∞SN/2 + o(ε2).
(4.14)

Let N ≥ 5. Using (4.11)–(4.14) and the fact that

−‖u−‖22 +O(ε(N−2)/2)‖u−‖2 ≤ O(εN−2),

we obtain

mε ≤ −‖u−‖2 +

∫
RN (|∇ϕε|2 + V ϕ2

ε)dx

‖ϕε‖22∗,K
‖sϕε‖22∗,K +O(ε(N−2)/2)‖u−‖2

≤ −c6‖u−‖22 +

∫
RN (|∇ϕε|2 + V ϕ2

ε)dx

‖K‖(N−2)/N∞ S(N−2)/2 + o(ε2)
(1 + c4‖ϕε‖2

∗−1
2∗−1‖u

−‖2)2/2
∗

+O(ε(N−2)/2)‖u−‖2

= −c6‖u−‖22 +
SN/2 − dε2 +O(ε(N−2))

‖K‖(N−2)/N∞ S(N−2)/2
+O(ε(N−2)/2)‖u−‖2

≤ S

‖K‖(N−2)/N∞
− d0ε2 + o(ε2),

where d0 > 0. If N = 4, then in a similar way,

mε ≤
S

‖K‖(N−2)/N∞
− d0ε2|logε|+ o(ε2).

Hence (4.10) holds provided ε is sufficiently small. Note that if K(x) −K(0) = O(|x|2) as x → 0, then
(4.14) holds with O(ε2) replacing o(ε2).
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5. Proof of theorem 2.1

Proof of theorem 2.1. Applying Lemma 3.5, we deduce that there exists a bounded sequence {un} ⊂ E
satisfying (3.12). Lemma 4.1 shows that {un} is a nonvanishing sequence. Passing to a subsequence, we
may assume the existence of kn ∈ ZN such that

∫
B1+

√
N(kn)

|un|2dx > δ
2 . Let us define vn(x) = un(x+ kn)

so that ∫
B1+

√
N(0)
|vn|2dx >

δ

2
. (5.1)

Since V (x),K(x) and f(x, u) are periodic on x, we have ‖vn‖ = ‖un‖ and

Φ(vn)→ c∗, ‖Φ′(vn)‖(1 + ‖vn‖)→ 0. (5.2)

Passing to a subsequence, we have vn ⇀ v in Lsloc(R
N ), 2 ≤ s < 2∗ and vn → v a.e. on RN . Obviously,

(5.1) and (5.2) implies that v 6= 0 and Φ(v) = 0. This shows that v ∈ N 0 and so Φ(v) ≥ m. On the other
hand, by using (2.7), (3.12) and Fatou’s lemma, we have

m ≥ c∗ = lim
n→∞

[Φ(vn)− 1

2
〈Φ′(vn), vn〉]

= lim
n→∞

∫
RN

[
1

2
[K(x)|vn|2

∗−2vn + f(x, vn)]vn − [
1

2∗
K(x)|vn|2

∗
+ F (x, vn)]]dx

≥
∫
RN

lim
n→∞

[
1

2
[K(x)|vn|2

∗−2vn + f(x, vn)]vn − [
1

2∗
K(x)|vn|2

∗
+ F (x, vn)]]dx

=

∫
RN

[
1

2
[K(x)|v|2∗−2v + f(x, v)]v − [

1

2∗
K(x)|v|2∗ + F (x, v)]]dx

= Φ(v)− 1

2
〈Φ′(v), v〉] = Φ(v).

This shows that Φ(v) ≤ m and so Φ(v) = m = infN 0 > 0.

Acknowledgements

The authors thank the editor and the referees for their valuable comments and suggestions. This work
was supported by National Natural Science Foundation of China (Grant No. 11571370) and Specialized
Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120162110021).

References

[1] J. Chabrowski, A. Szulkin, On a semilinear schrodinger equation with critical Sobolev exponent, Proc. Amer.
Math. Soc., 130 (2001), 85–93. 1, 3, 4

[2] J. Chabrowski, J. Yang, On schrödinger equation with periodic potential and critical Sobolev exponent, Nonlinear
Studies., 12 (1998), 245–261. 1

[3] Y. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific Publishing Co., Hackensack,
(2007). 1, 1.1

[4] Y. Ding, C. Lee, Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically
linear terms, J. Differential Equations, 222 (2006), 137–163. 1

[5] Y. Ding, A. Szulkin, Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var.
Partial Differential Equations, 29 (2007), 397–419. 1

[6] D. E. Edmunds, W. D. Evans, Spectral Theory and Differential Operators, Oxford Clarendon Press, New York,
(1987). 2

[7] Y. Egorov, V. Kondratiev, On Spectral Theory of Elliptic Operators, Birkhäuser Verlag, Basel, (1996). 2
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