Research Article

Journal of Nonlinear Science and Applications Print: ISSN 2008-1898 Online: ISSN 2008-1901

Coincidence type alternatives for Φ -essential maps

Donal O'Regan

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland.

Communicated by R. Saadati

Abstract

In this paper we present some criteria for Φ -essential maps and as a consequence these generate a number of new Leray-Schauder type alternatives. ©2016 All rights reserved.

Keywords: Essential maps, coincidence points, Leray-Schauder alternatives. 2010 MSC: 47H10, 54H25.

1. Introduction

Essential maps were introduced by Granas in [3] and extended in a variety of settings in [1, 2, 4]. Recently a new notion of Φ -essential maps was discussed in [5]. In [5] the author presented some coincidence alternatives in a very general setting. He showed (see Theorem 2.1 below) that if G is Φ -essential and $G \cong F$ (in a particular setting) then Φ and F have a coincidence point. This paper puts criteria on a map G to guarantees that G is Φ -essential so this together with our above result will guarantee that Φ and F have a coincidence point.

Let E be a completely regular topological space and U an open subset of E.

We will consider classes \mathbf{A} and \mathbf{B} of maps.

Definition 1.1. We say $F \in A(\overline{U}, E)$ if $F \in \mathbf{A}(\overline{U}, E)$ and $F : \overline{U} \to K(E)$ is an upper semicontinuous map; here \overline{U} denotes the closure of U in E and K(E) denotes the family of nonempty compact subsets of E.

Definition 1.2. We say $F \in B(\overline{U}, E)$ if $F \in \mathbf{B}(\overline{U}, E)$ and $F : \overline{U} \to K(E)$ is an upper semicontinuous map.

In this paper we fix a $\Phi \in B(\overline{U}, E)$ as indicated in our results.

Definition 1.3. We say $F \in A_{\partial U}(\overline{U}, E)$ if $F \in A(\overline{U}, E)$ with $F(x) \cap \Phi(x) = \emptyset$ for $x \in \partial U$; here ∂U denotes the boundary of U in E.

Received 2015-11-15

Email address: donal.oregan@nuigalway.ie (Donal O'Regan)

Definition 1.4. Let $F, G \in A_{\partial U}(\overline{U}, E)$. We say $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ if there exists an upper semicontinuous map $\Psi : \overline{U} \times [0,1] \to K(E)$ with $\Psi(.,\eta(.)) \in A(\overline{U},E)$ for any continuous function $\eta : \overline{U} \to [0,1]$ with $\eta(\partial U) = 0, \Psi_t(x) \cap \Phi(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0,1], \Psi_1 = F, \Psi_0 = G$ and $\{x \in \overline{U} : \Phi(x) \cap \Psi(x,t) \neq \emptyset$ for some $t \in [0,1]\}$ is relatively compact (here $\Psi_t(x) = \Psi(x,t)$).

Remark 1.5. If E is a normal topological space the condition

 $\left\{ x \in \overline{U} : \Phi(x) \cap \Psi(x,t) \neq \emptyset \text{ for some } t \in [0,1] \right\}$

is relatively compact can be removed in Definition 1.4.

Definition 1.6. Let $F \in A_{\partial U}(\overline{U}, E)$. We say $F : \overline{U} \to K(E)$ is Φ -essential in $A_{\partial U}(\overline{U}, E)$ if for every map $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$ and $J \cong F$ in $A_{\partial U}(\overline{U}, E)$ there exists $x \in U$ with $J(x) \cap \Phi(x) \neq \emptyset$.

2. Leray-Schauder nonlinear alternatives.

The following result was established in [5].

Theorem 2.1. Let E be a normal topological space, U an open subset of E and let $G \in A_{\partial U}(\overline{U}, E)$ be Φ -essential in $A_{\partial U}(\overline{U}, E)$. Suppose there exists an upper semicontinuous map $\Psi : \overline{U} \times [0,1] \to K(E)$ with $\Psi(.,\eta(.)) \in A(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, $\Phi(x) \cap \Psi_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0,1]$ and $\Psi_0 = G$. Then there exists $x \in U$ with $\Phi(x) \cap \Psi_1(x) \neq \emptyset$.

Remark 2.2. We can replace in Theorem 2.1 the assumption that E is normal with E being completely regular provided in addition we assume $\{x \in \overline{U} : \Phi(x) \cap \Psi(x,t) \neq \emptyset$ for some $t \in [0,1]\}$ is relatively compact in the statement of Theorem 2.1.

We now rewrite Theorem 2.1 as a nonlinear alternative of Leray-Schauder type.

Theorem 2.3. Let E be a normal topological space and U an open subset of E. Suppose $G \in A_{\partial U}(\overline{U}, E)$ is Φ -essential in $A_{\partial U}(\overline{U}, E)$ and $F \in A(\overline{U}, E)$. Also assume there exists an upper semicontinuous map $\Psi : \overline{U} \times [0, 1] \to K(E)$ with $\Psi(., \eta(.)) \in A(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0, 1]$ with $\eta(\partial U) = 0$, and with $\Psi_0 = G$, $\Psi_1 = F$. Then either

(A1). there exists $x \in \overline{U}$ with $F(x) \cap \Phi(x) \neq \emptyset$,

or

(A2). there exists $x \in \partial U$ and $\lambda \in (0,1)$ with $\Psi_{\lambda}(x) \cap \Phi(x) \neq \emptyset$.

Proof. Suppose (A2) does not hold and $F(x) \cap \Phi(x) = \emptyset$ for $x \in \partial U$ (otherwise (A1) is true). Then

 $\Psi_{\lambda}(x) \cap \Phi(x) = \emptyset$ for $x \in \partial U$ and $\lambda \in (0, 1]$.

Then Theorem 2.1 implies there exists a $x \in U$ with $F(x) \cap \Phi(x) \neq \emptyset$.

Let $L: E \to E$ be a continuous single valued map (a particular example is when L = i, the identity map). We now consider a special case of Theorem 2.3 when $\Phi = L$.

Theorem 2.4. Let E be a normal topological space and U an open subset of E. Suppose $L: E \to E$ is a continuous map with

$$L \in \mathbf{B}(\overline{U}, E). \tag{2.1}$$

Assume $G, F \in A(\overline{U}, E)$ with $L(x) \notin G(x)$ for $x \in \partial U$ and suppose G is L-essential in $A_{\partial U}(\overline{U}, E)$. Also suppose there exists an upper semicontinuous map $\Psi : \overline{U} \times [0,1] \to K(E)$ with $\Psi(.,\eta(.)) \in A(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, and with $\Psi_0 = G, \Psi_1 = F$. Then either (A1). there exists $x \in \overline{U}$ with $L(x) \in F(x)$,

or

(A2). there exists $x \in \partial U$ and $\lambda \in (0,1)$ with $L(x) \in \Psi_{\lambda}(x)$.

Proof. Note $L \in B(\overline{U}, E)$ and $G \in A_{\partial U}(\overline{U}, E)$ since $G(x) \cap L(x) = \emptyset$ for $x \in \partial U$. The result follows from Theorem 2.3.

We next discuss L-essential maps (which could be used in Theorem 2.4).

Theorem 2.5. Let E be a normal topological vector space and U an open subset of E. Suppose $L : E \to E$ is a continuous map with $L(y) \neq 0$ for $y \in E \setminus U$. Let $G \in A(\overline{U}, E)$ and $L \in \mathbf{B}(\overline{U}, E)$. Assume the following conditions hold:

there exists
$$x \in U$$
 with $L(x) = 0$, (2.2)

$$L(x) \notin \lambda G(x) \text{ for } x \in \partial U \text{ and } \lambda \in (0,1],$$

$$(2.3)$$

for any map
$$Q \in A(E, E)$$
 there exists $x \in E$ with $L(x) \in Q(x)$, (2.4)

there exists a retraction (continuous) $r: E \to \overline{U}$ (2.5)

and

$$\begin{cases} \text{for any continuous map } \mu : E \to [0,1] \text{ with } \mu(E \setminus U) = 0 \text{ and} \\ J \in A_{\partial U}(\overline{U}, E) \text{ with } J|_{\partial U} = G|_{\partial U} \text{ and } J \cong G \text{ in } A_{\partial U}(\overline{U}, E) \\ \text{the map } H \in A(E, E) \text{ where } H(x) = \mu(x) J(r(x)). \end{cases}$$
(2.6)

Then G is L-essential in $A_{\partial U}(\overline{U}, E)$.

Proof. Now

$$L(x) \notin \lambda G(x) \text{ for } x \in \partial U \text{ and } \lambda \in [0,1],$$

$$(2.7)$$

(note (2.3) and $L(y) \neq 0$ for $y \in E \setminus U$). Now $G \in A_{\partial U}(\overline{U}, E)$ and to show G is L-essential in $A_{\partial U}(\overline{U}, E)$ let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = G|_{\partial U}$ and $J \cong G$ in $A_{\partial U}(\overline{U}, E)$. We must show there exists $x \in U$ with $L(x) \in J(x)$ (note $\Phi = L$). Let

$$D = \left\{ x \in \overline{U} : L(x) \in \lambda J(x) \text{ for some } \lambda \in [0,1] \right\}.$$

Note $D \neq \emptyset$ (see (2.2)), D is closed (note J is upper semicontinuous) and $D \subseteq \overline{U}$. We claim $D \subseteq U$. To see this let $x \in D$ and $x \in \partial U$. Then since $J|_{\partial U} = G|_{\partial U}$ we have

$$L(x) \in \lambda J(x) = \lambda G(x),$$

which contradicts (2.7). Thus $D \subseteq U$. Now Urysohn's Lemma guarantees there exists a continuous map $\mu: E \to [0,1]$ with $\mu(E \setminus U) = 0$ and $\mu(D) = 1$. Let $r: E \to \overline{U}$ be as in (2.5) and consider the map H given by $H(x) = \mu(x) J(r(x))$. Now (2.4), (2.6) guarantee there exists $x \in E$ with $L(x) \in H(x) = \mu(x) J(r(x))$. If $x \in E \setminus U$ then $\mu(x) = 0$, which yields a contradiction since $L(y) \neq 0$ for $y \in E \setminus U$. Thus $x \in U$ so $L(x) \in \mu(x) J(x)$. Hence $x \in D$ so $\mu(x) = 1$. Thus $L(x) \in J(x)$ with $x \in U$.

Remark 2.6. We can remove the assumption that E is normal in the statement of Theorem 2.5 provided we have that (so we need to put conditions on the maps) the set D (see the proof of Theorem 2.5) is relatively compact (note the existence of μ in Theorem 2.5 is then guaranteed since topological vector spaces are completely regular).

A special case of Theorem 2.5 is when L = i.

Theorem 2.7. Let E be a normal topological vector space and U an open subset of E with $0 \in U$. Suppose $G \in A(\overline{U}, E)$ and $i \in \mathbf{B}(\overline{U}, E)$. Assume

 $x \notin \lambda G(x) \text{ for } x \in \partial U \text{ and } \lambda \in (0,1]$ (2.8)

any map $Q \in A(E, E)$ has a fixed point (2.9)

and (2.5), (2.6) hold. Then G is *i*-essential in $A_{\partial U}(\overline{U}, E)$.

The argument in Theorem 2.5 can be extended to a multivalued Φ as can be seen in our next result (here $\Phi \in B(\overline{U}, E)$ is fixed).

Theorem 2.9. Let E be a normal topological vector space and U an open subset of E. Suppose $\Phi : E \to 2^E$ with $0 \notin \Phi(E \setminus U)$. Let $G \in A(\overline{U}, E)$, $\Phi \in B(\overline{U}, E)$ and assume the following conditions hold:

$$0 \in \Phi(U), \tag{2.10}$$

$$\Phi(x) \cap \lambda G(x) = \emptyset \quad for \ x \in \partial U \quad and \ \lambda \in (0,1]$$

$$(2.11)$$

and

for any map
$$Q \in A(E, E)$$
 there exists $x \in E$ with $\Phi(x) \cap Q(x) \neq \emptyset$. (2.12)

Also suppose (2.5) and (2.6) hold. Then G is Φ -essential in $A_{\partial U}(\overline{U}, E)$.

Proof. Note (2.11) and $0 \notin \Phi(E \setminus U)$ implies

$$\Phi(x) \cap \lambda G(x) = \emptyset \text{ for } x \in \partial U \text{ and } \lambda \in [0, 1].$$
(2.13)

Now $G \in A_{\partial U}(\overline{U}, E)$ and to show G is Φ -essential in $A_{\partial U}(\overline{U}, E)$ let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = G|_{\partial U}$ and $J \cong G$ in $A_{\partial U}(\overline{U}, E)$. Let

$$D = \left\{ x \in \overline{U} : \Phi(x) \cap \lambda J(x) \neq \emptyset \text{ for some } \lambda \in [0,1] \right\}.$$

Note $D \neq \emptyset$ (see (2.10)). Also a standard argument (see [5]) guarantees that D is closed. Note $D \subseteq \overline{U}$ and we claim $D \subseteq U$. To see this let $x \in D$ and $x \in \partial U$. Then since $J|_{\partial U} = G|_{\partial U}$ we have $\Phi(x) \cap \lambda G(x) \neq \emptyset$, and this contradicts (2.13). Thus $D \subseteq U$. Now Urysohn's Lemma guarantees there exists a continuous map $\mu : E \to [0,1]$ with $\mu(E \setminus U) = 0$ and $\mu(D) = 1$. Let $r : E \to \overline{U}$ be as in (2.5) and consider the map Hgiven by $H(x) = \mu(x) J(r(x))$. Now (2.6) and (2.12) guarantee there exists $x \in E$ with $\Phi(x) \cap H(x) \neq \emptyset$ i.e. $\Phi(x) \cap \mu(x) J(r(x)) \neq \emptyset$. If $x \in E \setminus U$ then $\mu(x) = 0$, which yields a contradiction since $0 \notin \Phi(E \setminus U)$. Thus $x \in U$ so $\Phi(x) \cap \mu(x) J(x) \neq \emptyset$. Hence $x \in D$ so $\mu(x) = 1$, and consequently $\Phi(x) \cap J(x) \neq \emptyset$. \Box

Remark 2.10. We can remove the assumption that E is normal in the statement of Theorem 2.9 provided we have that the set D (see the proof of Theorem 2.9) is relatively compact.

In our next two results we assume $\Phi: \overline{U} \to 2^E$ (we do not assume $\Phi: E \to 2^E$). Here $\Phi \in B(\overline{U}, E)$ is fixed.

Theorem 2.11. Let E be a normal topological vector space and U an open subset of E with $0 \in U$. Let $G \in A(\overline{U}, E)$, $\Phi \in B(\overline{U}, E)$ and assume the following condition holds:

$$G(x) \cap \Phi(x) = \emptyset \quad for \quad x \in \partial U. \tag{2.14}$$

Suppose (2.5), (2.9) and the following holds:

$$\begin{cases} \text{for any continuous map } \mu : E \to [0,1] \text{ with } \mu(E \setminus U) = 0 \text{ and} \\ J \in A_{\partial U}(\overline{U},E) \text{ with } J|_{\partial U} = G|_{\partial U} \text{ and } J \cong G \text{ in } A_{\partial U}(\overline{U},E) \\ \text{the map } H \in A(E,E) \text{ where } H(x) = \mu(x) [J(r(x)) \cap \Phi(r(x))]. \end{cases}$$

$$(2.15)$$

Then G is Φ -essential in $A_{\partial U}(\overline{U}, E)$ [in fact there exists a $x \in U$ with $x \in J(x) \cap \Phi(x)$ where J is described in (2.15)].

Proof. Note $G \in A_{\partial U}(\overline{U}, E)$ (see (2.14)). To show G is Φ -essential in $A_{\partial U}(\overline{U}, E)$ let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = G|_{\partial U}$ and $J \cong G$ in $A_{\partial U}(\overline{U}, E)$. We must show there exists $x \in U$ with $J(x) \cap \Phi(x) \neq \emptyset$. Let

$$D = \left\{ x \in \overline{U} : x \in \lambda \left[J(x) \cap \Phi(x) \right] \text{ for some } \lambda \in [0, 1] \right\}$$

Note $0 \in D$, D is closed and $D \subseteq U$ since if $x \in \partial U$ then $J(x) \cap \Phi(x) = G(x) \cap \Phi(x) = \emptyset$. Now Urysohn's Lemma guarantees there exists a continuous map $\mu : E \to [0,1]$ with $\mu(E \setminus U) = 0$ and $\mu(D) = 1$. Let $r : E \to \overline{U}$ be as in (2.5) and consider the map H given by

$$H(x) = \mu(x) \left[J(r(x)) \cap \Phi(r(x)) \right]$$

Now (2.9) and (2.15) guarantee there exists $x \in E$ with $x \in \mu(x) [J(r(x)) \cap \Phi(r(x))]$. If $x \in E \setminus U$ then $\mu(x) = 0$ so x = 0, a contradiction since $0 \in U$. Thus $x \in U$ so $x \in \mu(x) [J(x) \cap \Phi(x)]$. Hence $x \in D$ so $\mu(x) = 1$. Thus $x \in U$ and $x \in J(x) \cap \Phi(x)$.

Remark 2.12. A special case of Theorem 2.11 is when G = i (the identity map) or G = 0 (the zero map). Theorem 2.11 was motivated in part by our result in [4, Theorem 2.9] (note in [4, Theorem 2.9] the assumption $0 \in \psi(\partial U)$ in not needed and also there are some typos in the proof there).

A more general version of Theorem 2.11 is the following result.

Theorem 2.13. Let E be a normal topological vector space and U an open subset of E. Let $G \in A(\overline{U}, E)$, $\Phi \in B(\overline{U}, E)$, $\Psi : E \to 2^E$ with $\Psi : \overline{U} \to K(E)$ an upper semicontinuous map and $0 \notin \Psi(E \setminus U)$. Also assume the following conditions hold:

$$0 \in \Psi(U) \tag{2.16}$$

and

for any map $Q \in A(E, E)$ there exists $x \in E$ with $\Psi(x) \cap Q(x) \neq \emptyset$. (2.17)

Suppose (2.5), (2.14) and (2.15) hold. Then G is Φ -essential in $A_{\partial U}(\overline{U}, E)$ [in fact there exists a $x \in U$ with $\Psi(x) \cap [J(x) \cap \Phi(x)] \neq \emptyset$ where J is described in (2.15)].

Proof. To show G is Φ -essential in $A_{\partial U}(\overline{U}, E)$ let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = G|_{\partial U}$ and $J \cong G$ in $A_{\partial U}(\overline{U}, E)$. We must show there exists $x \in U$ with $J(x) \cap \Phi(x) \neq \emptyset$. Let

$$D = \left\{ x \in \overline{U} : \Psi(x) \cap \lambda \left[J(x) \cap \Phi(x) \right] \neq \emptyset \text{ for some } \lambda \in [0, 1] \right\}$$

Note $D \neq \emptyset$ (see (2.16)), D is closed and $D \subseteq U$ since if $x \in \partial U$ then $J(x) \cap \Phi(x) = G(x) \cap \Phi(x) = \emptyset$. Now Urysohn's Lemma guarantees there exists a continuous map $\mu : E \to [0,1]$ with $\mu(E \setminus U) = 0$ and $\mu(D) = 1$. Let $r : E \to \overline{U}$ be as in (2.5) and consider the map H given by

$$H(x) = \mu(x) \left[J(r(x)) \cap \Phi(r(x)) \right].$$

Now (2.15), (2.17) guarantee there exists $x \in E$ with $\Psi(x) \cap \mu(x) [J(r(x)) \cap \Phi(r(x))] \neq \emptyset$. If $x \in E \setminus U$ then $\mu(x) = 0$, which yields a contradiction since $0 \notin \Psi(E \setminus U)$. Thus $x \in U$ so $\Psi(x) \cap \mu(x) [J(x) \cap \Phi(x)] \neq \emptyset$. Hence $x \in D$ so $\mu(x) = 1$ and $\Psi(x) \cap [J(x) \cap \Phi(x)] \neq \emptyset$.

References

- M. Furi, M. Martelli, A. Vignoli, On the solvability of nonlinear operator equations in normed spaces, Ann. Math. Pura Appl., 124 (1980), 321–343.1
- [2] G. Gabor, L. Gorniewicz, M. Slosarski, Generalized topological essentiality and coincidence points of multivalued maps, Set-Valued Var. Anal., 17 (2009), 1–19.1
- [3] A. Granas, Sur la méthode de continuité de Poincaré, C. R. Acad. Sci. Paris, 282 (1976), 983-985.1
- [4] D. O'Regan, Coincidence methods based on essential and 0-epi maps, Acta Appl. Math., 54 (1998), 319–330.1, 2.12
- [5] D. O'Regan, Coincidence points for multivalued maps based on Φ-epi and Φ-essential maps, Dynam. Systems Appl., 24 (2015), 143–154.1, 2, 2