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Abstract

We prove theorems on convergence of multidimensional nonlinear integrals in Lebesgue points of gen-
erated function, and show that the main results are applicable to a wide class of exponentially nonlinear
integral operators, which may be constructed by using well known positive kernels in approximation theory.
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1. Introduction

It is well known that the solution of boundary value problems for elliptic and parabolic differential
equations can be expressed as integral operators with positive kernels. The most famous of these are the
kernels of Gauss–Weierstrass, Poisson, Abel–Poisson, etc. Sequences or families of integral operators with
positive kernels play an important role in approximation of functions and serve as the main model in the
creation of the so called theory of approximation of positive linear operators [2, 6].

Approximative properties of the sequences of linear integral operators with positive kernels generated
interest to study approximation by nonlinear integrals [3]–[5], [8]–[12]. Related to that, presumably it would
be interesting to find a connection between the approximation by nonlinear integrals and boundary value
problems for certain nonlinear differential operators.
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On the other hand, given that the classical theorems on the convergence of sequences of operators are
only valid for linear operators, approximation by using nonlinear integrals is of interest in terms of the
convergence of sequences (or families) of these integrals and founding its limit values. The results of the
papers [1, 7], on limiting properties of multidimensional integrals, called Riesz and Bessel potentials, can
be considered as regarding this. The main goal of our work is to find appropriate expressions of limits of a
family of certain nonlinear integrals.

We will study nonlinear multidimensional integrals of the form

Lλ(u, x) =
λn

wn−1

∫
Rn

K(λ |t− x| , u(t))dt,

where x ∈ Rn, |t− x| =
(

(t1 − x1)2 + (t2 − x2)2 + · · ·+ (tn − xn)2
) 1

2
and wn−1 is the area of unit sphere

Sn−1 in Rn.
The kernel-function K(ξ, u), depending on two variables ξ ≥ 0 and u, |u| ≤ M satisfy some properties

which will be given in Section 2. We want to find the limit of Lλ(u, x0) as λ→∞ where x0 is the Lebesgue
point of the function u(x), x ∈ Rn. In Section 3 we will show that the kernel-function K(ξ, u), satisfying
all our conditions, may be easily obtained by using classical positive kernels of approximation theory, such
as Gauss–Weierstrass, Abel–Poisson, Jacson and other kernels. The main theorem, proved in Part 2, allow
us to give a definition of a general subclass of nonlinear integrals Lλ(u, x0) exponentially depending of the
function u(x), x ∈ Rn.

2. Main result

First, we recall the well known definition of Lebesgue points in Rn. Let Sn−1 be the unit sphere in Rn
and let for x ∈ Rn,

f(r, u(x)) =

∫
Sn−1

|u(x+ rθ)− u(x)| dθ, 0 < r <∞.

Definition 2.1. The point x ∈ Rn is called the Lebesgue point of function u ∈ L1(R
n) if

lim
r→0

1

rn

∫
|t|≤r
|u(x− t)− u(x)| dt = 0.

From this definition, we can find an δ > 0 such that

1

rn

∫
|t|≤r
|u(x− t)− u(x)| dt < δ

provided r ≤ δ.
Let us define a new function by

F (ρ) =

∫ ρ

0
rn−1f(r, u(x0))dr. (2.1)

Definition 2.1 gives that for any ε > 0 there exist a positive number δ = δ(ε) such that

F (ρ) < ερn, for all ρ ≤ δ, (2.2)

(see [11]). Moreover, from (2.1) we have

dF (ρ) = ρn−1f(ρ, u(x0))dρ. (2.3)
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Consider now the following nonlinear multidimensional integral

Lλ(u, x) =
λn

wn−1

∫
Rn

K(λ |t− x| , u(t))dt, (2.4)

where, as we noted above, wn−1 is the area of unit sphere Sn−1 in Rn and λ is a positive parameter.
Note that for partial derivatives of the function K(ξ, u) with respect to the variable u, we will write for

brevity

Km
u (ξ, 0) =

∂mK(ξ, u)

∂um
|u=0, m = 1, 2, 3, . . . .

We assume that the kernel function K(ξ, u) satisfy the following conditions:

(a) For any ξ ≥ 0, K(ξ, u) is an infinitely differentiable function of variables u and ξ and K(ξ, 0) = 0.

(b) For any natural m, K
(m)
u (ξ, 0) is nonnegative monotonically decreasing function of ξ on semiaxis [0,∞).

(c)
Km
u (ξ, 0) ≤ K(m−1)

u (ξ, 0), m = 1, 2, 3, . . . .

(d) ∫ ∞
0

Km
u (ξ, 0)ξn−1dξ = cm <∞, m = 1, 2, . . . . (2.5)

From the conditions(a)-(d), it follows that the kernel K(ξ, u) may be expanded in Maclaurin series by
the powers of function u. Moreover, (c) gives that the first partial derivative K1

u(ξ, 0) is a majorant function
for other derivatives, that is

K(m.)
u (ξ, 0) ≤ K1

u(ξ, 0), m = 1, 2, . . . .

From (d) we can infer the inequality∫ p

p
2

K(m)
u (ξ, 0)ξn−1dξ ≥ K(m)

u (p, 0)

∫ p

p
2

ξn−1dξ

= K(m)
u (p, 0)pn

(
1− 1

2n

)
1

n
, m = 1, 2, . . . ,

for any positive number.
Using (d) we obtain

lim
p→∞

pnK(m)
u (p, 0) = 0,

and from this it follows that for any m = 1, 2, . . . ,

lim
p→∞

K(m)
u (p, 0) = 0. (2.6)

The properties (d) gives also

lim
p→∞

∫ ∞
p

K(m)
u (ξ, 0)ξn−1dξ = 0. (2.7)

We will prove now the main theorem on convergence of the family Lλ(u, x) as λ → ∞ at a fixed point
x0, being the Lebesgue point of the function u(x).

Theorem 2.2. Let u(x) be a bounded function in Rn, belonging to L1(Rn) and let the kernel K(ξ, u) satisfy
conditions (a)–(d). Then at each Lebesgue point x0 of the function u(x) we have

lim
λ→∞

Lλ(u, x0) =

∞∑
m=1

cm
m!
um(x0),

where cm are defined in (2.5).
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Proof. First we write the Maclurin expansion of the function K(ξ, u) by the powers of u. We have [1]

K(λ |t− x| , u(t)) =

∞∑
m=1

1

m!
K(m)
u (λ |t− x0| , 0)um(t).

By condition (c) and boundedness of the function u(t), the series in right-hand side is majorating and
therefore

Lλ(u, x0) =
λn

wn−1

∞∑
m=1

1

m!

∫
Rn

K(m)
u (λ |t− x0| , 0)um(t)dt.

Firstly, let us transform t− x0 = p and then take p = t

Lλ(u, x0) =
λn

wn−1

∞∑
m=1

1

m!

∫
Rn

K(m)
u (λ |t| , 0)um(t+ x0)dt.

From binomial expansion of um(x0 + t) we can write

Lλ(u, x0) =
λn

wn−1

∞∑
m=1

1

m!

∫
Rn

K(m)
u (λ |t| , 0)

m∑
k=0

Ckm (u (x0 + t)− u(x0))
m−k uk(x0)dt,

where Ckm are binomial coefficients. From this we obtain

Lλ(u, x0)−
∞∑
m=1

cm
m!
um(x0) =

λn

wn−1

∞∑
m=1

1

m!

∫
Rn

K(m)
u (λ |t| , 0)

m−1∑
k=0

Ckm (u (x0 + t)− u(x0))
m−k uk(x0)dt.

Since u(x) is bounded, say, |u(x)| ≤M <∞, we have∣∣∣∣∣
m−1∑
k=0

Ckm (u (x0 + t)− u(x0))
m−k uk(x0)

∣∣∣∣∣ ≤ |u (x0 + t)− u(x0)|
m−1∑
k=0

Ckm (2M)m−1−kMk

≤ (4M)m |u (x0 + t)− u(x0)| .

Therefore, using the property (c), we can write∣∣∣∣∣Lλ(u, x0)−
∞∑
m=1

cm
m
um(x0)

∣∣∣∣∣ ≤ λn

wn−1

∞∑
m=1

(4M)m

m!

∫
Rn

|u (x0 + t)− u(x0)|K1
u(λ |t| , 0)dt.

So, for any fixed δ, which will be chosen below, we have∣∣∣∣∣Lλ(u, x0)−
∞∑
m=1

cm
m
um(x0)

∣∣∣∣∣ ≤ λn

wn−1

{∫
t<δ

+

∫
t≥δ

}
|u (x0 + t)− u(x0)|K1

u(λ |t| , 0)dt

=
1

wn−1

(
e4M − 1

)
{λnI ıλ + λnI ııλ } .

(2.8)

From (b), for λnI ııλ , we immediately obtain

λnI ııλ ≤ λnK1
u(λδ, 0)

∫ ∞
δ

∫
Sn−1

|u(x0 + ρθ| ρn−1dθdρ+ |u(x0)|λn
∫
t≥δ

K1
u(λ |t| , 0)dt

≤ λn ‖u‖L1(Rn)K
1
u (λδ, 0) + λnu(x0)wn−1

∫ ∞
δ

K1
u (λρ, 0) ρn−1dρ.

The first term in right-hand side tends to zero as λ→∞ by (2.6), and the second term by (2.7). Therefore

lim
λ→∞

λnI ııλ = 0. (2.9)
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Consider λnI ıλ. As we noted above, assuming that x0 is a Lebesgue point of the function u, we obtain,
by Definition 2.1, that for ε > 0 there exist a number δ > 0 such that the function F (ρ), defined in (2.1)
satisfies the inequality (2.2). Fixing this δ > 0, we can write

λnI ıλ = λn
∫ δ

0

∫
Sn−1

|u(x0 + ρθ)− u(x0)|K1
u (λρ, 0) ρn−1dθdρ,

or, using (2.3) and integrating by parts

λnI ıλ = λn
∫ δ

0
K1
u (λρ, 0) dF (ρ)

= λnK1
u (λρ, 0)F (δ) + λn

∫ δ

0
F (ρ)d

[
−K1

u (λρ, 0)
]
.

Using (2.2), we have

λnI ıλ < ε (λδ)nK1
u (λρ, 0) + ελn

∫ δ

0
ρnd

[
−K1

u (λρ, 0)
]

= nελn
∫ δ

0
K1
u (λρ, 0) ρn−1dρ

= nε

∫ δ

0
K1
u (ρ, 0) ρn−1dρ.

By (2.5), the limit of the integral in the right-hand side is finite and therefore

lim
λ→∞

λnI ıλ = 0, (2.10)

since ε is an arbitrary small number. Using (2.9) and (2.10) in (2.8), proves the theorem.

We give the following simple example of an application of Theorem 2.2. Lets consider the kernel-function

K(ξ, u) =
1√
2π

[
exp e−ξ

2
u− 1

]
. (2.11)

Obviously K(ξ, 0) = 0. We have

K(m)
u (ξ, 0) =

1√
2π
e−mξ

2
,

and all the conditions of Theorem 2.2 are satisfied. Therefore we use the following well known formula,∫ ∞
0

ρn−1e−mρ
2
dρ =

Γ
(
n
2

)
2

1

m
n+1
2

.

3. Exponentially nonlinear integrals

The example of kernel K(ξ, u), given in formula (2.11), shows that Theorem 2.2 covers the subclass of
nonlinear integrals which may be described by the following definition.

Definition 3.1. We will say that a nonlinear integral operator contains the exponential nonlinearity if its
kernel-function K(ξ, u) has the form

K(ξ, u) = eA(ξ)u − 1, (3.1)

where A(ξ) is a given function, defined for ξ ≥ 0.
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Definition 3.2. Nonlinear integral, having exponential nonlinearity, will be called exponentially nonlinear
integral.

As an example, consider the exponentially nonlinear integral

Bλ(u, x) =
λn

wn−1

∫
Rn

[
eA(λ|t−x|)u(t) − 1

]
dt. (3.2)

Following Theorem 2.2, we can see that the following statement holds.

Theorem 3.3. Let a nonnegative function A(ξ) satisfy the following conditions:

(a1) A(ξ) < 1 for all ξ ≥ 0,

(b1) A(ξ) is monotonically decreasing function in semiaxis [0,∞),

(c1)
∫∞
0 A(ξ)ξn−1dξ <∞.

Then at each Lebesgue point x0 of a bounded function u ∈ L1(Rn), we have

lim
λ→∞

Bλ(u, x0) =
∞∑
m=1

dm
m!

um(x0), (3.3)

where dm =
∫∞
0 Am(ξ)ξn−1dξ.

Proof. It is clear that for function (3.1) we have K(ξ, 0) = 0, K
(m)
u (ξ, 0) = Am(ξ), m = 1, 2, . . . , and by

(a1)
K(m)
u (ξ, 0) < K(m−1)

u (ξ, 0),

and (b1) implies (b). Therefore, the conditions (a)–(c) of Theorem 2.2 are satisfied. Moreover, using (c1),
we see that all conditions (a)–(d) of Theorem 2.2 are satisfied, which gives the proof.

Remark 3.4. It is clear that Theorem 3.3 is a corollary of Theorem 2.2. We give this statement in the form
of special Theorem since it covers many applicable cases.

Now we consider the case of exponential nonlinear integrals where the function A(ξ) does not satisfy the
condition of monotony.

Theorem 3.5. Let A(ξ) be a nonnegative function such that there exist a monotonically decreasing majorant
function D (ξ) on [0,∞) such that

Am(ξ) ≤ D (ξ) , m = 1, 2, . . . , (3.4)

and ∫ ∞
0

ξn−1D(ξ)dξ <∞. (3.5)

Then (3.3) holds at every Lebesgue point x0 of bounded function u ∈ L1(Rn).

Proof. As in the proof of Theorem 2.2 we can write the inequality (2.8) for integral (3.2) in the following
form ∣∣∣∣∣Bλ(u, x0)−

∞∑
m=1

dm
m!

um(x0)

∣∣∣∣∣ ≤ λn

wn−1

(
e4M − 1

)
{λnI ıλ + λnI ııλ } ,

where

λnI ıλ =

∫
t<δ
|u (x0 + t)− u(x0)|D(λ |t|)dt,



S. E. Almali, A. D. Gadjiev, J. Nonlinear Sci. Appl. 9 (2016), 3090–3097 3096

and

λnI ııλ =

∫
t≥δ
|u (x0 + t)− u(x0)|D(λ |t|)dt.

Since D (ξ) is monotonically decreasing, we obtain that

lim
λ→∞

λnI ıλ = lim
λ→∞

λnI ııλ = 0.

By the same way as above (2.9) and (2.10). The proof is complete.

Consider the following Fejer-type kernel

F (t) =

(
sin t

t

)2n

,

and corresponding exponentially nonlinear integral (3.2)

Fλ(u, x) =
λn

wn−1

∫
Rn

[
eF (λ|t−x|)u(t) − 1

]
dt.

We have

Fλ(u, x) =
λn

wn−1

∫
Rn

∞∑
m=1

(
sin (λ |t− x|)
λ |t− x|

)2nm

um(t)dt.

Obviously for any natural number n and m(
sin (λ |t− x|)
λ |t− x|

)2nm

<

(
sin (λ |t− x|)
λ |t− x|

)2n

<
2n(

1 + λ2 |t− x|2
)n .

Therefore, we have

F (λ |t− x|) < 2n(
1 + λ2 |t− x|2

)n ,

which means that the majorant function D (ξ) has the form

D (ξ) =
2n

(1 + ξ2)n
, ξ ∈ [0,∞) .

It is easy to see that D (ξ) is a monotonically decreasing function on [0,∞) and∫ ∞
0

ξn−1D (ξ) dξ ≤
∫ 1

0
2ndξ + 2n

∫ ∞
1

dξ

ξn+1
<∞.

This show that all the conditions of Theorem 3.5 are satisfied.
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