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Abstract

By establishing some differential geometry theory on the 1-lightlike surfaces, we show several geometric
properties of the 1-lightlike surfaces which are completely different from non-lightlike surfaces. Based on
these theories, we consider the singularities of the 1-lightlike surfaces in semi- Euclidean 4-space with index
two as an application of the theory of Legendrian singularities. We characterize the singularities of the
1-lightlike focal hypersurfaces and describe the contacts between the 1-lightlike surface and the anti de
Sitter 3-sphere at singular points by employing Montaldi’s theory. In addition, we also discuss the detailed
differential geometric properties of the 1-lightlike focal hypersurfaces in semi-Euclidean 4-space with index
2. Finally, an example will be proposed to explain our findings. c©2016 All rights reserved.
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1. Introduction

During the last four decades singularity theory has enjoyed rapid development. French mathematician
R. Thom, who is a Fields medalist, first put forward the philosophical idea to apply singularity theory
to the study of differential geometry. The natural connection between Geometry and Singularity relies on
the basic fact that the contacts of a submanifold with the models (invariant under the action of a suitable
transformation group) of the ambient space can be described by means of the analysis of the singularities of
appropriate families of contact functions, or equivalently, of their associated Lagrangian and/or Legendrian
maps [1, 6]. Porteous carries the thoughts of Thom into the study of Euclidean geometry [8]. On this basis,
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Bruce and Giblin have systematically discussed classification of singularities, singularities stability and the
relationship between the singularities and the geometry invariants of submanifolds in Euclidean space and
obtained a number of good results [2]. It is well known that there exist spacelike submanifolds, timelike
submanifolds and lightlike submanifolds in semi- Euclidean space. The singularities of spacelike and timelike
submanifolds in Minkowski space have been studied extensively in [13]. However, to the best of the authors’
knowledge, there are fewer literatures regarding the singularities of lightlike submanifolds, aside from the
second author’s studies in semi-Riemannian space [9, 10, 11, 12, 14]. Some methods used in non-degenerate
submanifolds cannot be extended to general lightlike submanifold because of the degeneracy of the lightlike
submanifolds. As the extension of our previous work [9, 10, 11, 12, 14], the current study concerned with the
1-lightlike surfaces in semi-Euclidean space with index two. The properties of singularities of a submanifold
M are closely related to a geometry invariant. In general, the geometry invariants are the Gauss-Kronecker
curvatures for the submanifolds in Euclidean space. In addition, there exist some generalized forms of Gauss-
Kronecker curvature in the study of the singularities of non-degenerate submanifolds in semi-Euclidean space.
They are defined as the determinant of the shape operator from tangent space of M at any point to itself, or
equivalently, defined in the way: Gauss-keronecker curvature K is the Jacobian determinant of Gauss map
of M . When M is a non-lightlike surface, we get the usual notion of Gaussian curvature. It is also given by
K = 〈(∇2∇1−∇1∇2)e1,e2〉

det g , where ∇i = ∇ei is the covariant derivative and g is the metric tensor. But it is not
an ineffective way in defining Gaussian curvature of the 1-lightlike surfaces because of det g = 0. How to
obtain a geometric invariant related closely to the singularities of the 1-lightlike surfaces? This is the problem
people always care about, and the urgent question we must settle in the process of studying the singularities
of 1-lightlike surfaces. Based on the differential geometry theory of lightlike submanifolds by Duggal et al.
[3, 4], we successfully solved the problem by defining a linear operator from tangent space of M at any point
to its corrected tangent space, which is significant of reference for obtaining the geometric invariants of other
lightlike submanifolds, we define the determinant of the linear operator as the 1-lightlike Gauss curvature, a
key geometric invariant related closely to the singularities of the 1-lightlike surfaces. It is quite different from
the definition of the Gauss-Kronecker curvature adapted for non-degenerated submanifolds, this approach
can also be extended to the study of more general lightlike submanifolds. With these ingredients at hand, we
apply the theory of Legendrian singularities to investigate the differential geometry of the 1-lightlike surfaces
in semi-Euclidean 4-space. We introduce the notion of the 1-lightlike focal hypersurface of a 1-lightlike surface
by using a timelike unit normal vector field. The definition of the 1-lightlike Gauss curvature also induces the
definitions of the 1-lightlike (λ, τ)-umbilic point and the 1-lightlike (λ, τ)-flat point for a 1-lightlike surface.
We call the singular points of a 1-lightlike focal hypersurface the 1-lightlike (λ, τ)-parabolic points, and a
1-lightlike surface is tangent to an anti de Sitter 3-sphere at the 1-lightlike (λ, τ)-parabolic point. We will
use Montaldi’s characterization of submanifold contacts in terms of K-equivalent functions, which provides a
technique linkage to the modern theory of Legendrian singularity. If we assume a hypothesis of Theorem 5.5,
then the contact type of the anti de Sitter 3-sphere and the 1-lightlike surface corresponds to a singular type
of the 1-lightlike focal hypersurface. As a consequence, the singularity of the 1-lightlike focal hypersurface
can clearly describe the contact of the 1-lightlike surface with the anti de Sitter 3-sphere.

The remainder of this paper is organized as follows: We begin in Section 2 with the differential ge-
ometry of semi-Euclidean space with index two. In Section 3, we consider general 1-lightlike surfaces in
semi-Euclidean space with index two and study their basic properties. We define the 1-lightlike distance-
squared functions (family) on a 1-lightlike surface and show that the discriminant set is a 1-lightlike focal
hypersurface. In Section 4, we show further that the 1-lightlike distance-squared function of a 1-lightlike
surface is a Morse family. Therefore, the 1-lightlike focal hypersurface of a 1-lightlike surface is the wave
front set of a Legendrian submanifold. In Section 5, we study the contact of a 1-lightlike surface with an
anti de Sitter 3-sphere as an application of the theory of Legendrian singularities and discuss the geometric
properties of the singularities of the 1-lightlike focal hypersurfaces. We consider the generic properties of
1-lightlike surfaces in Section 6. Finally, an example will be proposed to explain our findings in Section 7.
Throughout the paper, all maps and manifolds are C∞ unless stated otherwise; similarly, submanifolds of
semi-Euclidean spaces are always assumed to be semi-Riemannian.
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2. Preliminaries

Let R4
2 denotes the 4-dimensional semi-Euclidean space with index 2, that is to say, the manifold R4 with

a flat semi-Euclidean metric 〈, 〉, such that, for any two vectors x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4)
in R4, 〈x,y〉 = −x1y1 − x2y2 + x3y3 + x4y4. We define the pseudo-vector product the of x, y, and z by

x ∧ y ∧ z =

∣∣∣∣∣∣∣∣
−e1 −e2 e3 e4

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

∣∣∣∣∣∣∣∣ ,
where x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) and z = (z1, z2, z3, z4) in R4

2 and {e1, e2, e3, e4} is the canonical
basis of R4

2. We say that a vector x ∈ R4
2\{0} is spacelike, null(lightlike) or timelike if 〈x,x〉 is positive, zero

or negative, respectively.
We introduce a typical semi-Riemannian manifold, we put

AdS3(a) =
{
x ∈ R4

2 : 〈x− a,x− a〉 = −1
}
.

It is well known that AdS3 is a complete semi-Riemannian manifold with constant sectional curvature −1.
We call AdS3 the anti de Sitter 3−sphere with vertex a.

In addition, we define a 3-dimensional (open) nullcone with vertex a by

Λ3
a =

{
x = (x1, x2, x3, x4) ∈ R4

2 : 〈x− a,x− a〉 = 0
}∖{

a
}
.

When a = 0, we simply denote Λn
0 by Λn . Let X : U → R4

2 be a regular surface of R4
2( i.e. an embedding),

where U ⊂ R2 is an open subset. We identify M = X(U) with U through the embedding X.
If 〈, 〉 is degenerate on the tangent bundle TM of M we say that M is a lightlike submanifold of R4

2.
Next, we introduce some basic notions about lightlike submanifolds (see [3, 4]).

Denote by F(M) the algebra of smooth functions on M and by Γ(E) the F(M) module of smooth
sections of a vector bundle E (same notation for any other vector bundle) over M .

For a degenerate tensor field 〈, 〉 on M , there exists locally a vector field ξ ∈ Γ(TM) such that 〈ξ,X〉 = 0
for any X ∈ Γ(TM). Then, for each tangent space TpM , we have TpM

⊥ = {u ∈ TpR4
2 : 〈u,v〉 = 0,∀v ∈

TpM}, which is a degenerate 2-dimensional subspace of TpR4
2. The radical subspace of TpM (denoted by

RadTpM) is defined by RadTpM = {ξp ∈ TpM : 〈ξp ,X〉 = 0 ∀X ∈ TpM}. The dimension of RadTpM =
TpM ∩TpM⊥ depends on p ∈M . The submanifold M of R4

2 is said to be a 1-lightlike surface if the mapping

RadTM : M → TM, p 7→ RadTpM

defines a smooth distribution of rank 1 on M . RadTM is called the radical distribution.
In this paper, we study the lightlike surface M of R4

2. Consider a complementary distribution S(TM) of
RadTM in TM . Clearly, S(TM) is orthogonal to RadTM and non-degenerate with respect to 〈, 〉. Let a
complementary vector subbundle to RadTM in TM⊥ be denoted by S(TM⊥). We call S(TM) and S(TM⊥)
a screen distribution and a screen transversal vector bundle of M , respectively. We suppose S(TM⊥) is
of constant index 1 on M . Similarly, let trTM and ltrTM be complementary (but not orthogonal) vector
bundles to TM in TR4

2|M and to RadTM in S(TM⊥)⊥ respectively. We call trTM and ltrTM a transversal
vector bundle and a lightlike transversal vector bundle of M , respectively. For 1-lightlike surfaceM of R4

2,
we have the facts that there exists a unique vector subbundle ltrTM of S(TM⊥)⊥ of rank 1 such that for
any ξ ∈ Γ(RadTM), ξ 6= 0 on M , there exists a unique η ∈ (ltrTM) of S(TM⊥)⊥ satisfying (see [4])

〈ξ,η〉 = 1, 〈η,η〉 = 0.
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We obtain

trTM = ltrTM ⊥ S(TM⊥),

TR4
2|M = TM ⊕ trTM

= S(TM) ⊥ S(TM⊥) ⊥ (RadTM ⊕ ltrTM).

(2.1)

Consider the following local field of frames of R4
2 along M :{

Xu1 , Xu2 ,η,n
}
, (2.2)

where Xui = ∂X/∂ui ,
{
Xu1 = ξ

}
is a lightlike basis of Γ(RadTM),

{
Xu2

}
a spacelike basis of Γ(S(TM)),{

η
}

a lightlike basis of Γ(ltrTM) and
{
w
}

a timelike basis of Γ(S(TM⊥)), respectively.
The local field of frames satisfies

〈η,η〉 = 〈η,n〉 = 〈η, Xu2〉 = 〈Xu2 ,n〉 = 0, 〈n,n〉 = −1, (2.3)

〈ξ, ξ〉 = 〈ξ,n〉 = 〈ξ, Xu2〉 = 0, 〈ξ,η〉 = 1, 〈Xu2 , Xu2〉 > 0. (2.4)

According to (2.1) we have the Gauss formulae and the Weingarten formulae for the 1-lightlike surface M
of R4

2.
∇̄XY = ∇XY + h`(X ,Y) + hs(X ,Y), (2.5)

∇̄XV = −A(V,X ) +D`
XV +Ds

XV (2.6)

for any X ,Y ∈ Γ(TM),V ∈ Γ(tr(TM)), where ∇XY, A(V,X ) belongs to Γ(TM),{h`, D`
X } is the

Γ(ltr(TM))-value and {hs , Ds
X } is the Γ(S(TM⊥))-value, respectively.

We now introduce the pseudo-Riemannian metric ds2 =
∑m

i,j=1 gijduiduj on M = X(U), where gij(u) =
〈Xui(u), Xuj (u)〉 for any u ∈ U. We denote the local lightlike second fundamental forms and the local screen
second fundamental forms of M on U by {h`ik} and {hsik}, respectively. From (2.5) and (2.6), we derive

∇̄Xui
Xuk = ∇Xui

Xuk + h`ikη + hsikn =
2∑
j=1

%jikXuj + h`ikη + hsikn, (2.7)

∇̄Xui
η =

∑2
j=1 τ

j
i Xuj + θiη + ρin, (2.8)

∇̄Xui
n =

∑2
j=1 σ

j
iXuj + νiη + µin, (2.9)

where h`k1(Xuk , Xu1) = 0 (see [4]).

Definition 2.1. Let TpM
⊥ = RadTpM ⊥ S(TpM

⊥) be the normal space of M at p = X(u) in R4
2, we

denote TpM = S(TpM) ⊥ ltrTpM . We call TpM the corrected tangent space of M at p = X(u).

We arbitrarily choose a normal section w(u) ∈ Np(M). By (2.1), we have wui(u) ∈ TpM ⊕ TpM⊥.
Consider the projections

πs` : TpM ⊕ TpM⊥ → TpM

and
πN : TpM ⊕ TpM⊥ → TpM

⊥.

Let dwu : TuU → TpM⊕TpM⊥ be the derivative ofw. We define that dws`
u = πs`◦dwu and dwN

u = πN◦dwu.

Definition 2.2. For any w ∈ Tp0M⊥, we call the linear transformation

Swp0 = dws`
u0 : Tp0M → Tp0M

the corrected 1-lightlike w-shape operator of M = X(U) at p0 = x(u0).
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For given a basis
{
ξ
}

of RadTp0M and
{
η
}

of ltrTp0M satisfying 〈ξ,η〉 = 1, we define an isomorphic
mapping

Ap0 : Tp0M → Tp0M

such that for any λXu2 + τη ∈ Tp0M ,

Ap0(λxu2 + τη) = λXu2 + τξ.

Definition 2.3. For any w ∈ Tp0M⊥, we call the linear operator

LTwp0 = Ap0 ◦ Swp0 : Tp0M → Tp0M,

the 1-lightlike w-shape operator of M = X(U) at p0 = X(u0).

We remark that LTwp0 = Ap0 ◦ Swp0 : Tp0M → Tp0M does not always have real eigenvalues. If the
eigenvalues are real numbers, we denote it by kwi .

Definition 2.4. We call det(Swp0) the 1-lightlike Gauss curvature with respect to w at p0 = X(u0) and
denote it by Kw

` (p0).

It is easy to see that

Kw
` (p0) = det(Swp0) = det(A−1

p0 ◦ LT
w
p0 ) = det(A−1

p0 ) det(LTwp0 ) = det(LTwp0 ) = kw1 k
w
2 .

Definition 2.5. We say that a point p0 = X(u0) is 1-lightlike w-umbilic point if LTwp0 = kwidTp0 M
. We

say that M = X(U) is totally 1-lightlike w-umbilic if all points on M are 1-lightlike w-umbilic.

Because any normal vector w can be generated by ξ and n, therefore we also denote the 1-lightlike Gauss

curvature Kw
` (p0) with respect to w = λξ + τn at p0 = X(u0) by K

(λ,τ)
` (p0). We also say that a point

p0 = X(u0) is 1-lightlike (λ, τ)-umbilic point if LTwp0 = kwi (p0)idTp0M and M = X(U) is totally 1-lightlike
(λ, τ)-umbilic if all points on M are 1-lightlike (λ, τ)-umbilic.

Considering the hypersurface defined by HP (v, c)
⋂
AdSn, we say that HP (v, c)

⋂
AdSn is an elliptic

hyperquadric or a hyperbolic hyperquadric if HP (v, c) is a Lorentz hyperplane or a semi-Euclidean hyperplane
with index 2, respectively. We say that HP (v, c)

⋂
AdSn is a hyperhorosphere if HP (v, c) is null hyperplane.

Proposition 2.6. Under the above notations, the 1-lightlike Gauss curvature with respect to any normal
vector w = µξ + ωn ∈ TpM⊥ is given by

K
(λ,τ)
` (u) = det

(
−τhs11(u)

−τhs12(u)
g22

−τhs21(u)
−λh`22(u)−τhs22(u)

g22

)
,

where µ, ω are real numbers and

h`22 = 〈−∇̄Xu2
Xu2 , Xu1

〉
, hsik = 〈−∇̄Xui

Xuk ,n
〉
, g22 = 〈Xu2 , Xu2〉.

Proof. By the definition of 1-lightlike Gauss curvature, we know

K
(λ,τ)
` (u) = detSλξ+τn.

Using (2.7) and (2.9), we obtain

∇̄Xui
(λξ + τn) =

2∑
j=1

(λ%ji1 + τσji )Xuj + (λh`i1 + τνi)η + (λhsi1 + τµi)n,
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thus

detSλξ+τn = det

(
λh`11 + τν1 λ%2

11 + τσ2
1

λh`21 + τν2 λ%2
21 + τσ2

2

)
.

We can check that
ν1 = 〈∇̄Xu1

n, Xu1〉
= −〈∇̄Xu1

Xu1 ,n〉
= −hs11,

σ2
1 = 1

g22
〈∇̄Xu1

n, Xu2〉
= − 1

g22
〈∇̄Xu1

Xu2 ,n〉
= −hs12

g22
,

ν2 = 〈∇̄Xu2
n, Xu1〉

= −〈∇̄Xu2
Xu1 ,n〉

= −hs21,

σ2
2 = 1

g22
〈∇̄Xu2

n, Xu2〉
= − 1

g22
〈∇̄Xu2

Xu2 ,n〉
= −hs22

g22

and
%2

11 = 1
g22
〈∇̄Xu1

Xu1 , Xu2〉
= − 1

g22
〈∇̄Xu1

Xu2 , Xu1〉
= −h`12

g22
,

%2
21 = 1

g22
〈∇̄Xu2

Xu1 , Xu2〉
= − 1

g22
〈∇̄Xu2

Xu2 , Xu1〉
= −h`22

g22
.

On the other hand, since map X : U → R4
2 is C∞, then ∇̄Xu1

Xu2 = ∇̄Xu2
Xu1 , therefore

h`12 = 〈∇̄Xu1
Xu2 , Xu1〉

= 〈∇̄Xu2
Xu1 , Xu1〉

= 0.

It follows that

K
(λ,τ)
` (u) = det

(
−τhs11(u)

−τhs12(u)
g22

−τhs21(u)
−λh`22(u)−τhs22(u)

g22(u)

)
,

which clearly proves our assertion.

We let K
(λ,τ)0
` (u0) denotes the 1-lightlike Gauss curvature at p0 = X(u0) with respect to (λξ + τn)0 =

λξ(u0)+τn(u0). We say that p = X(u0) is a 1-lightlike (λ, τ)-parabolic point of M = X(U) if K
(λ,τ)0
` (u0) =

0. We also say that p = X(u0) is a 1-lightlike (λ, τ)-flat point of M = X(U) if p = X(u0) is a 1-lightlike

(λ, τ)-umbilic point and K
(λ,τ)0
` (u0) = 0.

We know that all the lightlike normal vector can be generated by ξ, that is, any lightlike normal vector
can be represented as the form λξ, where λ ∈ R, as an application of the above proposition, we consider the
1-lightlike Gauss curvature of 1-lightlike surface with respect to any lightlike normal vector λξ, we have the
following corollary,

Corollary 2.7.

(1) The 1-lightlike Gauss curvature K
(λ,0)
` (u) ≡ 0 of M at any p = X(u) with respect to λξ, that is, each

point of 1-lightlike surface M is 1-lightlike (λ, 0)-parabolic point.

(2) p = X(u) is a 1-lightlike (λ, 0)-flat point of M if and only if h`22(u) = 0.

Proof.

(1). We know from Proposition 2.6 that when τ = 0,

K
(λ,0)
` (u) = det

(
0 0

0
−λh`22(u)
g22(u)

)
= 0

for any u ∈ U.
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(2). It is clear from assertion (1) that k
(λ,0)
1 (u) = 0 and k

(λ,0)
2 (u) =

−λh`22(u)
g22(u) , assertion (2) follows from the

definition of 1-lightlike flat point.

Let X : U → R4
2 be a regular 1-lightlike surface of R4

2, where U ⊂ R2 is an open subset, we define a pair
of hypersurfaces

LF±M : U × R→ R4
2

by
LF±M (u, µ) = X(u) + µξ(u)± n(u),

where u = (u1, u2). Each of these two hypersurfaces is called the 1-lightlike focal hypersurface along M .

3. 1-Lightlike distance-squared function and 1-lightlike focal hypersurface

In this section we define a 1-lightlike focal hypersurface from the 1-lightlike surface in R4
2 and introduce

the 1-lightlike distance-squared function in order to study the singularities of 1-lightlike focal hypersurfaces.
Let X : U → R4

2 be a 1-lightlike surface. We define a family of functions G : U × R4
2 → R by

G(u,v) = 〈v−X(u),v−X(u)〉+ 1, where v = (v1, . . . , v4) ∈ R4
2. We call G the 1-lightlike distance-squared

functions on M = X(U). Using the notation gv0 = G(u,v0) for any v0 ∈ R4
2, we have the following

proposition.

Proposition 3.1.

(1) gv(u,v) = 0 if and only if there exist real numbers µ, λ, τ, ω ∈ R such that v − X(u) = µξ(u) +
λXu2(u) + τη(u) + ωn(u) and 2µτ + λ2 − ω2 = −1.

(2) gv(u,v) = ∂gv
∂ui

(u,v) = 0 if and only if v −X(u) = µξ(u)± n(u) for some µ ∈ R.

(3) gv(u,v) = ∂gv
∂ui

(u,v) = detHess(gv) = 0 if and only if v = X(u) + µξ(u) ± n(u) for some µ ∈ R
and K

(µ,±1)
` = ±hs11, in this case, ∓µhs11k

(1,0)
2 + K

(0,1)
` ∓ hs11 = 0, where hsik = 〈∇̄Xui

Xuk ,n〉, h`ik =
〈∇̄Xui

Xuk , ξ〉, g22 = 〈Xu2 , Xu2〉.

Proof.

(1) Consider the following local field of frames of TpR4
2 along M :{

Xu1(u) = ξ(u), Xu2(u),η(u),n(u)
}
,

where p = X(u) and there exist real numbers µ, λ, τ, ω such that

v −X(u) = µξ(u) + λXu2(u) + τη(u) + ωn(u).

Therefore gv(u,v) = 0 if and only if v−X(u) ∈ AdS3, that is, gv(u,v) = 0 if and only if 2µτ+λ2−ω2 =
−1.

(2) Because ∂gv
∂ui

(u,v) = 〈−Xui(u),v −X(u)〉, we obtain

τ〈ξ(u),η(u)〉 = τ = 0

and
λ〈Xu2(u), Xu2(u)〉 = 0,

which implies λ = 0. Moreover, in combination with the condition 2µτ +λ2−ω2 = 0, we have ω = ±1,
therefore gv(u,v) = ∂gv

∂ui
(u,v) = 0 holds if and only if v = X(u) + µξ(u)± n(u).
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(3) When gv(u,v) = ∂gv
∂ui

(u,v) = 0, we compute

∂2gv
∂uiuj

(u,v) = 〈−∇̄Xuj
Xui ,v −X〉+ 〈Xuj , Xui

〉
= 〈−∇̄Xuj

Xui , µξ ± n〉+ 〈Xuj , Xui

〉
,

(3.1)

detHess(gv) = det

(
〈−∇̄Xu1

Xu1 , µξ ± n〉+ 〈Xu1 , Xu1

〉
〈−∇̄Xu2

Xu1 , µξ ± n(u)〉+ 〈Xu1 , Xu2

〉
〈−∇̄Xu1

Xu2 , µξ ± n〉+ 〈Xu2 , Xu1

〉
〈−∇̄Xu2

Xu2 , µξ ± n〉+ 〈Xu2 , Xu2

〉 )
= det

(
〈−∇̄Xu1

Xu1 , µξ ± n〉 〈−∇̄Xu2
Xu1 , µξ ± n〉

〈−∇̄Xu1
Xu2 , µξ ± n〉 〈−∇̄Xu2

Xu2 , µξ ± n〉+ g22

)
= det

(
∓hs11 ∓hs21

∓hs12 −µh`22 ∓ hs22 + g22

)
= K

(µ,±1)
` g22 ∓ hs11g22

= ±µhs11h
`
22 + hs11h

s
22 − hs21h

s
12 ∓ hs11g22,

= ∓µhs11k
(1,0)
2 g22 +K

(0,1)
` g22 ∓ hs11g22,

thus gv(u,v) = ∂gv
∂ui

(u,v) = detHess(gv) = 0 if and only if v = X(u)+µξ(u)±n(u) and ∓µhs11k
(1,0)
2 +

K
(0,1)
` ∓ hs11 = 0. This completes the proof.

Proposition 3.1 means that the discriminant set of the 1-lightlike distance-squared function G is given
by

DG =
{
X(u) + µξ(u)± n(u)|(u, µ) ∈ U × R

}
,

which is the image of the 1-lightlike focal hypersurface along M .

Proposition 3.2. The singular set of LF±M = X(u) + µξ(u)± n(u) is given by

Σ(LF±M ) =

{
(u1, u2, µ) ∈ U × R : ∓µhs11(u)k

(1,0)
2 (u) +K

(0,1)
` (u)∓ hs11(u) = 0

}
.

Proof. We calculate

∂LF±M
∂µ

= ξ,

∂LF±M
∂u1

= (µ%1
11 ± σ1

1 + 1)ξ ∓ hs12

g22
Xu2 + µhs11n∓ hs11η,

∂LF±M
∂u2

= (µ%1
21 ± σ1

2)ξ + (
−µh`22 ∓ hs22

g22
+ 1)Xu2 + µhs21n∓ hs21η.

Moreover

∂LF±M
∂µ

∧
∂LF±M
∂u1

∧
∂LF±M
∂u2

= ∓µh
s
21h

s
12

g22
(ξ ∧Xu2 ∧ n) +

hs21h
s
12

g22
(ξ ∧Xu2 ∧ η)

+ µhs11(
−µh`22 ∓ hs22

g22
+ 1)(ξ ∧ n ∧Xu2)∓ µhs11h

s
21(ξ ∧ n ∧ η)

∓ hs11(
−µh`22 ∓ hs22

g22
+ 1)(ξ ∧ η ∧Xu2)∓ µhs11h

s
21(ξ ∧ η ∧ n)

= µ
(
hs11(
−µh`22 ∓ hs22

g22
+ 1)± hs21h

s
12

g22

)
(ξ ∧ n ∧Xu2)
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±
(
hs11(
−µh`22 ∓ hs22

g22
+ 1)± hs21h

s
12

g22

)
(ξ ∧Xu2 ∧ η)

=
(
hs11(
−µh`22 ∓ hs22

g22
+ 1)± hs21h

s
12

g22

)
(µξ ± n),

therefore
∂LF±M
∂µ ∧ ∂LF±M

∂u1
∧ ∂LF±M

∂u2
= 0 if and only if hs11(

−µh`22∓hs22
g22

+ 1) ± µhs21h
s
12

g22
= 0, that is, ∓µhs11k

(1,0)
2 +

K
(0,1)
` ∓ hs11 = 0. This completes the proof.

Therefore a singular point of the 1-lightlike focal hypersurface is a point

v0 = X(u0) + µξ(u0)± n(u0)

at which µ0 =
K

(0,1)
` ∓hs11
±hs11k

(1,0)
2

.

4. 1-Lightlike focal hypersurfaces as wave fronts

In this section we interpret the 1-lightlike focal hypersurfaces of M in R4
2 as a wave front set in the

framework of contact geometry.

Proposition 4.1. Let v0 ∈ R4
2 and M be a 1-lightlike surface without umbilic points satisfying hs11k

(1,0)
2 6= 0.

Then M is part of AdS3(v0) if and only if v0 is an isolated singular value of the 1-lightlike focal hypersurface
LF±M and LF±M (U × R) ⊂ Λ3

v0.

Proof. By definition, M ⊂ AdS3(v0) if and only if gv0(u) ≡ 0 for v0 ∈ U , where gv0(u) = G(u,v0) is the
1-lightlike distance-squared function on M . It follows from Proposition 3.1 that there exists a sooth function
µ : U → R such that

X(u) = v0 −
(
µ(u)ξ(u)± n(u)

)
.

Then

LF±M (u, t) = v0 −
(
µ(u)ξ(u)± n(u)

)
+ tξ(u)± n(u)

= v0 +
(
t− µ(u)

)
ξ(u).

Hence we have LF±M (U × R) ⊂ Λ3
v0 . Moreover, we calculate that

∂LF±M
∂t

= ξ(u),

∂LF±M
∂u1

= µu1(u)ξ(u) +
(
t− µ(u)

)
ξu1(u)

= µu1(u)ξ(u) +
(
t− µ(u)

)(
%1

11ξ(u) + hs11n(u)
)
,

∂LF±M
∂u2

= µu2(u)ξ(u) +
(
t− µ(u)

)
ξu2(u)

= µu2(u)ξ(u) +
(
t− µ(u)

)(
%1

21ξ(u) + %2
21(u)Xu2(u) + hs21(u)n(u)

)
.

By the proof of Proposition 2.6, we know %2
21 = −h`22

g22
= k

(1,0)
2 , thus

∂LF±M
∂t ∧

∂LF±M
∂u1

∧ ∂LF±M
∂u2

= −hs11k
(1,0)
2

(
t− µ(u)

)2(
ξ(u) ∧Xu2(u) ∧ n(u)

)
.
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Since ξ(u), Xu2(u) and n(u) are linearly independent. Therefore

0 6= ξ(u) ∧Xu2(u) ∧ n(u),

thus
∂LF±M
∂t ∧

∂LF±M
∂u1

∧ ∂LF±M
∂u2

= 0

if and only if t − µ(u) = 0 under the assumption that hs11k
(1,0)
2 6= 0. This means that v0 is an isolated

singularity of LF±M . The converse assertion is trivial.

Let π : PT ∗(R4
2) → R4

2 be the projective cotangent bundles with the canonical contact structures.
Consider the tangent bundle τ : TPT ∗(R4

2) → PT ∗(R4
2) and the differential map dπ : TPT ∗(R4

2) → T (R4
2)

of π. For any X ∈ TPT ∗(R4
2), there exists an element α ∈ T ∗(R4

2) such that τ(X) = [α]. For an element
V ∈ Tx(R4

2), the property α(V ) = 0 does not depend on the choice of representative of the class [α]. Thus
we can define the canonical contact structure on PT ∗(R4

2) by

K =
{
X ∈ TPT ∗(R4

2)|τ(X)(dπ(X)) = 0
}
.

On the other hand, we consider a point v = (v1, . . . , v4) ∈ R4
2, we adopt the coordinate system (v1, . . . , v4) of

R4
2. Then we have the trivialization PT ∗(R4

2) ≡ R4
2 ×PR3, and call ((v1, . . . , v4), [ξ1 : · · · : ξ4]) homogeneous

coordinates of PT ∗(R4
2), where [ξ1 : · · · : ξ4] are the homogeneous coordinates of the dual projective space

P (R3)∗. It is easy to show that X ∈ K(x,[ξ]) if and only if
∑4

i=1 µiξi = 0, where dπ(X) =
∑4

i=1 µi(∂/∂vi).
An immersion i : L→ PT ∗(R4

2) is said to be a Legendrian immersion if dimL = 3 and diq(TqL) ⊂ Ki(q) for
any q ∈ L. The map π ◦ i is also called the Legendrian map and the image W (i) = image(π ◦ i), the wave
front of i. Moreover, i (or the image of i) is called the Legendrian lift of W (i).

In order to study the 1-lightlike focal hypersurface, we give a brief description of the Legendrian singu-
larity theory developed by Arnold-Zakalyukin [1, 16]. Although the general theory has been described for
the general dimension, we only consider the 4-dimensional case for the purpose.

Let F : (Rk × R4, 0)→ (R,0) be a function germ. We say that F is a Morse family if the mapping

∆∗F =
(
F, ∂F∂q1 , . . . ,

∂F
∂qk

)
: (Rk × R4,0)→ (R× Rk,0)

is non-singular, where (q,x) = (q1, . . . , qk, x1, . . . , x4) ∈ (Rk × R4,0). In this case we have a smooth 3-
dimensional submanifold Σ∗(F ) = ∆∗F−1(0)

Σ∗(F ) =

{
(q,x) ∈ (Rk × R4,0)|F (q,x) = ∂F

∂q1
(q,x) = · · · = ∂F

∂qk
(q,x) = 0

}
and a map germ ΦF : (Σ∗(F ), 0)→ PT ∗R4 defined by

ΦF (q,x) =
(
x,
[
∂F
∂x1

(q,x) : ∂F
∂x2

(q,x) : ∂F
∂x3

(q,x) : ∂F
∂x4

(q,x)
])

is a Legendrian immersion. Then we have the following fundamental proposition of the theory of Legendrian
singularities by Arnold-Zakalyukin [1, 16].

Proposition 4.2. All Legendrian submanifold germs in PT ∗R4 are constructed by the above method.

F is called a generating family of ΦF . The corresponding wave front is

W (ΦF ) =

{
x ∈ R4| there exists q ∈ Rksuch that F (q,x) = ∂F

∂q1
(q,x) = · · · = ∂F

∂qk
(q,x) = 0

}
.

We denote DF = W (ΦF ) and call it the discriminant set of F. By proceeding arguments, the 1-lightlike
focal hypersurface LF±M is the discriminant set of the 1-lightlike distance-squared function G.
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Proposition 4.3. The 1-lightlike distance-squared function G : U × R4
2 → R is a Morse family.

Proof. Let v = (v1, v2, v3, v4) ∈ R4
2, X(u) =

(
X1(u), X2(u), X3(u), X4(u)

)
and

n =
(
n1(u), n2(u), n3(u), n4(u)

)
,

so that

G(u,v) = 〈v −X(u),v −X(u)〉
= −(v1 −X1(u))2 − (v2 −X2(u))2 + (v3 −X3(u))2 + (v4 −X4(u))2 + 1.

We now prove that the mapping

∆∗G =
(
G,

∂G

∂u1
,
∂G

∂u2

)
is non-singular at any point (u,v) ∈ Σ∗(G). The Jacobian matrix of ∆∗G is given as follows:

J∆∗G(u,v) =

 ∂G
∂uj

(u,v)j=1,2
∂G
∂vj′

(u,v)j′=1,2,3,4(
∂2G
∂ui∂uj

(u,v)
)
i=1,2
j=1,2

(
∂2G

∂ui′∂vj′
(u,v)

)
i′=1,2

j′=1,2,3,4

 .

We denote

B =

 ∂G
∂vj′

(u,v)j′=1,2,3,4(
∂2G

∂ui′∂vj′
(u,v)

)
i′=1,2

j′=1,2,3,4


=

−2(v1 −X1(u)) −2(v2 −X2(u)) 2(v3 −X3(u)) 2(v4 −X4(u))
2X1u1(u) 2X2u1(u) −2X3u1(u) −2X4u1(u)
2X1u2(u) 2X2u2(u) −2X3u2(u) −2X4u2(u)


= 2

−(µX1u1(u) + n1(u)) −(µX2u1(u) + n2(u)) µX3u1(u) + n3(u) µX4u1(u) + n4(u)
X1u1(u) X2u1(u) −X3u1(u) −X4u1(u)
X1u2(u) X2u2(u) −X3u2(u) −X4u2(u)

 ,

where Xiuj = ∂Xi
∂uj

(i, j = 1, 2). Let

µ̂ξ + n(u) =
(
− (µX1u1(u) + n1(u)),−(µX2u1(u) + n2(u)), µX3u1(u) + n3(u), µX4u1(u) + n4(u)

)
,

X̂u1(u) =
(
X1u1(u), X2u1(u),−X3u1(u),−X4u1(u)

)
,

X̂u2(u) =
(
X1u2(u), X2u2(u),−X3u2(u),−X4u2(u)

)
.

It is clear that

〈µ̂ξ + n(u), µ̂ξ + n(u)〉 = 〈µξ + n(u), µξ + n(u)〉 = −1,

〈X̂u1(u), X̂u1(u)〉 = 〈Xu1(u), Xu1(u)〉 = 0,

〈X̂u2(u), X̂u2(u)〉 = 〈Xu2(u), Xu2(u)〉 > 0.

By using the elementary transformations, matrix
(
µξ + n(u), Xu1(u), Xu2(u)

)T
becomes matrix(

µ̂ξ + n(u), X̂u1(u), X̂u2(u)
)T

. It follows the rank of matrix
(
µξ + n(u), Xu1(u), Xu2(u)

)T
is equal to

the rank of matrix
(
µ̂ξ + n(u), X̂u1(u), X̂u2(u)

)T
. Since n(u), Xu1(u) and Xu2(u) are linearly indepen-

dent for all (u,v) ∈ Σ∗(G), therefore µ̂ξ + n, X̂u1(u) and X̂u2(u) are also linearly independent, thus we
have rankB = 3.
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We observe that G is a generating family of the Legendrian immersion whose wave front set is the image
of LF±M .

5. Contact with anti de Sitter 3-sphere

In this section we describe the contacts between the 1-lightlike surface and the anti de Sitter 3-sphere
by applying Montaldi’s theory [6].

Let Xi and Yi(i = 1, 2) be submanifolds of Rn with dimX1 = dimX2, dimY1 = dimY2 and yi ∈ Xi
⋂
Yi

for i = 1, 2. We say that the contact of X1 and Y1 at y1 is the same type as the contact of X2 and
Y2 at y2 if there is a diffeomorphism germ Φ : (Rn,y1) → (Rn,y2) such that Φ : ((X1,y1)) = (X2,y2)
and Φ : ((Y1,y1)) = (Y2,y2). In this case we write K(X1, Y1;y1) = K(X2, Y2;y2). Two function germs
g1, g2 : (Rn, ai)→ (R, 0)(i = 1, 2) are K-equivalent if there are a diffeomorphism germ Φ : (Rn, a1)→ (Rn, a2)
and a function germ λ : (Rn, a1)→ R with λ(a1) 6= 0 such that f1 = λ · (g2 ◦Φ). In [6] Montaldi has shown
the following theorem.

Theorem 5.1 ([6]). Let Xi, Yi(i = 1, 2) be submanifolds of Rn with dimX1 = dimX2 and dimY1 = dimY2.
Let gi : (Xi,xi) → (Rn,yi) be immersion germs and fi : (Rn,yi) → (Rp, 0) be submersion germs with
(Yi,yi) = (f−1

i (0),yi). Then K(X1, Y1;y1) = K(X2, Y2;y2) if and only if f1 ◦g1 and f2 ◦g2 are K-equivalent.

We now consider the function G : R4
2×R4

2 → R defined by G(X,v) = 〈v−X,v−X〉+ 1. Given v0 ∈ R4
2,

we denote gv0(u) = G(X,v0), so that we have g−1
v0 (0) = AdS3(v0). Let X : U → R4

2 be an embedding of
codimension 2. For any u0 ∈ U , we consider vector v±0 = X(u0) + µ0ξ(u0) ± n(u0) ∈ R4

2, then it follows
from Proposition 3.1 (1) that

gv±0
◦X(u0) = G ◦ (X × idR4

2
)(u0,v

±
0 ) = G(u0,v

±
0 ) = 0,

where ∓µ0h
s
11(u0)k

(1,0)
2 (u0)+K

(0,1)
` (u0)∓hs11(u0) = 0. It also follows from Proposition 3.1 (2) that we have

∂gv±0
◦X

∂ui
(u0) =

∂G

∂ui

(
u0,v

±
0

)
= 0

for i = 1, 2. Hence, anti de Sitter sphere g−1

v±0
(0) = AdS3(v±0 ) is tangent to M = X(U) at p = X(u0). In this

case, we call each of AdS3(v±0 ) the tangent anti de Sitter spheres of M = X(U) at p0 = X(u0).
For any map f : N → P, we denote by Σ(f) the set of singular points of f and D(f) = f(Σ(f)).

In this case one calls f |Σ(f) : Σ(f) → D(f) the critical part of the mapping f . For any Morse family F :

(Rk×R4,0)→ (R,0), (F−1(0),0) is a smooth hypersurface. A smooth map germ πF : (F−1(0),0)→ (R4,0)
is defined by πF (q,x) = x. It is easy to show that Σ∗(F ) is equal to Σ(πF ). Therefore, the corresponding
Legendrian map π ◦ ΦF is the critical part of πF .

We briefly review some results on generating family of Legendrian map germs [16, 17].
Let i : (L, p) ⊂ (PT ∗Rn, p) and i′ : (L′, p′) ⊂ (PT ∗Rn, p′) be Legendrian immersion germs. Then we

say that i and i′ are Legendrian equivalent if there exists a contact diffeomorphism germ H : (PT ∗Rn, p)→
(PT ∗Rn, p′) such that H preserves fibres of π and that H(L) = L′. A Legendrian immersion germ into
PT ∗Rn at a point is said to be Legendrian stable if for every map with the given germ there is a neighborhood
in the space of Legendre immersions (in the Whitney C∞-topology) and a neighborhood of the original point
such that each Legendrian immersion belonging to the first neighborhood has in the second neighborhood
a point at which its germ is Legendrian equivalent to the original germ.

Because the Legendrian lift i : (L, p) ⊂ (PT ∗Rn, p) is uniquely determined on the regular part of the
wave front W (i), we have the following simple but significant property of Legendrian immersion germs holds.

Theorem 5.2 ([17]). Let i : (L, p) ⊂ (PT ∗R4, p) and i′ : (L′, p′) ⊂ (PT ∗R4, p′) be Legendrian immersion
germs such that regular sets of π◦i and π◦i′ are dense, respectively. Then i and i′ are Legendrian equivalents
if and only if their wave front sets W (i) and W (i′) are diffeomorphic as set germs.
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The assumption in the above theorem is a generic condition for i and i′. In particular, if i and i′ are
Legendrian stable, then they satisfy the assumption.

We can interpret the Legendrian equivalence by using the notion of generating families. We denote En
the local ring of function germs (Rn, 0) → R with the unique maximal ideal Mn = {h ∈ En : h(0) = 0}.
Let F,G : (Rk × Rn, 0) → (R, 0) be function germs. We say that F and G are P − K-equivalent if there
exists a diffeomorphism germ Ψ : (Rk × Rn, 0) → (Rk × Rn, 0) of the form Ψ(x, u) = (ψ1(q, x), ψ2(x)) for
(q, x) ∈ (Rk × Rn, 0) such that Ψ∗(〈F 〉Ek+n

) = 〈G〉Ek+n
. Here Ψ∗ : Ek+n → Ek+n is the pull back R-algebra

isomorphism defined by Ψ∗(h) = h ◦Ψ.
Let F : (Rk×Rn, 0)→ (R, 0) be a function germ. We say that F is an infinitesimal K-versal deformation

of f = F |Rk×0 if

Ek = Te(K)(f) +
〈
∂F
∂x1

∣∣∣
Rk×{0}

, . . . , ∂F∂xn

∣∣∣
Rk×{0}

〉
R
,

where
Te(K)(f) =

〈
∂f
∂q1
, . . . , ∂f∂qk

〉
Ek
,

see [5]. The main result in the theory of Legendrian singularities is the following.

Theorem 5.3 ([16]). Let F,G : (Rk × R4, 0)→ (R, 0) be two Morse families (i = 1, 2). Then the following
results hold.

(1) ΦF and ΦG are Legendrian equivalent if and only if F,G are stably P −K-equivalent.

(2) ΦF is Legendrian stable if and only if F is an infinitesimal K-versal deformation of F |Rk×{0}.

By the uniqueness result of the infinitesimal K-versal deformation of a function germ, Theorem 5.2 and
Theorem 5.3, we have the following classification result of Legendrian stable germs. For any map germ
f : (Rn, 0)→ (Rp, 0), we define the local ring of f by Q(f) = En/f∗(Mp)En.

Proposition 5.4 ([16]). Let F,G : (Rk ×Rn, 0)→ (R, 0) be two Morse families such that the corresponding
ΦF and ΦG are Legendrian stable. Then the following conditions are equivalent.

(1) (W (ΦF ),0) and (W (ΦG),0) are diffeomorphic as germs;

(2) ΦF and ΦG are Legendrian equivalent;

(3) Q(f) and Q(g) are isomorphic as R-algebras, where f = F |Rk×{0}, g = G|Rk×{0}.

We have the tools for study of the contact of 1-lightlike surfaces with anti de Sitter 3-sphere. Let
LF±Mi

: (U,ui)→ (R4
2,v
±
i ), (i = 1, 2), be two 1-lightlike focal hypersurface germs of 1-lightlike surface germs

X : (U,ui)→ (R4
2, pi)(i = 1, 2). We say that LF±M1

and LF±M2
areA− equivalent if there exist diffeomorphism

germs. φ : (N1,u1)→ (N2,u2) and ψ : (P1,v
±
1 )→ (P2,v

±
2 ) such that ψ ◦ LF±M1

= LF±M2
◦ φ.

If both of the regular sets LF±Mi
are dense in (U × R, (ui, µi)), for i = 1, 2, it follows from Theorem

5.2 that LF±M1
and LF±M2

are A-equivalent if and only if the corresponding Legendrian immersion germs
are Legendrian equivalent. This condition is also equivalent to the condition that two generating families
G1 and G2 are P −K-equivalent by Theorem 5.3. Here, Gi : (U × R4

2, (ui,v
±
i )) → R is the 1-lightlike

distance-squared function germ of Xi.
On the other hand, if we denote that gi,v±i

(u) = Gi(u,v
±
i ), then we have gi,v±i

(u) = gv±i
◦ Xi(u). By

Theorem 5.1,

K
(
X1(U), AdS3(v±1 ),v±1

)
= K

(
X2(U), AdS3(v±2 ),v±2

)
if and only if g1,v±1

and g1,v±2
are K-equivalent. Therefore, we can apply Proposition 5.4 to our situation.

Let Q±(X,u0) be the local ring of the function germ gv±0
: (U,u0)→ R defined by

Q±(X,u0) = C∞u0(U)
/
〈gv±0 〉C∞u0

(U),
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where v0 = LF±M (u0, µ0) and C∞u0(U) is the local ring of function germs at u0 with the unique maximal ideal
Mu0(U).

Theorem 5.5. Let Xi : (U,ui) → (R4
2, Xi(ui)), (i = 1, 2), be 1-lightlike surface germs. If the Legendrian

immersion germs of LF±Mi
are Legendrian stable. Then the following conditions are equivalent.

(1) 1-lightlike focal hypersurface germs LF±M1
and LF±M2

are A-equivalent;

(2) G1 and G2 are P −K-equivalent;

(3) g1,v±1
and g2,v±2

are K-equivalent;

(4) K
(
X1(U), AdS3(v±1 );v±1

)
= K

(
X2(U), AdS3(v±2 );v±2

)
;

(5) Q±(X1,u1) and Q±(X2,u2) are isomorphic as R-algebras.

Proof. The previous arguments has been shown that conditions (3) and (4) are equivalent. The other
assertions follow from Proposition 5.4.

For a 1-lightlike surface germ
X : (U,u0)→ (R4

2, X(u0)),

we call
(
X−1

(
AdS3(v±0 )

)
,u0

)
the tangent anti de Sitter indicatrix germ (briefly, tangent AdS indicatrix

germ) of X(see Figure 1), where v±0 = X(u0) + µξ(u0)± n(u0).

Figure 1: Tangent anti de Sitter indicatrix germ.

As a corollary of Theorem 5.5, we have the following.

Corollary 5.6. Let Xi : (U,ui) → (R4
2, Xi(ui)), (i = 1, 2), be 1-lightlike surface germs. If 1-lightlike focal

hypersurface germs LF±M1
and LF±M2

are A-equivalent, then

K
(
X1(U), AdS3(v±1 );v±1

)
= K

(
X2(U), AdS3(v±2 ));v±2

)
.

In this case,
(
X−1

1

(
AdS3(v±1 )

)
,u1

)
and

(
X−1

2

(
AdS3(v±2 )

)
,u2

)
are diffeomorphic as set germs.

Proof. We know from Theorem 5.5 that g1,v±1
and g2,v±2

are K-equivalent. By Theorem 5.1, we have

K
(
X1(U), AdS3(v±1 );v±1

)
= K

(
X2(U), AdS3(v±2 );v±2

)
.

On the other hand, we have
(
X−1
i (AdS3(v±i )),ui

)
= gi,v±i

(0). It follows that
(
X−1

1 (AdS3(v±1 )),u1

)
and(

X−1
2 (AdS3(v±2 )),u2

)
are diffeomorphic as set germs because the K-equivalence preserves the zero level

sets.
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6. Classifications of singularities of 1-lightlike focal hypersurface

In this section we give the generic classification of singularities of 1-lightlike focal hypersurface. Let U be
an open subset of R2 and Emb(U,R4

2) be the space of embeddings X : U → R4
2 equipped with Whitney C∞-

topology. We define a function G : R4
2×R4

2 → R by G(X,v) = 〈v−X,v−X〉, and denote gv(X) = G(X,v).
Then gv is a submersion for any v ∈ R4

2. For any X ∈ Emb(U,R4
2), we have G = G ◦ (X ×R4

2). We also have
the `−jet extension

j`1G : U × R4
2 → J `(U,R)

defined by j`1G(u,v) = j`gv(u), where G(u,v) = gv(u). We consider the trivialisation J `(U,R) ≡ U × R×
J(2, 1). For any submanifold Q ⊂ J(2, 1), we denote that Q̃ = U×{0}×Q. we have the following proposition
as a corollary of Lemma 6 in Wassermann [15] (see also Montaldi [7]).

Proposition 6.1. Let Q be a submanifold of J(2, 1). Then the set

TQ =
{
X ∈ Emb(U,R4

2)|j`1G is transversal to Q̃
}

is a residual subset of Emb(U,R4
2). If Q is a closed subset, then TQ is open.

On the other hand, we already have the canonical stratification A`0(U,R) of J `(R2,R) \W `(R2,R). By
the above Proposition 6.1 and arguments in Section 5, we have the following theorem.

Theorem 6.2. There exists an open dense subset O ∈ Emb(U,R4
2) such that for any X ∈ O, the germ of

the Legendre lift of the 1-lightlike focal hypersurface LF±M at each point LF±M (u0, µ0) ∈ U ×R is Legendrian
stable.

We can borrow some basic invariants from the singularity theory on function germs. We needK-invariants
for function germ. The local ring of a function germ is a complete K-invariant for generic function germ.
It is, however, not a numerical invariant. The K-codimension (or, Tyurina number) of a function germ is a
numerical K-invariant of function germ [8]. For open subset U ⊂ R2 and 1-lightlike surface X : U → R4

2, we
denote

G−ord±(X,u0) = dimC∞u0(U)
/〈
gv±0

(u0), ∂gv±0
(u0)/∂ui

〉
C∞u0 (U)

.

Usually G−ord±(X,u0) is called the K-codimension of gv±0
. However, we call it the order of contact with

the tangent anti de Sitter sphere at X(u0). We also have the notion of corank of function germs.

G−corank±(X,u0) = 2− rank Hess (gv±0
(u0)).

We say a function germ f : (Rn−1,a) → R has Ak-type singularity if f is K-equivalent to the germ
±u2

1 ± · · · ± u2
n−2 + uk+1

n−1.

Corollary 6.3. Let Emb(U,R4
2) be the set of 1-lightlike surfaces. We have open dense subset O∈Emb(U,R4

2)
such that for X ∈ O,v±0 = LF±M (u0, µ0), we have the following:

(1) v±0 is an singular value of LF±M if and only if G−corank±(X,u0) = 1 or 2.

(2) If G−corank±(X,u0) = 1 , then there are distinct principal curvatures k
(µ0,±1)
1 , k

(µ0,±1)
2 such that

k
(µ0,±1)
1 k

(µ0,±1)
2 = ±hs11,∓µ0h

s
11(u0)k

(1,0)
2 (u0) + K

(0,1)
` (u0) ∓ hs11(u0) = 0. and LF±M has the Ak-type

singularity (k = 2, 3, 4) at (u0, µ0). In this case we have G−ord±(X,u0) = k.

(3) If G−corank±(X,u0) = 2, then u0 is a 1-lightlike (µ,±1)-parabolic point for any µ ∈ R. In this case,
LF±M has the D+

4 -type or D−4 -type singularity at (u0, µ). Moreover we have G−ord±(X,u0) = 4, where
Ak,D±4 -type map germ f : (R3, 0)→ (R4, 0) are give by the following list (see Figure 2–Figure 6):
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(A2-type) f(u1, u2, u3) = (u1, u2, u3, 0) (Embedding);

(A3-type) f(u1, u2, u3) = (2u3
1,−3u2

1, u2, u3) (Cuspidal edge);

(A4-type) f(u1, u2, u3) = (3u4
1 + u2u

2
1,−4u3

1 − 2u1u2, u2, u3) (Swallowtail);

(A5-type) f(u1, u2, u3) = (4u5
1 + 2u2u

3
1 + u3u

2
1,−5u4

1 − 3u2u
2
1 − 2u1u3, u2, u3) (Butterfly);

(A6-type) f(u1, u2, u3) = (2(u3
1 + u3

2) + u1u2u3,−3u2
1 − u2u3,−3u2

2 − u1u3, u3) (Purse);

(A7-type) f(u1, u2, u3) = (2(u3
1−u1u

2
2)+2(u2

1 +u2
2)u3, u

2
2−3u2

1−2u1u3, 2(u1u2−u2u3), u3) (Pyramid).

Figure 2: Cuspidal edge.
Figure 3: Swallowtail

Figure 4: Butterfly Figure 5: Purse Figure 6: Pyramid

Proof. By Proposition 3.1, if v±0 is singular value, then G−corank±(X,u0) 6 2. By Theorem 6.2, there
exists an open subset O ∈ Emb(U,R4

2) such that for any X ∈ O, corresponding 1-lightlike distance-squared
function G is a versal deformation of gv±0

. By Thom’s classification of function germs, gv±0
is K-equivalent

to Ak-type germ (k = 2, 3, 4) or D±4 -type function germ, so that we have G−corank±(X,u0) > 1, therefore
(1) holds.

If G−corank±(X,u0) = 1, then we know from the proof of Proposition 3.1

detHess(gv±) = det

(
∓hs11 ∓hs21

∓hs12 −µh`22 ∓ hs22 + g22

)
= K

(µ,±1)
` g22 ∓ hs11g22

= k
(µ,±1)
1 k

(µ,±1)
2 g22 ∓ hs11g22

= ∓µhs11k
(1,0)
2 g22 +K

(0,1)
` g22 ∓ hs11g22

= 0,

implies k
(µ0,±1)
1 k

(µ0,±1)
2 = ±hs11,∓µ0h

s
11(u0)k

(1,0)
2 (u0) + K

(0,1)
` (u0) ∓ hs11(u0) = 0. The gv±0

has Ak-type

singularity at u0 and is generic. In this case, it is K-equivalent to f(u1, u2) = u2
1±u

k+1
2 andG−ord±(X,u0) =
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k. Since the corresponding 1-lightlike focal hypersurface LF±M is the discriminant set of the 1-lightlike
distance-squared function G, therefore (2) holds.

If G−corank±(X,u0) = 2, then matrix(
∓hs11 ∓hs21

∓hs12 −µh`22 ∓ hs22 + g22

)
is a null matrix, hs11 = hs21 = hs12 = −µh`22 ∓ hs22 + g22 = 0, therefore

K
(µ,±1)
` = det

(
∓hs11 ∓hs21

∓hs12 −µh`22 ∓ hs22

)
= det

(
0 0
0 −g22

)
= 0.

Thus k
(µ,±1)
1 = 0, k

(µ,±1)
2 = −g22 6= 0, that is, u0 is a 1-lightlike (µ,±1)-parabolic point for any µ ∈ R. If

gv±0
has D±4 -type singularity, then it is K-equivalent to f(u1, u2) = u3

1±u1u
2
2 and G−ord±(X,u0) = 4. This

completes the proof.

Theorem 6.4. There exists an open dense subset O ∈ Emb(U,R4
2) such that for any X ∈ O, the tangent

anti de Sitter indicatrix germ at any point (u1, u2,v
±
0 ) ∈ U ×R4

2 is diffeomorphic to one of the germs in the
following list:

(1)
{

(u1, u2) ∈ (R2,0)
∣∣u3

1 + u2
2 = 0

}
(Ordinary cusp) (see Figure 7);

(2)
{

(u1, u2) ∈ (R2,0)
∣∣u4

1 ± u2
2 = 0

}
(Tachnode or point) (see Figure 8);

(3)
{

(u1, u2) ∈ (R2,0)
∣∣u5

1 + u2
2 = 0

}
(Rhamphoid cusp) (see Figure 7);

(4)
{

(u1, u2) ∈ (R2,0)
∣∣u3

1 + u3
2 = 0

}
(Line);

(5)
{

(u1, u2) ∈ (R2,0)
∣∣u3

1 − u1u
2
2 = 0

}
(Three lines).

Figure 7: Ordinary cusp (the solid line) and rhamphoid
cusp (the dashed line)

Figure 8: Tachnode and point

Proof. By Theorems 5.2 and 6.2, the 1-lightlike distance-squared function G is a K-versal deformation of gv±0
at each point (u0, µ0) ∈ U × R. Therefore we can apply the generic classification of K-versal deformations
of function germs to 4-parameters. The normal forms are given by

G(u1, u2,v) = uk+1
1 ± u2

2 + v1 + v2u1 + · · ·+ vku
k−1
1 (1 6 k 6 4),

G(u1, u2,v) = u3
1 + u3

2 + v1 + v2u1 + v3u2 + v4u1u2,

G(u1, u2,v) = u3
1 − u1u

2
2 + v1 + v2u1 + v3u2 + v4(u2

1 + u2
2).

By Corollary 6.3, the corresponding tangent anti de Sitter indicatrix germs are diffeomorphic to the zero-level
set G|R2×{0} of the function germ G(u1, u2,v).
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7. Example

In this section we give an example of 1-lightlike surfaces and draw their pictures by using Maple software.
Suppose M is a surface in R4

2 given by

X : U → R4
2,u = (u1, u2) 7→

(
x(u1, u2), y(u1, u2), z(u1, u2), t(u1, u2)

)
,

where U =
{
u = (u1, u2)

∣∣u1 6= 0,−1 < u2 < 1
}

and

x(u1, u2) = u1√
1−u22

, y(u1, u2) = coshu1,

z(u1, u2) = sinhu1, t(u1, u2) = u1u2√
1−u22

.
(7.1)

We derive TpM = Span
{
ξ(u), Xu2(u)

}
, where

ξ(u) =
(

1√
1−u22

, sinhu1, coshu1,
u2√
1−u22

)
,

Xu2(u) =
(

u1u2
(1−u22)3/2

, 0, 0, u1
(1−u22)3/2

)
and

TpM
⊥ = Span

{
ξ(u),n(u) =

(
0, coshu1, sinhu1, 0

)}
,

where ξ(u), Xu2(u) and n(u) are lightlike, spacelike and timelike vectors, respectively, for each u =
(u1, u2) ∈ U . It follows that RadTpM = Span

{
ξ(u)

}
= TpM ∩ TpM⊥, that is, M is a 1-lightlike sur-

face of R4
2. We obtain the lightlike transversal space at p = X(u)

ltr(TpM) = Span

{
η(u) = 1

2

(
− 1√

1−u22
, sinhu1, coshu1,− u2√

1−u22

)}
.

We give the vector parametric equation of the 1-lightlike focal hypersurface LF±M (u, µ) = X(u)+µξ(u)±
n(u) (

µ√
1−u22

, µ sinhu1 ± coshu1, µ coshu1 ± sinhu1,
µu2√
1−u22

)
.

We calculate
hs11 = 〈∇̄Xu1

Xu1 ,n〉 = −1, hs22 = 〈∇̄Xu2
Xu2 ,n〉 = 0,

hs12 = 〈∇̄Xu1
Xu2 ,n〉 = 0, hs21 = 〈∇̄Xu2

Xu1 ,n〉 = 0,

h`22 = 〈∇̄Xu2
Xu2 , Xu1〉 = − u1

(1−u22)2
, g22 = 〈Xu2 , Xu2〉 =

u21
(1−u22)2

.

Therefore, we have
K

(0,1)
` (u)∓hs11(u)

±hs11(u)k
(1,0)
2 (u)

= −u1. The singular set of the 1-lightlike focal hypersurface

LF±M (u1, u2, µ) is given by{
LF±M (u1, u2,−u1) =

(
− u1√

1−u22
,−u1 sinhu1 ± coshu1,−u1 coshu1 ± sinhu1,− u1u2√

1−u22

)}
,

where (u1, u2,−u1) ∈ R3. We denote

x(u1, u2) = − u1√
1−u22

, y(u1, u2) = −u1 sinhu1 ± coshu1,

z(u1, u2) = −u1 coshu1 ± sinhu1, t(u1, u2) = − u1u2√
1−u22

.
(7.2)

This structure of the 1-lightlike surface is not easily imagined but it is possible to project the 1-lightlike
surface into three-dimensional spaces. We can draw the figures of the projections of the singular points of
the 1-lightlike focal hypersurface LF+

M (u, µ) to 3-spaces (Figures 9, 10, 11, 12)
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Figure 9: Projection of the singular points of 1-lightlike
focal hypersurface on 3D space t = 0.

Figure 10: Projection of the singular points of 1-lightlike
focal hypersurface on 3D space z = 0.

Figure 11: Projection of the singular points of 1-lightlike
focal hypersurface on 3D space y = 0.

Figure 12: Projection of the singular points of 1-lightlike
focal hypersurface on 3D space x = 0.
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