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Abstract

In this work, strong convergence and stability results of a three step random iterative scheme with errors
for strongly pseudo-contractive Lipschitzian maps are established in real Banach spaces. Analytic proofs
are supported by providing numerical examples. Applications of random iterative schemes with errors
to find solution of nonlinear random equation are also given. Our results improve and establish random
generalization of results obtained by Xu and Xie [Y. Xu, F. Xie, Rostock. Math. Kolloq., 58 (2004), 93–100],
Gu and Lu [F. Gu, J. Lu, Math. Commun., 9 (2004), 149–159], Liu et al. [Z. Liu, L. Zhang, S. M. Kang,
Int. J. Math. Math. Sci., 31 (2002), 611–617] and many others. c©2016 All rights reserved.
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1. Introduction and Preliminaries

The machinery of fixed point theory provides a convenient way of modelling many problems arising
in non-linear analysis, probability theory and for a solution of random equations in applied sciences, see
[4, 9, 11, 12, 15, 17, 18, 20, 21, 25, 27, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40] and references there. With
the developments in random fixed point theory, there has been a renewed interest in random iterative
schemes[2, 3, 7, 8, 10]. In linear spaces, Mann and Ishikawa iterative schemes are two general iterative
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schemes which have been successfully applied to fixed point problems [1, 5, 6, 13, 14, 16, 19, 26, 28, 37].
Recently, many stability and convergence results of iterative schemes have been established, using Lipschitz
accretive pseudo-contractive) and Lipschitz strongly accretive (or strongly pseudo-contractive) mappings in
Banach spaces [9, 10, 12, 13, 22, 23, 24, 32, 37]. Since in deterministic case the consideration of error terms
is an important part of an iterative scheme, therefore, we introduce a three step random iterative scheme
with errors and prove that the iterative scheme is stable with respect to T with Lipschitz condition where
T is a strongly accretive mapping in arbitrary real Banach space.

Let X be a real separable Banach space and let J denote the normalized duality pairing from X to 2X
∗

given by
J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖ ‖f‖, ‖f‖ = ‖x‖}, x ∈ X,

where X∗ denote the dual space of X and 〈·, ·〉 denote the generalized duality pairing between X and X∗.
Suppose (Ω,Σ) denotes a measurable space consisting of a set Ω and sigma algebra Σ of subsets of Ω

and C, a nonempty subset of X. Let T : Ω × C → C be a random operator, then random Mann iterative
scheme with errors is defined as follows:

xn+1(w) = (1− αn)xn(w) + αnT (w, xn(w)) + un(w), for each w ∈ Ω, n ≥ 0, (1.1)

where 0 ≤ αn ≤ 1, x0 : Ω→ C, an arbitrary measurable mapping and {un(w)} is a sequence of measurable
mappings from Ω to C.

Also, random Ishikawa iterative scheme with errors is defined as follows:

xn+1(w) = (1− αn)xn(w) + αnT (w, yn(w)) + un(w),

yn(w) = (1− βn)xn(w) + βnT (w, xn(w)) + vn(w), for each w ∈ Ω, n ≥ 0,
(1.2)

where 0 ≤ αn, βn ≤ 1, x0 : Ω → C, an arbitrary measurable mapping and {un(w)}, {vn(w)} are sequences
of measurable mappings from Ω to C.

Obviously {xn(w)} and {yn(w)} are sequences of mappings from Ω in to C.
Also, we consider the following three step random iterative scheme with errors 〈xn(w)〉 defined by

xn+1(w) = (1− αn)yn(w) + αnT (w, yn(w)) + un(w),

yn(w) = (1− βn)zn(w) + βnT (w, zn(w)) + vn(w),

zn(w) = (1− γn)xn(w) + γnT (w, xn(w)) + wn(w), for each w ∈ Ω, n ≥ 0,

(1.3)

where {un(w)}, {vn(w)}, {wn(w)} are sequences of measurable mappings from Ω to C, 0 ≤ αn, βn, γn ≤ 1
and x0 : Ω→ C, an arbitrary measurable mapping.

Putting βn = 0, vn = 0 in (1.2) and βn = 0, vn = 0, γn = 0, wn = 0 in (1.3), we get random Mann
iterative scheme with errors (1.1).

Now we give some definitions and lemmas, which will be used in the proofs of our main results.

Definition 1.1. A mapping g : Ω → C is said to be measurable if g−1(B ∩ C) ∈ Σ for every Borel subset
B of X.

Definition 1.2. A function F : Ω×C → C is said to be a random operator if F (·, x) : Ω→ C is measurable
for every x ∈ C.

Definition 1.3. A measurable mapping p : Ω→ C is said to be random fixed point of the random operator
F : Ω× C → C, if F (w, p(w)) = p(w) for all w ∈ Ω.

Definition 1.4. A random operator F : Ω × C → C is said to be continuous if for fixed w ∈ Ω, F (w, ·) :
C → C is continuous.

In the sequel, I denotes the identity operator on X, D(T ) and R(T ) denote the domain and the range
of T , respectively.
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Definition 1.5. Let T : Ω×X → X be a mapping. Then

(i) T is said to be Lipschitzian, if for any x, y ∈ X and w ∈ Ω, there exists L > 0 such that

‖T (w, x)− T (w, y)‖ ≤ L‖x− y‖; (1.4)

(ii) T is said to be nonexpansive, if for any x, y ∈ X and w ∈ Ω,

‖T (w, x)− T (w, y)‖ ≤ ‖x− y‖; (1.5)

(iii) T : Ω×X → X is strongly pseudo-contractive [9, 12] if and only if for all x, y ∈ X,w ∈ Ω and for all

r > 0, k ∈ (0, 1), the following inequality holds:

‖x− y‖ ≤ ‖(x− y) + r[(I − T − kI)(w, x)− (I − T − kI)(w, y)]‖, (1.6)

or equivalently iff for all x, y ∈ X, there exists j(x− y) ∈ J(x− y), such that

〈(I − T )x− (I − T )y, j(x− y)〉 ≤ k‖x− y‖2;

(iv) T is said to be strongly accretive [9, 12], if and only if for all x, y ∈ X and for all r > 0, k ∈ (0, 1), the
following inequality holds:

‖x− y‖ ≤ ‖(x− y) + r[(T − kI)(w, x)− (T − kI)(w, y)]‖, (1.7)

or equivalently iff for all x, y ∈ X, there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≥ k‖x− y‖2;

(v) If T is accretive and R(I + λT ) = X for any λ > 0, then T is called m-accretive [25, 31].

A mapping T : Ω×X → X is said to be strongly pseudo-contractive if I −T is strongly accretive, hence
the fixed point theory for strongly accretive mappings is connected with fixed point theory for strongly
pseudo-contractive mappings. It is well known that if T is Lipschitz strongly pseudo-contractive mapping
[11], then T has a unique fixed point.

Lemma 1.6 ([25]). Suppose X is an arbitrary real Banach space, T : D(T ) ⊂ X → X is accretive and
continuous, and D(T ) = X. Then T is m-accretive.

Lemma 1.7 ([31]). Suppose X is an arbitrary real Banach space, T : D(T ) ⊂ X → X is an m-accretive
mapping. Then the equation x+ Tx = f has a unique solution in D(T ) for any f ∈ X.

Lemma 1.8 ([13]). Let {xn} be a sequence of real numbers satisfying the following inequality:

xn+1 ≤ δxn + σn, n ≥ 1,

where xn ≥ 0, σn ≥ 0 and lim
n→∞

σn = 0, 0 ≤ δ < 1. Then xn → 0 as n→∞.

Definition 1.9 ([2]). Let T : Ω×C → C be a random operator, where C is a nonempty closed convex subset
of a real separable Banach space X. Let x0 : Ω→ C be any measurable mapping. The sequence {xn+1(w)}
of measurable mappings from Ω to C, for n = 0, 1, 2, . . . generated by the certain random iterative scheme
involving a random operator T is denoted by {T, xn(w)} for each w ∈ Ω. Suppose that xn(w) → p(w) as
n→∞ for each w ∈ Ω, where p ∈ RF (T ). Let {pn(w)} be any arbitrary sequence of measurable mappings
from Ω to C. Define the sequence of measurable mappings kn : Ω→ R by kn(w) = d(pn(w), {T, pn(w)}). If
for each w ∈ Ω, kn(w) → 0 as n → ∞ implies pn(w) → p(w) as n → ∞ for each w ∈ Ω, then the random
iterative scheme is said to be stable with respect to the random operator T .
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2. Convergence and Stability Results

In this section, we establish the convergence and stability results of three step random iterative scheme
with errors (1.3) using strongly pseudo-contractive mapping under some parametrical restrictions.

Theorem 2.1. Let X be a real Banach space, T : Ω×X → X be a strongly pseudo-contractive Lipschitzian
random mapping with a Lipschitz constant L ≥ 1. Let {xn(w)} be the random iterative scheme with errors
defined by (1.3), with the following restrictions:

(i) βn(L− 1) + γn(L− 1)2 + βnγn(L− 1)2 < αn{k − (2− k)αnL(1 + L)}(1− t), (n ≥ 0) ;

(ii) lim
n→∞

un(w) = 0, lim
n→∞

vn(w) = 0, lim
n→∞

wn(w) = 0.

Then the sequence {xn(w)} converges strongly to a unique random fixed point p(w) of T .

Proof. From (1.3), we have

(xn+1(w)− p(w)) + αn[(I − T − kI)xn+1(w)− (I − T − kI)p(w)]

=(1− αn)(yn(w)− p(w)) + αn[(I − T − kI)xn+1(w)

+ T (w, yn(w))]− αn(I − kI)p(w) + un(w).

(2.1)

Since T is strongly pseudo-contractive and Lipschitzian mapping, so using (2.1) and (1.6), we get

‖xn+1(w)− p(w)‖ ≤ ‖xn+1(w)− p(w) + αn[(I − T − kI)xn+1(w)− (I − T − kI)p(w)]‖
≤ (1− αn)‖yn(w)− p(w)‖+ αn‖T (w, yn(w))− T (w, xn+1(w))‖

+ αnI(1− k)‖xn+1(w)− p(w)‖+ ‖un(w)‖
= (1− αn)‖yn(w)− p(w)‖+ αn‖T (w, yn(w))

− T (w, xn+1(w))‖+ αn(1− k)‖xn+1(w)− p(w)‖+ ‖un(w)‖,

which implies

[1− αn(1− k)]‖xn+1(w)− p(w)‖ ≤ (1− αn)‖yn(w)− p(w)‖
+ αn‖T (w, yn(w))− T (w, xn+1(w))‖+ ‖un(w)‖,

or

‖xn+1(w)− p(w)‖ ≤ (1− αn)

[1− αn(1− k)]
‖yn(w)− p(w)‖+

αn

[1− αn(1− k)]
‖T (w, yn(w))

− T (w, xn+1(w))‖+
1

[1− αn(1− k)]
‖un(w)‖.

(2.2)

Now,

1− 1− αn

1− αn(1− k)
=

1− (1− αnk)

1− αn(1− k)
≥ 1− (1− αnk),

implies

1− αn

1− αn(1− k)
≤ 1− αnk, (2.3)

and

1− αn

1− αn(1− k)
=

1− αn(2− k)

1− αn(1− k)
≥ 1− αn(2− k),
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implies
αn

1− αn(1− k)
≤ αn(2− k), (2.4)

and
1

1− αn(1− k)
≤ 1

k
. (2.5)

Using (2.3), (2.4) and (2.5), (2.2) yields

‖xn+1(w)− p(w)‖ ≤ (1− αnk)‖yn(w)− p(w)‖+ αn(2− k)‖T (w, yn(w))

− T (w, xn+1(w))‖+
‖un(w)‖

k
.

(2.6)

Now, using Lipschitz condition on T and using (1.3), we get

‖(T (w, xn+1(w))− T (w, yn(w)))‖ ≤ L‖xn+1(w)− yn(w)‖
≤ Lαn‖yn(w)− T (w, yn(w))‖+ L‖un(w)‖
≤ Lαn‖yn(w)− p(w)‖+ Lαn‖T (w, yn(w))− p(w)‖+ L‖un(w)‖
≤ Lαn(1 + L)‖yn(w)− p(w)‖+ L‖un(w)‖.

(2.7)

Also, from (1.3), we have the following estimate:

‖yn(w)− p(w)‖ ≤ (1− βn)‖zn(w)− p(w)‖+ βn‖T (w, zn(w)− p(w))‖+ ‖vn(w)‖
≤ (1− βn)‖zn(w)− p(w)‖+ βnL‖(zn(w)− p(w))‖+ ‖vn(w)‖
= [1 + βn(L− 1)]‖zn(w)− p(w)‖+ ‖vn(w)‖
= [1 + βn(L− 1)]‖(1− γn)xn(w) + γnT (w, xn(w)) + wn(w)− p(w)‖+ ‖vn(w)‖
≤ [1 + βn(L− 1)][(1− γn)‖xn(w)− p(w)‖+ γn‖T (w, xn(w))− p(w)‖]

+ [1 + βn(L− 1)]‖wn(w)‖+ ‖vn(w)‖
≤ [1 + βn(L− 1)][(1− γn)‖xn(w)− p(w)‖+ Lγn‖xn(w)− p(w)‖] + ‖vn(w)‖

+ [1 + βn(L− 1)]‖wn(w)‖
= [1 + βn(L− 1)](1− γn + Lγn)‖xn(w)− p(w)‖

+ ‖vn(w)‖+ [1 + βn(L− 1)]‖wn(w)‖.

(2.8)

Using estimate (2.8), (2.7) becomes

‖T (w, yn(w))− T (w, xn+1(w))‖ ≤ Lαn(1 + L)[1 + βn(L− 1)](1− γn + Lγn)‖xn(w)− p(w)‖
+ Lαn(1 + L)‖vn(w)‖+ L‖un(w)‖
+ Lαn(1 + L)[1 + βn(L− 1)]‖wn(w)‖.

(2.9)

Putting values of estimates (2.8) and (2.9) in (2.6), we get

‖xn+1(w)− p(w)‖
≤ (1− αnk)[1 + βn(L− 1)](1− γn + Lγn)‖xn(w)− p(w)‖

+ α2
n(2− k)L(1 + L)[1 + βn(L− 1)](1− γn + Lγn)‖xn(w)− p(w)‖

+ [1− αnk + Lα2
n(2− k)(1 + L)]‖vn(w)‖+ [Lαn(2− k) +

1

k
]‖un(w)‖

+ [1− αnk + Lα2
n(1 + L)(2− k)][1 + βn(L− 1)]‖wn(w)‖

= {(1− αnk)[1 + βn(L− 1)](1− γn + Lγn)

+ (2− k)Lα2
n(1 + L)[1 + βn(L− 1)](1− γn + Lγn)}‖xn(w)− p(w)‖

+ [1− αnk + Lα2
n(2− k)(1 + L)]‖vn(w)‖+ [Lαn(2− k) +

1

k
]‖un(w)‖

+ [1− αnk + Lα2
n(1 + L)(2− k)][1 + βn(L− 1)]‖wn(w)‖
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= [1 + βn(L− 1)](1− γn + Lγn)[(1− αnk)

+ Lα2
n(2− k)(1 + L)]‖xn(w)− p(w)‖

+ [1− αnk + Lα2
n(2− k)(1 + L)]‖vn(w)‖+ [Lαn(2− k) +

1

k
]‖un(w)‖

+ [1− αnk + Lα2
n(1 + L)(2− k)][1 + βn(L− 1)]‖wn(w)‖

= [1 + βn(L− 1)](1− γn + Lγn)× [1− αn{k − (2− k)αnL(1 + L)}]‖xn(w)− p(w)‖

+ [1− αnk + Lα2
n(2− k)(1 + L)]‖vn(w)‖+ [Lαn(2− k) +

1

k
]‖un(w)‖

+ [1− αnk + Lα2
n(1 + L)(2− k)][1 + βn(L− 1)]‖wn(w)‖

≤ 1− [αn{k − (2− k)αnL(1 + L)} − γn(L− 1)− βn(L− 1)− γnβn(L− 1)2]‖xn(w)− p(w)‖

+ [1− αnk + Lα2
n(2− k)(1 + L)]‖vn(w)‖+ [Lαn(2− k) +

1

k
]‖un(w)‖

+ [1− αnk + Lα2
n(1 + L)(2− k)][1 + βn(L− 1)]‖wn(w)‖.

(2.10)

Using condition (i) and (2.10), we have

‖xn+1(w)− p(w)‖ ≤ 1− αn{k − (2− k)αnL(1 + L)}
+ αn{k − (2− k)αnL(1 + L)}(1− t)‖xn(w)− p(w)‖

+ [1− αnk + Lα2
n(2− k)(1 + L)]‖vn(w)‖+ [Lαn(2− k) +

1

k
]‖un(w)‖

+ [1− αnk + Lα2
n(1 + L)(2− k)][1 + βn(L− 1)]‖wn(w)‖

= [1− αn{k − (2− k)αnL(1 + L)}t]‖xn(w)− p(w)‖
+ [1− αnk + Lα2

n(2− k)(1 + L)]‖vn(w)‖

+ [Lαn(2− k) +
1

k
]‖un(w)‖

+ [1− αnk + Lα2
n(1 + L)(2− k)][1 + βn(L− 1)]‖wn(w)‖.

(2.11)

If we let αn ≥ α, ∀ n ∈ N , then (2.11) reduces to

‖xn+1(w)− p(w)‖ ≤ [1− α{k − (2− k)αL(1 + L)}t]‖xn(w)− p(w)‖
+ [1 + L(2− k)(1 + L)]‖vn(w)‖+ [L(2− k)

+
1

k
]‖un(w)‖+ L[1 + 2L(1 + L)]‖wn(w)‖.

(2.12)

Now, if we put [1− α{k − (2− k)αL(1 + L)}t] = δ and

[1 + L(2− k)(1 + L)]‖vn(w)‖+

[
L(2− k) +

1

k

]
‖un(w)‖+ L[1 + 2L(1 + L)]‖wn(w)‖ = σn,

then (2.12) becomes

‖xn+1(w)− p(w)‖ ≤ δ‖xn(w)− p(w)‖+ σn . (2.13)

Therefore, using conditions (ii) and Lemma 1.8, inequality (2.13) yields lim
n→∞

‖xn+1(w)−p(w)‖ = 0, that

is {xn(w)} defined by (1.3) converges strongly to a random fixed point p(w) of T .

Theorem 2.2. Let X be a real Banach space, T : Ω×X → X be a strongly pseudo-contractive Lipschitzian
random mapping with a Lipschitz constant L ≥ 1. Let {xn(w)} be the random iterative scheme with errors
defined by (1.3), with the following restrictions:

(i) βn(L− 1) + γn(L− 1)2 + βnγn(L− 1)2 < αn{k − (2− k)αnL(1 + L)}(1− t), (n ≥ 0);
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(ii) lim
n→∞

un(w) = 0, lim
n→∞

vn(w) = 0, lim
n→∞

wn(w) = 0.

Then the sequence {xn(w)} is stable. Moreover, lim
n→∞

pn(w) = p(w) implies lim
n→∞

kn(w) = 0.

Proof. Suppose that {pn(w)} ⊂ X, be an arbitrary sequence,

kn(w) = ‖pn+1(w)− (1− αn)qn(w)− αnT (w, qn(w))− un(w)‖,

where

qn(w) = (1− βn)rn(w) + βnT (w, rn(w)) + vn(w),

rn(w) = (1− γn)pn(w) + γnT (w, pn(w)) + wn(w),

such that lim
n→∞

kn(w) = 0. Then

‖pn+1(w)− T (w, p(w))‖ = ‖pn+1(w)− (1− αn)qn(w)− αnT (w, qn(w))− un(w)‖
+ ‖(1− αn)qn(w) + αnT (w, qn(w)) + un(w)− T (w, p(w))‖

= kn(w) + ‖sn(w)− T (w, p(w))‖,
(2.14)

where

sn(w) = (1− αn)qn(w) + αnT (w, qn(w)) + un(w) . (2.15)

From (2.15), we have

sn(w)− p(w) + αn[(I − T − kI)T (w, sn(w))− (I − T − kI)p(w)]

= (1− αn)(qn(w)− p(w)) + αn[(I − T − kI)sn(w) + T (w, qn(w))]− αn(I − kI)p(w) + un(w),

which further implies

‖sn(w)− p(w)‖ ≤ ‖sn(w)− p(w) + αn[(I − T − kI)sn(w)− (I − T − kI)p(w)]‖
≤ (1− αn)‖(qn(w)− p(w))‖+ αn‖(T (w, qn(w))− T (w, sn(w)))‖

+ αn(1− k)‖(sn(w)− p(w))‖+ ‖un(w)‖.
(2.16)

Rearranging terms in (2.16) and using estimates (2.3)–(2.5), we get

‖sn(w)− p(w)‖ ≤ (1− αnk)‖(qn(w)− p(w))‖

+ αn(2− k)‖T (w, qn(w))− T (w, sn(w))‖+
‖un(w)‖

k
.

(2.17)

Following the same procedure as in Theorem 2.1, similar to estimate (2.12), we have the following
estimate

‖sn(w)− p(w)‖ ≤ [1− α{k − (2− k)αL(1 + L)}t]‖pn(w)− p(w)‖+ [1 + L(2− k)(1 + L)]‖vn(w)‖

+

[
L(2− k) +

1

k

]
‖un(w)‖+ L[1 + 2L(1 + L)]‖wn(w)‖. (2.18)

Inequality (2.18) together with inequality (2.14) yields

‖pn+1(w)− T (w, p(w))‖ ≤ [1− α{k − (2− k)αL(1 + L)}t]‖pn(w)− p(w)‖

+ [1 + L(2− k)(1 + L)]‖vn(w)‖+

[
L(2− k) +

1

k

]
‖un(w)‖

+ L[1 + 2L2(1 + L)]‖wn(w)‖+ kn.

(2.19)
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Putting [1− α{k − (2− k)αL(1 + L)}t] = δ and

[1 + L(2− k)(1 + L)]‖vn(w)‖+

[
L(2− k) +

1

k

]
‖un(w)‖+ L[1 + 2L(1 + L)]‖wn(w)‖+ kn = σn,

and using condition (ii), and Lemma 1.8, inequality (2.19) yields lim
n→∞

‖pn+1(w)− p(w)‖ = 0.

i.e lim
n→∞

pn+1(w) = p(w). Hence given iterative scheme is T stable.

Now, let lim
n→∞

pn(w) = p(w), then using (2.18), we have

kn(w) = ‖pn+1(w)− (1− αn)qn(w)− αnT (w, qn(w))− un(w)‖
= ‖pn+1(w)− sn(w)‖
≤ ‖pn+1(w)− p(w)‖+ ‖sn(w)− p(w)‖
≤ ‖pn+1(w)− p(w)‖+ [1− α{k − (2− k)αL(1 + L)}t]‖pn(w)− p(w)‖

+ [1 + L(2− k)(1 + L)]‖vn(w)‖+ [L(2− k) +
1

k
]‖un(w)‖+ L[1 + 2L(1 + L)]‖wn(w)‖,

(2.20)

which implies lim
n→∞

kn(w) = 0.

Putting βn = 0, γn = 0, in Theorem 2.1 and Theorem 2.2, we have the following obvious corollary:

Corollary 2.3. Let X be a real Banach space, T : Ω×X → X be a strongly pseudo-contractive Lipschitzian
random mapping with a Lipschitz constant L ≥ 1. Let {xn(w)} be the random Mann iterative scheme with
errors defined by (1.1) with the following conditions:

(i) 0 < α < αn, (n ≥ 0);

(ii) lim
n→∞

un(w) = 0.

Then

(i) the sequence {xn(w)} converges strongly to unique fixed point p(w) of T ;

(ii) the sequence {xn(w)} is stable. Moreover, lim
n→∞

pn(w) = p(w) implies lim
n→∞

kn(w) = 0, where {xn(w)} ⊆
X is an arbitrary sequence.

Now, we demonstrate the following example to prove the validity of our results.

Example 2.4. Let Ω =
[
1
2 , 2

]
and Σ be the sigma algebra of Lebesgue’s measurable subsets of Ω. Take

X = R and define random operator T from Ω × X to X as T (w, x) = w
x . Then the measurable mapping

ξ : Ω → X defined by ξ(w) =
√
w, for every w ∈ Ω, serve as a random fixed point of T . It is easy to see

that the operator T is a Lipschitz random operator with Lipschitz constant L = 4 and strongly pseudo-
contractive random operator for any k ∈ (0, 1) and αn = 0.0082, k = 0.9, t = 0.4, βn = 1

(1+L)6
, γn = 1

(1+L)7
,

‖un‖ = 1
(n+1)2

, ‖vn‖ = 1
(n+2)2

, ‖wn‖ = 1
(n+3)2

satisfies all the conditions (i)–(ii) given in Theorem 2.1 and

Theorem 2.2.

3. Convergence speed comparison

Let Ω = [0, 1] and Σ be the sigma algebra of Lebesgue’s measurable subsets of Ω. Take X = R and define
random operator T from Ω ×X to X as T (w, x) = 1 − 2 sinx. Then the measurable mapping ξ : Ω → X
defined by ξ(w) = 0.3376, for every w ∈ Ω, serve as a random fixed point of T . It is easy to see that the
operator T is a Lipschitz random operator with Lipschitz constant L = 2 such that T is strongly pseudo-
contractive and αn = 0.002, βn = 1

(1+L)7
, γn = 1

(1+L)8
, ‖un‖ = 1

(n+1)2
, ‖vn‖ = 1

(n+2)2
, ‖wn‖ = 1

(n+3)2
,

k = 0.9, r = 0.2, t = 0.5 satisfies the conditions (i)-(ii) given in Theorem 2.1 and Theorem 2.2.
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New random iterative scheme with errors is more acceptable for strongly pseudo-contractive mappings
because it has better convergence rate as compared to Mann and Ishikawa iterative schemes with errors:

Taking initial approximation x0 = 1.8, convergence of new three step iterative scheme with errors,
Ishikawa and Mann iterative schemes with errors to the fixed point 0.3376 of operator T is shown in the
following table. From table, it is obvious that in deterministic case new three step iterative scheme with
errors has much better convergence rate as compared to Ishikawa and Mann iterative schemes with errors.

Number of Three step Ishikawa iterative Mann iterative

iterations iterative scheme scheme with scheme with

with errors errors errors

n xn+1 xn+1 xn+1

1 1.79283 1.79874 1.7945

2 1.78567 1.79749 1.78902

3 1.77853 1.79623 1.78353

4 1.77139 1.79497 1.77806

5 1.76426 1.79372 1.77258

6 1.75715 1.79246 1.76712

7 1.75005 1.7912 1.76166

8 1.74296 1.78995 1.75621

9 1.73588 1.78869 1.75077

10 1.72881 1.78744 1.74533

- - - -

1547 0.337601 0.593217 0.337846

1548 0.337601 0.592893 0.337844

1549 0.337601 0.592569 0.337843

1550 0.3376 0.592246 0.337841

1551 0.3376 0.591923 0.33784

- - - -

2019 0.3376 0.47716 0.337601

2020 0.3376 0.47698 0.337601

2021 0.3376 0.4768 0.337601

2022 0.3376 0.47662 0.3376

2023 0.3376 0.47644 0.3376

- - - -

8888 0.3376 0.337601 0.3376

8889 0.3376 0.337601 0.3376

8890 0.3376 0.337601 0.3376

8891 0.3376 0.3376 0.3376

8892 0.3376 0.3376 0.3376
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4. Applications

In this section, we apply the random iterative schemes with errors to find solution of nonlinear random
equation with Lipschitz strongly accretive mappings.

Theorem 4.1. Suppose that A : Ω × X → X be a Lipschitz strongly accretive mapping. Let x∗(w) be a
solution of random equation A(w, x) = f ; where f ∈ X is any given point and S(w, x) = f+x(w)−A(w, x),
∀ x ∈ X. Consider the new three step random iterative scheme with errors defined by

xn+1(w) = (1− αn)yn(w) + αnS(w, yn(w)) + un(w),

yn(w) = (1− βn)zn(w) + βnS(w, zn(w)) + vn(w), (4.1)

zn(w) = (1− γn)xn(w) + γnS(w, xn(w)) + wn(w), for each w ∈ Ω, n ≥ 0,

where {un(w)}, {vn(w)}, {wn(w)} are sequences of measurable mappings from Ω to X, 0 ≤ αn, βn, γn ≤ 1
and x0 : Ω→ X, an arbitrary measurable mapping, satisfying

(i) βn(L− 1) + γn(L− 1)2 + βnγn(L− 1)2 < αn{k − (2− k)αnL(1 + L)}(1− t), (n ≥ 0)

(ii) lim
n→∞

un(w) = 0, lim
n→∞

vn(w) = 0, lim
n→∞

wn(w) = 0,

where L ≥ 1 is Lipschitz constant of S(w, x). Then

(1) {xn(w)} converges strongly to unique solution x∗(w) of A(w, x) = f ;

(2) It is S-stable to approximate the solution of A(w, x) = f ; by new three step random iterative scheme
with errors (4.1).

Proof. Since A(w, x) is Lipschitz strongly accretive mapping, so S(w, x) = f + x(w)− A(w, x) is Lipschitz
strongly pseudo-contractive mapping. Convergence of iterative scheme (4.1) to the fixed point x∗(w) of
mapping S(w, x) is obvious from Theorem 2.1 and it is easy to see that x∗(w) is unique fixed point of S iff
x∗(w) is solution of random equation A(w, x) = f . Stability of iterative scheme (4.1) follows on the same
lines as stability of iterative scheme (1.3) in Theorem 2.2.

From Theorem 4.1, with ease we can prove the following theorem:

Theorem 4.2. Suppose that A : Ω × X → X be a Lipschitz strongly accretive mapping. Let x∗(w) be a
solution of random equation A(w, x) = f ; where f ∈ X is any given point and S(w, x) = f+x(w)−A(w, x),
∀ x ∈ X. Consider the random Mann iterative scheme with errors defined by

xn+1(w) = (1− αn)yn(w) + αnS(w, yn(w)) + un(w), for each w ∈ Ω, n ≥ 0, (4.2)

where {un(w)} is a sequence of measurable mappings from Ω to X, 0 ≤ αn ≤ 1 and x0 : Ω→ X, an arbitrary
measurable mapping, satisfying

(i) α < αn (n ≥ 0);

(ii) lim
n→∞

un(w) = 0,

where L ≥ 1 is Lipschitz constant of S(w, x). Then

(1) {xn(w)} converges strongly to unique solution x∗(w) of A(w, x) = f ;

(2) It is S-stable to approximate the solution of A(w, x) = f ; by random iterative scheme with errors (4.2).
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