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Abstract

This paper is devoted to the study of the stability of efficient solutions for semi-infinite vector optimiza-
tion problems (SIO). We first obtain the closedness, Berge-lower semicontinuity and Painlevé-Kuratowski
convergence of constraint set mapping. Then, under the assumption of continuous convergence of the objec-
tive function, we establish some sufficient conditions of the upper Painlevé-Kuratowski stability of efficient
solution mappings to the (SIO). Some examples are also given to illustrate the results. c©2016 All rights
reserved.
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1. Introduction

Let X be a Hausdorff topological space, Y and Z be real Banach spaces with norms denoted by ‖ · ‖.
Let D (resp. K) be closed, convex and pointed cone in Y (resp. Z) with nonempty interior intD (resp.
intK). Let A be a nonempty compact convex subset of X. We denote by U [A, Y ] the set of all vector-valued
functions from A to Y. Let T be a nonempty compact subset of a Hausdorff topological space, and denote
by USC[A × T,Z] we mean the set of all K-upper semicontinuous vector-valued functions with respect to
the first variable, where the metric of the function h ∈ USC[A× T,Z] is defined as

ρ(h1, h2) := min{ sup
x∈A,t∈T

‖h1(x, t)− h2(x, t)‖,
1

5
}.

Consider parametric semi-infinite vector optimization problems (SIO for brevity), or generalized parametric
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vector optimization problems, under functional perturbations of both objective function and constraint set
on the parameter space

G0 := U [A, Y ]× USC[A× T,Z]

formulated as follows: for every double of parameter p := (f, h) ∈ G0, we have the semi-infinite vector
optimization problem

(SIO)

{
D −min f(x)
s.t. x ∈M(h),

(1.1)

where
M(h) := {x ∈ A : h(x, t) =K 0, ∀t ∈ T},
x =K y ⇔ x− y ∈ K.

(1.2)

We know that the semi-infinite optimization problem plays a very important role in optimization theory
and applications. The models of semi-infinite optimization problems cover, e.g., optimal control, approxima-
tion theory, popular semi-definite programming and numerous engineering problems, etc. The semi-infinite
optimization problem and its wide range of applications have been an active research area in mathematical
programming in recent years. Many paper are published on theory, methods and applications for semi-
infinite optimization problem and its extensions; examples of fresh literatures include, the existence results
in [5, 6, 19], the optimality and/or characterizations of the solution set in [13, 15, 20], the stability results of
solution mappings in [4, 7, 9, 11], etc. Since the semi-infinite vector optimization problem has been acting
more and more important role in optimization theory and applications, some new methods and skills will
appear gradually.

On the other hand, the stability of solution mappings under certain perturbations, either of the feasible
set or the objective function, has been great interest in the optimization theory and related field. There are
some stability results for vector optimization problems and related issues with a sequence of sets converging
in the sense of Painlevé-Kuratowski. Examples of fresh literatures include, for vector optimization problems,
we can see Attouch and Riahi [2], Huang [12], Lucchetti and Miglierina [18], Lalitha and Chatterjee [14];
for vector equilibrium problem, we can refer to Durea [8], Fang and Li [10], Zhao et al.[23], Peng and Yang
[21], etc. However, to the best of our knowledge, the Painlevé-Kuratowski stability of efficient solutions
set for semi-infinite vector optimization problems has not been found. Thus, it is interesting to investigate
the Painlevé-Kuratowski convergence of the efficient solution mapping for semi-infinite vector optimization
problems.

The rest of the paper is organized as follows. In Sect. 2, we recall some basic definitions and preliminaries
from set-valued analysis and vector optimization, which will be used in next section. The main result is
presented in Sect. 3. In Sect. 3, we first establish the closeness, Berge-lower semicontinuity and Painlevé-
Kuratowski convergence of constraint set mapping. Then, under the assumption of continuous convergence
of the objective function, we obtain some sufficient conditions of the upper Painlevé-Kuratowski stability
of efficient solution mappings to the semi-infinite vector optimization problem (SIO). We also give some
examples to illustrate our main results.

2. Preliminaries

In this section, we give some basic definitions and preliminary results which are needed in the sequel.
Throughout this paper, unless specified otherwise, X,Y, Z,D,K and T are as mentioned above. Relations

in Y associated with the cone D are defined as follows: for any y1, y2 ∈ Y,

y1 5D y2 ⇔ y2 − y1 ∈ D; y1 �D y2 ⇔ y2 − y1 /∈ D;

y1 ≤D y2 ⇔ y2 − y1 ∈ D \ {0}; y1 �D y2 ⇔ y2 − y1 /∈ D \ {0};

y1 <D y2 ⇔ y2 − y1 ∈ intD; y1 ≮D y2 ⇔ y2 − y1 /∈ intD,
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and the vector ordering relations in Z associated with the cone K are similar as above.
For the semi-infinite vector optimization problem (1.1), we call the set-valued mapping (or multifunction)

M : USC[A× T,Z]⇒ A (given in (1.2)) the constraint set mapping of (SIO). A vector x ∈M(h) is said to
be a strictly efficient solution of (SIO), if and only if for any y ∈M(h), y 6= x,

f(y)− f(x) /∈ −D.

A vector x ∈M(h) is said to be an efficient solution of (SIO), if

{f(x)} = (f(x)−D) ∩ f(M(h)).

A vector x ∈M(h) is said to be a weakly efficient solution of (SIO), if

(f(x)− intD) ∩ f(M(h)) = ∅.

For each p = (f, h) ∈ G0, let SSol(M(h), f), ESol(M(h), f) and WESol(M(h), f) denote the sets of strictly
efficient solutions, efficient solutions and the set of weakly efficient solutions of (SIO), respectively.

Now, we give Example 2.1 to illustrate efficient solutions of (SIO) in Banach space.

Example 2.1. Let X = Y = l1 = {(x1, · · · , xn, ...) :
∑∞

n=1 |xn| < ∞}, A = clco{{ enn }
∞
n=1 ∪ {0X}}, where

e1 = (1, 0, 0, · · · ), e2 = (0, 1, 0, · · · ), e3 = (0, 0, 1, 0, · · · ), · · · . Let Z = R2,K = R2
+, T = [0, 1] ⊂ R, D = {x =

(x1, · · · , xn, · · · ) ∈ l1 : xn ≥ 0, n = 1, 2, · · · }. Then, we can observe that A is a compact convex set in X. We
consider h : A× T → Z, f : A→ Y by

h(x, t) =
( ∞∑
n=1

|yn − xn|+
t

2
+ 1,

∞∑
n=1

|xn|+
1

2

)
, for all x = (x1, x2, ...), y = (y1, y2, ...) ∈ A,

f(x) =
x

3
, for all x = (x1, · · · , xn, · · · ) ∈ A.

From a direct computation, we can get that M(h) = A and ESol(M(h), f) = {0X}.

Definition 2.2. Let A be a nonempty convex subset of X, and let f be a mapping from A to Y. We say
that f is D-convex on A, if for any x1, x2 ∈ A and λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ∈ λf(x1) + (1− λ)f(x2)−D.

Definition 2.3 ([17]). Let A be a nonempty convex subset of X, and f be a mapping from A to Y. We say
that

(i) f is properly quasi D-convex on A, if for any x1, x2 ∈ A and λ ∈ [0, 1], either f(λx1 + (1 − λ)x2) ∈
f(x1)−D or f(λx1 + (1− λ)x2) ∈ f(x2)−D.

(ii) f is semistrictly (strictly) properly quasi D-convex on A, if for any x1, x2 ∈ A with f(x1) 6= f(x2)
(x1 6= x2) and λ ∈ (0, 1), either f(λx1+(1−λ)x2) ∈ f(x1)− intD or f(λx1+(1−λ)x2) ∈ f(x2)− intD.

In [17], Luc gave the following definition of C-upper semicontinuity.

Definition 2.4. Let E be a nonempty subset of X. Let f be a mapping from E to Y. f is said to be D-upper
semicontinuous at x0 ∈ E, if for any neighborhood W of 0 in Y, there is a neighborhood U of x0 such that
for each x ∈ U ∩ E,

f(x) ∈ f(x0) +W −D.

Definition 2.5. Let E be a nonempty convex subset of X. Let f be a mapping from E to Z. We say that
f is K-quasiconvex on E, if for any z ∈ Z, x1, x2 ∈ E with x1 6= x2 and λ ∈ [0, 1],

f(x1), f(x2) ∈ z −K implies f(λx1 + (1− λ)x2) ∈ z −K.
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Remark 2.6. We call f is K-quasiconcave on E if −f is K-quasiconvex on E.

Definition 2.7 ([1, 3]). Let X and Y be topological vector spaces, F : X → 2Y be a set-valued mapping.

(i) F is said to be Berge-lower semicontinuous at x0 ∈ X, if for any open set V with F (x0)∩V 6= ∅, there
exists a neighborhood U of x0 in X such that F (x) ∩ V 6= ∅ for all x ∈ U ;

(ii) F is said to be Berge-lower semicontinuous on X, iff it is Berge-lower semicontinuous at each x ∈ X;

(iii) F is closed if Graph(F ) is a closed set in X × Y.

Now, we recall the well known notion of set-convergence, namely Painlevé-Kuratowski set-convergence.
A sequence of sets {Bn ⊂ X : n ∈ N} is said to converge in the sense (see also [8, 22]) of Painlevé-

Kuratowski (P.K.) to B (denoted as Bn
P.K.−−−→ B) if

lim sup
n→∞

Bn ⊂ B ⊂ lim inf
n→∞

Bn

with
lim inf
n→∞

Bn := {x ∈ X|∃(xn), xn ∈ Bn,∀n ∈ N, xn → x},

lim sup
n→∞

Bn := {x ∈ X|∃(nk),∃(xnk
), xnk

∈ Bnk
,∀k ∈ N, xnk

→ x}.

When lim supn→∞Bn ⊂ B holds, the relation is referred as upper Painlevé-Kuratowski convergence (u.P.K,
for briefness). When K ⊂ lim infn→∞Kn holds, the relation is referred as lower Painlevé-Kuratowski
convergence (l.P.K, for briefness).

A set-valued mapping ψ : X → 2Y is said to be Painlevé-Kuratowski convergent at x ∈ domψ := {x ∈
X|ψ(x) 6= ∅} if and only if for any sequence xn in domψ converging to x, one has

lim sup
n→∞

ψ(xn) ⊂ ψ(x) ⊂ lim inf
n→∞

ψ(xn).

Definition 2.8 ([16, 22]). Let fn, f : X → Y be vector-valued mappings and A ⊂ X. We say that fn
continuously converges to f (denoted as fn

c−−→ f), iff for every x ∈ A and for every sequence {xn} in A,
fn(xn)→ f(x) for all xn → x.

In [1], Aubin et al. also gave the following properties for Berge-lower semicontinuous.

Lemma 2.9. Let X and Y be topological vector spaces, F : X → 2Y be a set-valued mapping. F is Berge-
lower semicontinuous at x0 ∈ X if and only if for any sequence {xα} ⊂ X with xα → x0 and any y0 ∈ F (x0),
there exists yα ∈ F (xα) such that yα → y0.

Lemma 2.10 ([3]). Let Y be a topological vector space. For each zero neighborhood U in Y, there exist zero
neighborhood U1 and U2 in Y such that U1 + U2 ⊂ U.

3. Main results

In this section, we aim to establish the Painlevé-Kuratowski stability of efficient solution mappings to
the semi-infinite vector optimization problem.

We first give some sufficient conditions for closeness, Berge-lower semicontinuity and Painlevé-Kuratowski
convergence of the constraint set mapping M : USC[A× T,Z]⇒ A as follows.

Theorem 3.1. Let p := (f, h) be any given point in G0.

(i) For each t ∈ T, x 7→ h(x, t) is K-quasiconcave on A, then M(·) is convex at h.

(ii) If hn(·, t) ρ−−→ h(·, t) for any t ∈ T, then the constraint set mapping M(·) is closed at h.
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Proof. (i) Getting x1, x2 ∈M(h), one has

h(x1, t) =K 0, for all t ∈ T

and
h(x2, t) =K 0, for all t ∈ T.

Then, for each t ∈ [0, 1], tx1 + (1− t)x2 ∈ A as A is convex. It follows from the K-quasiconcavity of h(·, t)
on A and equations above that

h(tx1 + (1− t)x2, t) ∈ K, ∀t ∈ T.

This means tx1 + (1− t)x2 ∈M(h), i.e., M(h) is a convex set.

(ii) Let {(hn, xn)} ⊂ Graph(M), hn
ρ−−→ h, xn → x′. Then x′ ∈ A as A is compact. Since xn ∈ M(hn),

for every n ∈ N,
hn(xn, t) =K 0, for all t ∈ T. (3.1)

Now, we verify that x′ ∈ M(h). Suppose the contrary is true, that is, there exists t′ ∈ T such that
h(x′, t′) 6∈ K. By the openness of Y \K, there exists an open neighborhood U of 0Y in Y such that

h(x′, t′) + U ⊂ Y \K. (3.2)

From Lemma 2.10, for above U, there exist two neighborhoods U1 and U2 of 0Y in Y such that

U1 + U2 ⊂ U. (3.3)

By the K-upper semicontinuity of h(·, t′) at x′ for above U1, there exists a neighborhood U(x′) of x′, such
that

h(x, t′) ∈ h(x′, t′) + U1 −K,∀x ∈ U(x′) ∩A.

Since xn → x′, there exists n1 ∈ N such that for any n ≥ n1, one has

xn ∈ U(x′) ∩A.

It follows that
h(xn, t

′) ∈ h(x′, t′) + U1 −K. (3.4)

As hn
ρ−−→ h, there exists n2 ∈ N such that for any n ≥ n2,

hn(xn, t
′)− h(xn, t

′) ∈ U2. (3.5)

From (3.2)-(3.5), for n ≥ max{n1, n2}, we have

hn(xn, t
′) = hn(xn, t

′)− h(xn, t
′) + h(xn, t

′)

∈ U2 + h(x′, t′) + U1 −K
⊂ −K + Y \K ⊂ Y \K,

which contradicts (3.1). Then x′ ∈M(h). This implies that M(·) is closed at h.

Theorem 3.2. Let p := (f, h) be any given point in G0, for each t ∈ T, x 7→ h(x, t) is K-quasiconcave on
A, then the constraint set mapping M(·) is Berge-lower semicontinuous at h.

Proof. Let W be an open convex set such that W ∩M(h) 6= ∅. Since M(h) 6= ∅, there exists an element
x̃ ∈M(h) satisfying

h(x̃, t) =K 0, for all t ∈ T.
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Taking any x0 ∈W ∩M(h), there exists r ∈ (0, 1] such that xr := x0 + r(x̃− x0) ∈W, then xr ∈W ∩M(h)
as M(h) is convex by Theorem 3.1. Since x0 ∈M(h), we have

h(x0, t) =K 0, for all t ∈ T,

and xr := x0 + r(x̃ − x0) ∈ A by the convexity of A. It follows from two equations above and the K-
quasiconcavity of h(·, t) that

h(xr, t) ∈ K.

This means that
h(xr, t) =K 0, for all t ∈ T. (3.6)

For h̄ ∈ USC[A × T,Z] satisfies ρ(h̄, h) < δ
2 (δ > 0 is small enough), we clarify that xr ∈ M(h̄). On the

contrary, there exists t̄ ∈ T such that
h̄(xr, t̄) �K 0.

By the openness of Y \K, there exists a zero neighborhood U in Y such that

h̄(xr, t̄) + U ⊂ Y \K. (3.7)

It follows from ρ(h̄, h) < δ
2 that for above U,

h̄(xr, t̄)− h(xr, t̄) ∈ U. (3.8)

Combining (3.7)-(3.8), we obtain

h(xr, t̄) = h(xr, t̄)− h̄(xr, t̄) + h̄(xr, t̄)

∈ U + h̄(xr, t̄)

⊂ Y \K.

This contradicts to (3.6). Then we have xr ∈ M(h̄) and W ∩M(h̄) 6= ∅. This means M(·) is Berge-lower
semicontinuous at h and the proof is complete.

Theorem 3.3. Let p := (f, h) be any given point in G0. Suppose that

(i) for each t ∈ T, x 7→ h(x, t) is K-quasiconcave on A.

(ii) If hn(·, t) ρ−−→ h(·, t) for any t ∈ T,

Then
M(hn)

P.K.−−−→M(h).

Proof. Take an x ∈ lim supnM(hn). Then, there exists a subsequence {xnk
} ⊂M(hnk

) such that xnk
→ x.

By Theorem 3.1 (ii), M(·) is closed at h, then we get x ∈M(h). Hence, we have lim supnM(hn) ⊂M(h).
Next, we prove M(h) ⊂ lim infnM(hn). Take any x ∈ M(h), then by Theorem 3.2 (M(·) Berge-lower

semicontinuous), there exists xn ∈ M(hn) such that xn → x. From the definition of lower Painlevé-
Kuratowski convergence, we have x ∈ lim infnM(hn), which means thatM(h) ⊂ lim infnM(hn) as x ∈M(h)
is arbitrary. This completes the proof.

Now, we establish the upper Painlevé-Kuratowski stability of solution mappings for the semi-infinite
vector optimization problem (SIO).

Theorem 3.4. Let p := (f, h) be any given point in G0. Assume that the conditions (i) and (ii) of Theorem
3.3 are satisfied and fn

c−−→ f. Then

lim sup
n→∞

WESol(M(hn), fn) ⊂WESol(M(h), f).
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Proof. Take an x ∈ limsupnWESol(M(hn), fn). Then, there exists a subsequence

{xnk
} in WESol(M(hnk

)), fnk
)

such that xnk
→ x. From Theorem 3.3, we conclude x ∈M(h). For any y ∈M(h), there exists yn ∈M(hn)

such that ynk
→ y sinceM(hn)

P.K.−−−→M(h). It follows from {xnk
} ⊂WESol(M(hnk

), fnk
) and ynk

∈M(hnk
),

that
fnk

(ynk
)− fnk

(xnk
) /∈ −intD. (3.9)

Since fn
c−−→ f, there exists N ∈ N for any nk > N

fnk
(ynk

)→ f(y) and fnk
(xnk

)→ f(x). (3.10)

Now, (3.9), (3.10) and the closedness of Y \ -intD, implies that

f(y)− f(x) /∈ −intD.

As y ∈M(h) is arbitrary, we conclude that x ∈WESol(M(h), f). Thus,

lim sup
n→∞

WESol(M(hn), fn) ⊂WESol(M(h), f).

This completes the proof.

Lemma 3.5. Let p := (f, h) be any given point in G0.

(i) If x 7→ f(x) is semistrictly proper quasi-D-convex on A. Then

ESol(M(h), f) = WESol(M(h), f).

(ii) If x 7→ f(x) is strictly proper quasi-D-convex on A. Then

SSol(M(h), f) = ESol(M(h), f).

Proof. (i) By the definition, ESol(M(h), f) ⊂ WESol(M(h), f). We only need to prove WESol(M(h), f)⊂
ESol(M(h), f). Suppose to the contrary, there exists x0 ∈ WESol(M(h), f) such that x0 /∈ ESol(M(h), f).
Hence, there exists y0 ∈M(h) such that

f(y0)− f(x0) ∈ −D \ {0}. (3.11)

It follows from semistrictly proper quasi-D-convexity of f(·) on A and (3.11), for every λ ∈ (0, 1) that
λx0 + (1− λ)y0 ∈ A as A is convex, and

f(λx0 + (1− λ)y0) ∈ f(x0)− intD,

which contradicts x0 ∈WSol(M(h), f). Then we get WESol(M(h), f) ⊂ ESol(M(h), f).
(ii) From the definition of strictly proper quasi-D-convexity, by using the same method above, with

appropriate modification, we can get the result and the proof is complete.

Theorem 3.6. Let p := (f, h) be any given point in G0. Assume that the conditions (i) and (ii) of Theorem
3.3 are satisfied, fn

c−−→ f and x 7→ f(x) is semistrictly proper quasi-D-convex on A. Then

lim sup
n→∞

ESol(M(hn), fn) ⊂ ESol(M(h), f).

Proof. Combing Theorem 3.4 and Lemma 3.5, we can get the result easily.

Now, we give an example to illustrate that Theorem 3.6 is applicable.
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Example 3.7. Let X := R2, Z := R, Y := R2, T = [0, 1] ⊂ R and

A := {(x1, x2) ∈ R2 : −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1},K := R+, D := R2
+.

Consider h, hn : A× T → Z, fn = f : A→ Z, which are given by:

f(x) :=
(
f1(x), f2(x)

)
, ∀x = (x1, x2) ∈ A,

where

f1(x) :=
1

3
x1 −

1

4
, f2(x) :=

1

5
x1 −

1

8
;

h(x, t) :=
1

2
x1 +

1

5
, hn(x, t) :=

1

2
x1 +

1

5
− t

12n2
, for all (x, t) ∈ A× T.

Let p := (f, h), pn := (fn, hn) ∈ G0. It is easy to verify that all conditions of Theorem 3.6 are satisfied. By
a direct computation, we get

M(h) =

{
(x1, x2) ∈ R2| − 2

5
≤ x1 ≤ 1,−1 ≤ x2 ≤ 1

}
,

ESol(M(h), f) =

{(
− 2

5
, x2
)
∈ R2| − 1 ≤ x2 ≤ 1

}
,

M(hn) =

{
(x1, x2) ∈ R2| − 2

5
+

t

6n2
≤ x1 ≤ 1,−1 ≤ x2 ≤ 1

}
,

ESol(M(hn), fn) =

{(
− 2

5
+

t

6n2
, x2
)
∈ R2| − 1 ≤ x2 ≤ 1

}
.

Obviously, lim supn→∞ ESol(M(hn), fn) ⊂ ESol(M(h), f). Thus, Theorem 3.6 is applicable.

Corollary 3.8. Let p := (f, h) be any given point in G0. Assume that the conditions (i) and (ii) of Theorem
3.3 are satisfied, fn

c−−→ f and x 7→ f(x) is strictly proper quasi-D-convex on A. Then

SSol(M(hn), fn)
u.P.K.−−−−→ SSol(M(h), f).

Proof. By virtue of Lemma 3.5 and Theorem 3.6, we can get the result.

Acknowledgements

The work of the first author was completed during his visit to the Department of Mathematics, Univer-
sity of British Columbia, Kelowna, Canada, to which he is grateful to the hospitality received. His work
was partially supported by the National Natural Science Foundation of China (11301571), the Basic and
Advanced Research Project of Chongqing (2015jcyjA00025) and the China Postdoctoral Science Foundation
funded project (2015M580774). The second author was partially supported by the National Outstanding
Youth Science Fund Project of China (51425801) and the National Natural Science Foundation of China
(51278512).

References

[1] J.-P. Aubin, I. Ekeland, Applied Nonlinear Analysis, John Wiley and Sons, New York, (1984). 2.7, 2
[2] H. Attouch, H. Riahi, Stability results for Ekeland’s ε-variational principle and cone extremal solution, Math

Oper Res., 18 (1993), 173–201. 1
[3] C. Berge, Topological Spaces, Oliver and Boyd, London, (1963). 2.7, 2.10
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