Research Article

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

A new concept of $(\alpha, F_d)\mbox{-contraction}$ on quasi metric space

Ishak Altun^{a,b}, Nasir Al Arifi^c, Mohamed Jleli^d, Aref Lashin^{e,f}, Bessem Samet^{d,*}

^aCollege of Science, King Saud University, Riyadh, Saudi Arabia.

^bDepartment of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey.

^cGeology and Geophysics Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.

^dDepartment of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.

^ePetroleum and Gas Engineering Department, College of Engineering, King Saud University, P. O. Box 800, Riyadh 11421, Saudi Arabia.

^fGeology Department, Faculty of Science, Benha University, P. O. Box 13518, Benha, Egypt.

Communicated by S. Romaguera

Abstract

In the present paper, we introduce a new concept of (α, F_d) -contraction on quasi metric space. Then we provide some new fixed point theorems for such type mappings on left \mathcal{K} , left \mathcal{M} and left Smyth-complete quasi metric spaces. ©2016 All rights reserved.

Keywords: Quasi metric space, left K-Cauchy sequence, left K-completeness, fixed point. 2010 MSC: 54H25, 47H10.

1. Introduction and Preliminaries

A quasi-pseudo metric on a nonempty set X is a function $d: X \times X \to \mathbb{R}^+$ such that for all $x, y, z \in X$:

- d(x,x) = 0,
- $d(x,y) \le d(x,z) + d(z,y)$.

If a quasi-pseudo metric d satisfies:

 $^{^{*}}$ Corresponding author

Email addresses: ishakaltun@yahoo.com (Ishak Altun), nalarifi@ksu.edu.sa (Nasir Al Arifi), jleli@ksu.edu.sa (Mohamed Jleli), arlashin@ksu.edu.sa (Aref Lashin), bsamet@ksu.edu.sa (Bessem Samet)

• $d(x,y) = d(y,x) = 0 \Rightarrow x = y$,

then d is said to be quasi metric, in addition if a quasi metric d satisfies

• $d(x, y) = 0 \Rightarrow x = y$,

then d is said to be T_1 -quasi metric. It is clear that, every metric is a T_1 -quasi metric, every T_1 -quasi metric is a quasi-pseudo metric. In this case the pair (X, d) is said to be quasi-pseudo (resp. quasi, T_1 -quasi) metric space.

Let (X, d) be a quasi-pseudo metric space. Given a point $x_0 \in X$ and a real constant $\varepsilon > 0$, the sets

$$B_d(x_0,\varepsilon) = \{y \in X : d(x_0,y) < \varepsilon\},\$$

and

$$B_d[x_0,\varepsilon] = \{y \in X : d(x_0,y) \le \varepsilon\},\$$

are called open ball and closed ball, respectively, with center x_0 and radius ε .

Each quasi-pseudo metric d on X generates a topology τ_d on X which has a base the family of open balls $\{B_d(x,\varepsilon) : x \in X \text{ and } \varepsilon > 0\}$. The closure of a subset A of X with respect to τ_d is denoted by $cl_d(A)$. If d is a quasi metric on X, then τ_d is a T_0 topology, and if d is a T_1 -quasi metric, then τ_d is a T_1 topology on X.

If d is a quasi metric and τ_d is T_1 topology, then d is T_1 -quasi metric.

If d is a quasi-pseudo metric on X, then the functions d^{-1} , d^s and d_+ defined by

$$d^{-1}(x,y) = d(y,x),$$

$$d^{s}(x,y) = \max \left\{ d(x,y), d^{-1}(x,y) \right\},$$

and

$$d_{+}(x,y) = d(x,y) + d^{-1}(x,y),$$

are also quasi-pseudo metrics on X. If d is a quasi metric, then d^s and d_+ are (equivalent) metrics on X.

Let (X, d) be a quasi metric space and $x \in X$. The convergence of a sequence $\{x_n\}$ to x with respect to τ_d called d-convergence and denoted by $x_n \xrightarrow{d} x$, is defined

$$x_n \stackrel{d}{\to} x \Leftrightarrow d(x, x_n) \to 0.$$

Similarly, the convergence of a sequence $\{x_n\}$ to x with respect to $\tau_{d^{-1}}$ called d^{-1} -convergence and denoted by $x_n \stackrel{d^{-1}}{\to} x$, is defined

$$x_n \stackrel{d^{-1}}{\to} x \Leftrightarrow d(x_n, x) \to 0.$$

Finally, the convergence of a sequence $\{x_n\}$ to x with respect to τ_{d^s} called d^s -convergence and denoted by $x_n \stackrel{d^s}{\to} x$, is defined

$$x_n \xrightarrow{d^s} x \Leftrightarrow d^s(x_n, x) \to 0.$$

It is clear that $x_n \xrightarrow{d^s} x \Leftrightarrow x_n \xrightarrow{d} x$ and $x_n \xrightarrow{d^{-1}} x$. More and detailed information about some important properties of quasi metric spaces and their topological structures can be found in [8, 16, 17].

Definition 1.1 ([23]). Let (X, d) be a quasi metric space. A sequence $\{x_n\}$ in X is called

• left K-Cauchy (or forward Cauchy) if for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\forall n, k, n \ge k \ge n_0, \, d(x_k, x_n) < \varepsilon,$$

• right K-Cauchy (or backward Cauchy) if for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\forall n, k, n \ge k \ge n_0, d(x_n, x_k) < \varepsilon$$

• d^s -Cauchy if for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\forall n, k \ge n_0, d(x_n, x_k) < \varepsilon.$$

It is clear that $\{x_n\}$ is d^s -Cauchy if and only if it is both left K-Cauchy and right K-Cauchy. If a sequence is left K-Cauchy with respect to d, then it is right K-Cauchy with respect to d^{-1} . If $\{x_n\}$ is a sequence in a quasi metric space (X, d) such that

$$\sum_{n=1}^{\infty} d(x_n, x_{n+1}) < \infty,$$

then it is left K-Cauchy sequence.

It is well known that every convergent sequence is Cauchy in a metric space. In general, this situation is not valid in a quasi metric space. That is, *d*-convergent or d^{-1} -convergent sequences may not be Cauchy (in the sense of d^s , left K and right K) in a quasi metric space (see [23]).

Definition 1.2 ([5, 23]). Let (X, d) be a quasi metric space. Then (X, d) is said to be

- bicomplete if every d^s -Cauchy sequence is d^s -convergent,
- left (right) \mathcal{K} -complete if every left (right) \mathcal{K} -Cauchy sequence is d-convergent,
- left (right) \mathcal{M} -complete if every left (right) K-Cauchy sequence is d^{-1} -convergent,
- left (right) Smyth complete if every left (right) K-Cauchy sequence is d^s -convergent.

One can find more detailed information about some kind of Cauchyness, completeness and some important properties of quasi metric space in [5, 23, 24].

On the other hand, α -admissibility and F-contractivity of a mapping are popular concepts in recent metrical fixed point theory. The concept of α -admissibility of a mapping on a nonempty set has been introduced by Samet, et al. [25]. Let X be a nonempty set, T be a self mapping of X and $\alpha : X \times X \to [0, \infty)$ be a function. Then T is said to be α -admissible if

$$\alpha(x, y) \ge 1 \Rightarrow \alpha(Tx, Ty) \ge 1.$$

Using α -admissibility of a mapping, Samet, et al. [25] provided some general fixed point results including many known theorems on complete metric spaces.

The concept of *F*-contraction was introduced by Wardowski [26]. Let \mathcal{F} be the family of all functions $F: (0, \infty) \to \mathbb{R}$ satisfying the following conditions:

- (F1) F is strictly increasing,
- (F2) For each sequence $\{\lambda_n\}$ of positive numbers $\lim_{n\to\infty} \lambda_n = 0$ if and only if $\lim_{n\to\infty} F(\lambda_n) = -\infty$,
- (F3) There exists $k \in (0, 1)$ such that $\lim_{\lambda \to 0^+} \lambda^k F(\lambda) = 0$.

Let T be a self mapping of a metric space (X, d) and $F \in \mathcal{F}$. Then, T is said to be F-contraction if for all $x, y \in X$ with d(Tx, Ty) > 0, there exists $\tau > 0$ such that

$$\tau + F(d(Tx, Ty)) \le F(d(x, y)).$$

Various fixed point results for α -admissible mappings and F-contractions on complete metric space can be found in [3, 10, 12, 13, 14, 15] and [4, 6, 7, 9, 21, 22, 27], respectively.

The aim of this paper is to establish several new fixed point results on some kind of complete quasi metric spaces by taking into account α -admissibility and a quasi metric version of F-contractivity of a mapping.

We can find some recent fixed point results for single valued and multivalued mappings on quasi metric spaces in [1, 2, 11, 18, 19, 20].

2. Fixed Point Result

Let (X, d) be a quasi metric space, $T : X \to X$ be a mapping and $\alpha : X \times X \to [0, \infty)$ be a function. We will consider the following set to introduce a quasi metric version of *F*-contractivity of a mapping:

$$T_{\alpha} = \{(x, y) \in X \times X : \alpha(x, y) \ge 1 \text{ and } d(Tx, Ty) > 0\}$$

Definition 2.1. Let (X, d) be a quasi metric space, $T: X \to X$ be a mapping satisfying

$$d(x,y) = 0 \Rightarrow d(Tx,Ty) = 0, \tag{2.1}$$

 $\alpha: X \times X \to [0,\infty)$ and $F \in \mathcal{F}$ be two functions. Then T is said to be an (α, F_d) -contraction if there exists $\tau > 0$ such that

$$\tau + F(d(Tx, Ty)) \le F(d(x, y)) \tag{2.2}$$

for all $(x, y) \in T_{\alpha}$.

The following example shows the importance of condition (2.1).

Example 2.2. Let $X = \{0, 1\} \cup A$, where $A = \{2, 3, \dots\}$ and let d be the quasi metric on X given by

$$\begin{aligned} &d(n,n) = 0 \text{ for all } n \in X \\ &d(0,n) = d(n,1) = 0 \text{ for all } n \in X \setminus \{0\} \\ &d(n,0) = 1 \text{ for all } n \in X \setminus \{0\} \\ &d(n,m) = \frac{1}{2^{n+1}} + \frac{1}{2^{m+1}}, \text{ otherwise.} \end{aligned}$$

Now define $T: X \to X$ as Tn = n + 1 for all $n \in X$ and $\alpha: X \times X \to [0, \infty)$ as

$$\alpha(n,m) = \begin{cases} 1, & (n,m) \in A \times A \\ \\ 0, & \text{otherwise.} \end{cases}$$

Note that $T_{\alpha} = \{(n,m) : n, m \in A \text{ and } n \neq m\}$. Now, we show that inequality (2.2) is satisfied with $F(\lambda) = \ln \lambda$ and $\tau = \ln 2$ for all $(n,m) \in T_{\alpha}$. Indeed, for $n, m \in A$ with $n \neq m$, we have

$$\ln d(Tn, Tm) = \ln d(n+1, m+1)$$

= $\ln \left(\frac{1}{2^{n+2}} + \frac{1}{2^{m+2}}\right)$
= $-\ln 2 + \ln \left(\frac{1}{2^{n+1}} + \frac{1}{2^{m+1}}\right)$
= $-\ln 2 + d(n, m).$

However, T is not (α, F_d) -contraction, since the condition (2.1) does not hold. Indeed, d(0, 1) = 0 but d(T0, T1) > 0.

Remark 2.3. If (X, d) is a T_1 -quasi metric space, then every mapping $T : X \to X$ satisfies the condition (2.1).

Remark 2.4. It is clear from Definition 2.1 that if T is an (α, F_d) -contraction on a quasi metric space (X, d), then

$$d(Tx, Ty) \le d(x, y),$$

for all $x, y \in X$ with $\alpha(x, y) \ge 1$.

Our main fixed point result is as follows:

Theorem 2.5. Let (X, d) be a Hausdorff left \mathcal{K} -complete quasi metric space, $T : X \to X$ be an (α, F_d) contraction. Assume that T is α -admissible and τ_d -continuous. If there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$, then T has a fixed point in X.

Proof. Let $x_0 \in X$ be such that $\alpha(x_0, Tx_0) \ge 1$. Define a sequence $\{x_n\}$ in X by $x_n = Tx_{n-1}$ for all $n \in \mathbb{N}$.

Since T is α -admissible, then $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$. Now, let $d_n = d(x_n, x_{n+1})$ for all $n \in \mathbb{N}$. If there exists $k \in \mathbb{N}$ with $d_k = d(x_k, x_{k+1}) = 0$, then x_k is a fixed point of T since d is T_1 -quasi metric. Suppose $d_n > 0$ for all $n \in \mathbb{N}$. Since T is (α, F_d) -contraction, we get

$$F(d_n) \le F(d_{n-1}) - \tau \le F(d_{n-2}) - 2\tau \le \dots \le F(d_0) - n\tau.$$
(2.3)

From (2.3), we get $\lim_{n\to\infty} F(d_n) = -\infty$. Thus, from (F2), we have

$$\lim_{n \to \infty} d_n = 0.$$

From (F3) there exists $k \in (0, 1)$ such that

$$\lim_{n \to \infty} d_n^k F(d_n) = 0$$

By (2.3), the following holds for all $n \in \mathbb{N}$

$$d_n^k F(d_n) - d_n^k F(d_0) \le -d_n^k n\tau \le 0.$$
(2.4)

Letting $n \to \infty$ in (2.4), we obtain that

$$\lim_{n \to \infty} n d_n^k = 0. \tag{2.5}$$

From (2.5), there exits $n_1 \in \mathbb{N}$ such that $nd_n^k \leq 1$ for all $n \geq n_1$. So, we have, for all $n \geq n_1$

$$d_n \le \frac{1}{n^{1/k}}.\tag{2.6}$$

Therefore $\sum_{n=1}^{\infty} d_n < \infty$. Now let $m, n \in \mathbb{N}$ with $m > n \ge n_1$, then we get

$$d(x_n, x_m) \le d(x_{n+1}, x_{n+2}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m)$$

= $d_n + d_{n+1} + \dots + d_{m-1}$
 $\le \sum_{k=n}^{\infty} d_k.$

Since $\sum_{k=1}^{\infty} d_k$ is convergent, then we get $\{x_n\}$ is left K-Cauchy sequence in the quasi metric space (X, d). Since (X, d) left \mathcal{K} -complete, there exists $z \in X$ such that $\{x_n\}$ is d-converges to z, that is, $d(z, x_n) \to 0$ as $n \to \infty$. Since T is τ_d -continuous, then $d(Tz, Tx_n) = d(Tz, x_{n+1}) \to 0$ as $n \to \infty$. Since X is Hausdorff we get z = Tz.

The following example shows that the Hausdorffness condition of X can not be removed in above theorem. **Example 2.6.** Let $X = \{\frac{1}{n} : n \in \mathbb{N}\}$ and

$$d(x,y) = \begin{cases} 0, & x = y \\ y, & x \neq y. \end{cases}$$

Then (X, d) is a left \mathcal{K} -complete T_1 -quasi metric space, but not Hausdorff since τ_d is cofinite topology. Define a mapping $T: X \to X$ by $Tx = \frac{x}{2}$, then T is (α, F_d) -contraction with $\alpha(x, y) = 1$, $F(\lambda) = \ln \lambda$ and $\tau = \ln 2$. Also T is α -admissible and τ_d -continuous. However, T has no fixed point. In Theorem 2.5, if we take $\tau_{d^{-1}}$ continuity of the mapping T instead of τ_d -continuity, we can take left \mathcal{M} -completeness of X.

Theorem 2.7. Let (X, d) be a Hausdorff left \mathcal{M} -complete quasi metric space, $T : X \to X$ be an (α, F_d) contraction. Assume that T is α -admissible and $\tau_{d^{-1}}$ -continuous. If there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \geq 1$, then T has a fixed point in X.

Proof. As in the proof of Theorem 2.5, we can get the iterative sequence $\{x_n\}$ is left K-Cauchy. Since (X, d) left \mathcal{M} -complete, there exists $z \in X$ such that $\{x_n\}$ is d^{-1} -converges to z, that is, $d(x_n, z) \to 0$ as $n \to \infty$. By $\tau_{d^{-1}}$ -continuity of T, we have $d(Tx_n, Tz) = d(x_{n+1}, Tz) \to 0$ as $n \to \infty$. Since X is Hausdorff we get z = Tz.

The following theorems show that if we take into account the left Smyth completeness of X, we can remove the Hausdorffness condition. However, we need the quasi metric d is still T_1 -quasi metric.

Theorem 2.8. Let (X,d) be left Smyth complete T_1 -quasi metric space, $T : X \to X$ be an (α, F_d) contraction. Assume that T is α -admissible and τ_d or $\tau_{d^{-1}}$ -continuous. If there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \geq 1$, then T has a fixed point in X.

Proof. As in the proof of Theorem 2.5, we can get the iterative sequence $\{x_n\}$ is left K-Cauchy. Since (X, d) left Smyth complete, there exists $z \in X$ such that $\{x_n\}$ is d^s -converges to z, that is, $d^s(x_n, z) \to 0$ as $n \to \infty$.

If T is τ_d -continuous, then $d(Tz, Tx_n) = d(Tz, x_{n+1}) \to 0$ as $n \to \infty$. Therefore, we get

$$d(Tz, z) \le d(Tz, x_{n+1}) + d(x_{n+1}, z) \to 0 \text{ as } n \to \infty.$$

If T is $\tau_{d^{-1}}$ -continuous, then $d(Tx_n, Tz) = d(x_{n+1}, Tz) \to 0$ as $n \to \infty$. Therefore, we get

$$d(z, Tz) \le d(z, x_{n+1}) + d(x_{n+1}, Tz) \to 0 \text{ as } n \to \infty.$$

Since X is T_1 -quasi metric space, we obtain z = Tz.

One of the following properties of the spaces X, can be considered instead of τ_d or $\tau_{d^{-1}}$ -continuity of T in Theorem 2.8.

It is said that the quasi metric space (X, d) has (A_d) (resp. (B_d)) property whenever $\{x_n\}$ is a sequence in X such that $x_n \xrightarrow{d} z$ and $\alpha(x_n, x_{n+1}) \ge 1$ implies $\alpha(x_n, z) \ge 1$ (resp. $\alpha(z, x_n) \ge 1$) for all $n \in \mathbb{N}$.

Theorem 2.9. Let (X,d) be left Smyth complete T_1 -quasi metric space, $T : X \to X$ be an (α, F_d) contraction. Assume that T is α -admissible and X has (A_d) , $(A_{d^{-1}})$, (B_d) or $(B_{d^{-1}})$ property. If there
exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$, then T has a fixed point in X.

Proof. As in the proof of Theorem 2.5, we can get the iterative sequence $\{x_n\}$ is left K-Cauchy. Since (X, d) left Smyth complete, there exists $z \in X$ such that $\{x_n\}$ is d^s -converges to z, that is, $d^s(x_n, z) \to 0$ as $n \to \infty$.

If X has (A_d) or $(A_{d^{-1}})$ property, we get $\alpha(x_n, z) \ge 1$. Therefore, considering Remark 2.4, we have

$$d(z, Tz) \le d(z, x_{n+1}) + d(Tx_n, Tz)$$

$$\le d(z, x_{n+1}) + d(x_n, z) \to 0 \text{ as } n \to \infty.$$

If X has (B_d) or $(B_{d^{-1}})$ property, we get $\alpha(z, x_n) \geq 1$. Therefore, considering Remark 2.4, we have

$$d(Tz, z) \le d(Tz, Tx_n) + d(x_{n+1}, z)$$

$$\le d(z, x_n) + d(x_{n+1}, z) \to 0 \text{ as } n \to \infty.$$

Since X is T_1 -quasi metric space, we get z = Tz.

The following example emphasizes the importances of the continuity of T in Theorem 2.8 and (A_d) , $(A_{d^{-1}})$, (B_d) or $(B_{d^{-1}})$ properties on X in Theorem 2.9.

Example 2.10. Let X = [0,1] and d(x,y) = |x-y| for all $x, y \in X$. Now define $T: X \to X$ as

$$Tx = \begin{cases} 1, & x = 0\\ \\ \frac{x}{2}, & x \neq 0 \end{cases}$$

and $\alpha: X \times X \to [0,\infty)$ as

$$\alpha(x,y) = \begin{cases} 1, & xy \neq 0 \\ \\ 0, & \text{otherwise.} \end{cases}$$

Since (X, d) is complete metric space then it is left Smyth complete T_1 -quasi metric space. Observe that T is α -admissible and also for $x_0 = 1$, we have $\alpha(x_0, Tx_0) = \alpha(1, T1) = \alpha(1, \frac{1}{2}) \ge 1$. On the other hand, since

$$T_{\alpha} = \{(x, y) \in X \times X : \alpha(x, y) \ge 1 \text{ and } d(Tx, Ty) > 0\}$$
$$= \{(x, y) \in X \times X : xy \neq 0 \text{ and } x \neq y\},\$$

then

$$d(Tx,Ty) = \frac{1}{2}d(x,y)$$

for all $(x, y) \in T_{\alpha}$. That is, T is (α, F_d) -contraction with $F(\lambda) = \ln \lambda$ and $\tau = \ln 2$.

Note that T is not τ_d (and $\tau_{d^{-1}}$)-continuous. Also note that X has not (A_d) (and (B_d)) property. To see this we can consider the sequence $x_n = \frac{1}{n}$.

Remark 2.11. Taking into account the right completeness (in the sense of \mathcal{K} , \mathcal{M} and Smyth), we can provide similar fixed point results on quasi metric space.

Acknowledgements

The authors extend their appreciation to Distinguished Scientist Fellowship Program (DSFP) at King Saud University (Saudi Arabia).

References

- C. Alegre, J. Marín, S. Romaguera, A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces, Fixed Point Theory Appl., 2014 (2014), 8 pages. 1
- [2] S. Al-Homidan, Q. H. Ansari, J.-C. Yao, Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal., 69 (2008), 126–139. 1
- [3] M. U. Ali, T. Kamran, N. Shahzad, Best proximity point for α-ψ-proximal contractive multimaps, Abstr. Appl. Anal., 2014 (2014), 6 pages. 1
- [4] I. Altun, G. Mınak, M. Olgun, Fixed points of multivalued nonlinear F-contractions on complete metric spaces, Nonlinear Anal. Model. Control, 21 (2016), 201–210.
- [5] I. Altun, G. Minak, M. Olgun, Classification of completeness of quasi metric space and some new fixed point results, Submitted. 1.2, 1
- [6] I. Altun, M. Olgun, G. Minak, On a new class of multivalued weakly Picard operators on complete metric spaces, Taiwanese J. Math., 19 (2015), 659–672.
- [7] I. Altun, M. Olgun, G. Minak, A new approach to the Assad-Kirk fixed point theorem, J. Fixed Point Theory Appl., 18 (2016), 201–212. 1
- [8] S. Cobzaş, Functional analysis in asymmetric normed spaces, Birkhuser-Springer, Basel, (2013). 1
- [9] M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat, 28 (2014), 715–722. 1

- [10] G. Durmaz, G. Minak, I. Altun, Fixed point results for α - ψ -contractive mappings including almost contractions and applications, Abstr. Appl. Anal., **2014** (2014), 10 pages. 1
- [11] Y. U. Gaba, Startpoints and $(\alpha \gamma)$ -contractions in quasi-pseudometric spaces, J. Math., **2014** (2014), 8 pages. 1
- [12] N. Hussain, E. Karapınar, P. Salimi, F. Akbar, α-admissible mappings and related fixed point theorems, J. Inequal. Appl., 2013 (2013), 11 pages. 1
- [13] N. Hussain, C. Vetro, F. Vetro, Fixed point results for α-implicit contractions with application to integral equations, Nonlinear Anal. Model. Control, 21 (2016), 362–378.
- [14] E. Karapınar, B. Samet, Generalized α-ψ-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 17 pages. 1
- [15] P. Kumam, C. Vetro, F. Vetro, Fixed points for weak α - ψ -contractions in partial metric spaces, Abstr. Appl. Anal., **2013** (2013), 9 pages. 1
- [16] H.-P. A. Künzi, Nonsymmetric distances and their associated topologies: about the origins of basic ideas in the area of asymmetric topology, Handbook of the History of General Topology, 3 (2001), 853–968. 1
- [17] H.-P. A. Künzi, V. Vajner, Weighted quasi-metrics, Ann. New York Acad. Sci., 728 (1994), 64–67. 1
- [18] A. Latif, S. A. Al-Mezel, Fixed point results in quasimetric spaces, Fixed Point Theory Appl., 2011 (2011), 8 pages. 1
- [19] J. Marín, S. Romaguera, P. Tirado, Weakly contractive multivalued maps and w-distances on complete quasimetric spaces, Fixed Point Theory Appl., 2011 (2011), 9 pages. 1
- [20] J. Marín, S. Romaguera, P. Tirado, Generalized contractive set-valued maps on complete preordered quasi-metric spaces, J. Funct. Spaces Appl., 2013 (2013), 6 pages. 1
- [21] G. Mınak, M. Olgun, I. Altun, A new approach to fixed point theorems for multivalued contractive maps, Carpathian J. Math., 31 (2015), 241–248. 1
- [22] H. Piri, P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl., 2014 (2014), 11 pages. 1
- [23] I. L. Reilly, P. V. Subrahmanyam, M. K. Vamanamurthy, Cauchy sequences in quasi- pseudo-metric spaces, Monatsh. Math., 93 (1982), 127–140. 1.1, 1, 1.2, 1
- [24] S. Romaguera, Left K-completeness in quasi-metric spaces, Math. Nachr., 157 (1992), 15–23. 1
- [25] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α - ψ -contractive type mappings, Nonlinear Anal., **75** (2012), 2154–2165. 1
- [26] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 6 pages. 1
- [27] D. Wardowski, N. Van Dung, Fixed points of F-weak contractions on complete metric spaces, Demonstr. Math., 47 (2014), 146–155. 1