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Abstract

In the present paper, we introduce a new concept of («, Fy)-contraction on quasi metric space. Then we
provide some new fixed point theorems for such type mappings on left IC, left M and left Smyth-complete
quasi metric spaces. (€)2016 All rights reserved.

Keywords: Quasi metric space, left K-Cauchy sequence, left C-completeness, fixed point.
2010 MSC: 54H25, 47H10.

1. Introduction and Preliminaries
A quasi-pseudo metric on a nonempty set X is a function d : X x X — R such that for all z,y,z € X:
e d(z,x) =0,
o d(z,y) <d(z,z)+d(zvy).

If a quasi-pseudo metric d satisfies:
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o d(z,y) =d(y,z) =0=z =y,
then d is said to be quasi metric, in addition if a quasi metric d satisfies
o dlz,y) =0=z =y,

then d is said to be T1-quasi metric. It is clear that, every metric is a T1-quasi metric, every 77-quasi metric
is a quasi metric and every quasi metric is a quasi-pseudo metric. In this case the pair (X, d) is said to be
quasi-pseudo (resp. quasi, T-quasi) metric space.

Let (X, d) be a quasi-pseudo metric space. Given a point xg € X and a real constant € > 0, the sets

Ba(wo.2) = {y € X : d(wo,y) < <},
and
By[zo,e] ={y € X : d(xo,y) < e},

are called open ball and closed ball, respectively, with center zy and radius ¢.

Each quasi-pseudo metric d on X generates a topology 74 on X which has a base the family of open
balls {Bg(z,¢) : x € X and € > 0}. The closure of a subset A of X with respect to 74 is denoted by clz(A).
If d is a quasi metric on X, then 74 is a Ty topology, and if d is a Ti-quasi metric, then 74 is a T topology
on X.

If d is a quasi metric and 74 is 77 topology, then d is Ti-quasi metric.

If d is a quasi-pseudo metric on X, then the functions d=!, d* and d defined by

d_l(l'? Z/) = d(yv .%'),

d*(z,y) = max {d(z,y),d " (z,y)},
and

d+(ﬂ?,y) = d(l‘,y) + d_l(xa y)u

are also quasi-pseudo metrics on X. If d is a quasi metric, then d® and d; are (equivalent) metrics on X.
Let (X, d) be a quasi metric space and = € X. The convergence of a sequence {x,} to x with respect to

74 called d-convergence and denoted by x,, A x, is defined
LGN d(z,z,) — 0.

Similarly, the convergence of a sequence {z,} to = with respect to 7;,-1 called d~!-convergence and
-1
denoted by z, <, x, is defined
-1
RGN d(xy,z) — 0.

Finally, the convergence of a sequence {z,} to x with respect to 74s called d*-convergence and denoted
by x, LN x, is defined
IIN d*(zp,x) — 0.

s —1
It is clear that xz, d—> TS Ty £> z and x, d% x. More and detailed information about some important
properties of quasi metric spaces and their topological structures can be found in [8, 16} [17].

Definition 1.1 ([23]). Let (X, d) be a quasi metric space. A sequence {z,} in X is called

e left K-Cauchy (or forward Cauchy) if for every € > 0, there exists ng € N such that

Vn,k, n >k > ng, dlzg, x,) <&,
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e right K-Cauchy (or backward Cauchy) if for every € > 0, there exists ng € N such that

Vn,k, n >k > ng, d(x,, xg) <&,

e d°-Cauchy if for every € > 0, there exists ng € N such that
Vn, k > ng, d(zn, ) < €.

It is clear that {x,} is d*-Cauchy if and only if it is both left K-Cauchy and right K-Cauchy. If a
sequence is left K-Cauchy with respect to d, then it is right K-Cauchy with respect to d=1. If {x,} is a
sequence in a quasi metric space (X, d) such that

o)
Zd(ﬂsn,an) < 00,
n=1

then it is left K-Cauchy sequence.

It is well known that every convergent sequence is Cauchy in a metric space. In general, this situation
is not valid in a quasi metric space. That is, d-convergent or d~!-convergent sequences may not be Cauchy
(in the sense of d°, left K and right K) in a quasi metric space (see [23]).

Definition 1.2 ([5, 23]). Let (X, d) be a quasi metric space. Then (X, d) is said to be

e bicomplete if every d°-Cauchy sequence is d°-convergent,

o left (right) K-complete if every left (right) K-Cauchy sequence is d-convergent,

e left (right) M-complete if every left (right) K-Cauchy sequence is d~!-convergent,

e left (right) Smyth complete if every left (right) K-Cauchy sequence is d*-convergent.

One can find more detailed information about some kind of Cauchyness, completeness and some impor-
tant properties of quasi metric space in [5] 23, [24].

On the other hand, a-admissibility and F-contractivity of a mapping are popular concepts in recent
metrical fixed point theory. The concept of a-admissibility of a mapping on a nonempty set has been
introduced by Samet, et al. [25]. Let X be a nonempty set, T' be a self mapping of X and o : X x X — [0, 00)
be a function. Then T is said to be a-admissible if

a(z,y) > 1= a(Tz,Ty) > 1.

Using a-admissibility of a mapping, Samet, et al. [25] provided some general fixed point results including
many known theorems on complete metric spaces.

The concept of F-contraction was introduced by Wardowski [26]. Let F be the family of all functions
F : (0,00) — R satisfying the following conditions:

(F1) F is strictly increasing,
(F2) For each sequence {\,} of positive numbers lim,, oo A, = 0 if and only if lim, o F'(A,) = —00,
(

F3) There exists k € (0,1) such that limy_,q+ A*F(\) = 0.

Let T be a self mapping of a metric space (X,d) and F € F. Then, T is said to be F-contraction if for
all z,y € X with d(Tz,Ty) > 0, there exists 7 > 0 such that

T+ F(d(Tx,Ty)) < F(d(z,y)).

Various fixed point results for a-admissible mappings and F'-contractions on complete metric space can
be found in [3, 10, 12} 13], 14, 15] and [4} [, [7, O 2T), 22, 27], respectively.

The aim of this paper is to establish several new fixed point results on some kind of complete quasi metric
spaces by taking into account a-admissibility and a quasi metric version of F-contractivity of a mapping.

We can find some recent fixed point results for single valued and multivalued mappings on quasi metric
spaces in [1}, 2], 111, 18, [19] 20].
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2. Fixed Point Result

Let (X, d) be a quasi metric space, T': X — X be a mapping and a : X x X — [0,00) be a function.
We will consider the following set to introduce a quasi metric version of F-contractivity of a mapping:

To ={(z,y) € X x X : a(x,y) > 1 and d(Tz,Ty) > 0}.
Definition 2.1. Let (X,d) be a quasi metric space, T': X — X be a mapping satisfying
d(z,y) =0=d(Tz,Ty) =0, (2.1)

a: X xX —[0,00) and F € F be two functions. Then 7' is said to be an («, Fy)-contraction if there exists
7 > 0 such that
T+ F(d(Tz,Ty)) < F(d(x,y)) (2.2)

for all (z,y) € Th.
The following example shows the importance of condition ({2.1]).

Example 2.2. Let X = {0,1} U A, where A = {2,3,---} and let d be the quasi metric on X given by

d(n,n) =0for alln € X

d(0,n) =d(n,1) =0 for all n € X\{0}
d(n,0) =1 for all n € X\{0}
d(n,m) = otherwise.

2n+1 2m+1’
Now define T: X - X asTn=n+1forallne€ X and a: X x X — [0,00) as

I, (n,m)eAxA
a(n,m) =
0, otherwise.

Note that T,, = {(n,m) : n,m € A and n # m}. Now, we show that inequality (2.2)) is satisfied with
F(A\)=InX and 7 =1n2 for all (n,m) € T,. Indeed, for n,m € A with n # m, we have

Ind(Tn,Tm) =Ind(n+ 1,m + 1)

1 1
=1In 2n+2 + 2m+2

1 1
:—ln2+ln <2n+1 +2m+1>

= —In2+d(n,m).

However, T is not («, F;)-contraction, since the condition ([2.1)) does not hold. Indeed, d(0,1) = 0 but
d(T0,T1) > 0.

Remark 2.3. If (X,d) is a Tj-quasi metric space, then every mapping 7' : X — X satisfies the condition
).

Remark 2.4. 1t is clear from Definition [2.1] that if T is an (o, Fy)-contraction on a quasi metric space (X, d),
then
d(Tz,Ty) < d(z,y),

for all z,y € X with a(z,y) > 1.

Our main fixed point result is as follows:
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Theorem 2.5. Let (X,d) be a Hausdorff left K-complete quasi metric space, T : X — X be an (o, Fy)-
contraction. Assume that T is a-admissible and T4-continuous. If there exists xog € X such that a(xo, Txg) >
1, then T has a fized point in X.

Proof. Let xp € X be such that a(zg, Txg) > 1. Define a sequence {z,} in X by x,, = Tz,,—1 for all n € N.

Since T is a-admissible, then a(zy,xn+1) > 1 for all n € N. Now, let d,, = d(zp,xn+1) for all n € N,
If there exists k € N with dy, = d(zk, k1) = 0, then zy is a fixed point of T since d is Ti-quasi metric.
Suppose dy, > 0 for all n € N. Since T is («, Fy)-contraction, we get

F(dn) < F(dn—l) —7< F(dn—Q) —271<--- < F(dO) — nT. (23)
From ({2.3)), we get lim,,_, F(d,) = —00. Thus, from (F2), we have
lim d, = 0.

n—o0

From (F3) there exists k € (0,1) such that
lim d*F(d,) = 0.

n—oo
By (2.3), the following holds for all n € N
d"F(d,) — d*F(dy) < —dfnr <0. (2.4)
Letting n — oo in ([2.4)), we obtain that
lim nd® = 0. (2.5)
n—oo

From ({22.5)), there exits ny € N such that ndﬁ <1 for all n > nq. So, we have, for all n > nq

1
dn <~ (2.6)

o0
Therefore > d,, < co. Now let m,n € N with m > n > ny, then we get
n=1
d(ﬂjna l'm) < d(xn-‘rlv xn+2) + d(xn—i-lv xn—i—?) + -+ d(xm—la xm)
:dn+dn+1+"'+dm—l

k=n

[e.e]
Since ) dj, is convergent, then we get {z,} is left K-Cauchy sequence in the quasi metric space (X, d).
k=1
Since (X, d) left K-complete, there exists z € X such that {z,} is d-converges to z, that is, d(z,x,) — 0 as

n — 00. Since T is 74-continuous, then d(T'z,Tx,) = d(Tz,xn+1) — 0 as n — oco. Since X is Hausdorff we
get z =T2xz. O

The following example shows that the Hausdorffness condition of X can not be removed in above theorem.
Example 2.6. Let X = {2 :n € N} and
0, z=y

d(l’,y) =
Yy, T#y.

Then (X, d) is a left K-complete Th-quasi metric space, but not Hausdorff since 7 is cofinite topology. Define
a mapping 7' : X — X by Tw = 3, then T is (o, Fy)-contraction with a(z,y) =1, F(A\) =InX and 7 = In2.
Also T is a-admissible and 74-continuous. However, T" has no fixed point.
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In Theorem if we take 74-1 continuity of the mapping T instead of 74-continuity, we can take left
M-completeness of X.

Theorem 2.7. Let (X,d) be a Hausdorff left M-complete quasi metric space, T : X — X be an («, Fy)-
contraction. Assume that T is «-admissible and Tg-1-continuous. If there exists o € X such that
a(zg, Txo) > 1, then T has a fized point in X .

Proof. As in the proof of Theorem [2.5] we can get the iterative sequence {zy} is left K-Cauchy. Since (X, d)
left M-complete, there exists z € X such that {z,} is d~!-converges to z, that is, d(z,,2) — 0 as n — oc.
By 74-1-continuity of T', we have d(Tx,,Tz) = d(xp4+1,T2) — 0 as n — oo. Since X is Hausdorff we get
z="Tz. O

The following theorems show that if we take into account the left Smyth completeness of X, we can
remove the Hausdorffness condition. However, we need the quasi metric d is still T1-quasi metric.

Theorem 2.8. Let (X,d) be left Smyth complete Ti-quasi metric space, T : X — X be an («, Fy)-
contraction. Assume that T is a-admissible and T4 or Tz-1-continuous. If there exists o € X such that
a(xg, Txg) > 1, then T has a fixed point in X .

Proof. As in the proof of Theorem we can get the iterative sequence {z,} is left K-Cauchy. Since
(X, d) left Smyth complete, there exists z € X such that {x,} is d*-converges to z, that is, d*(x,,2) — 0 as
n — oo.

If T is 74-continuous, then d(Tz, Txy,) = d(Tz,xp4+1) — 0 as n — oo. Therefore, we get

d(Tz,z) <d(Tz,xnt1) + d(zpt1,2) — 0 as n — oo.
If T is 74-1-continuous, then d(Tx,,Tz) = d(zp4+1,T2) — 0 as n — co. Therefore, we get
d(z,Tz) <d(z,zp41) + d(xps1,T2) = 0 as n — co.
Since X is T1-quasi metric space, we obtain z = T'z. O

One of the following properties of the spaces X, can be considered instead of 74 or 74-1-continuity of T’
in Theorem 2.8
It is said that the quasi metric space (X, d) has (A4) (resp. (Bg)) property whenever {x,} is a sequence

in X such that 2, % z and a(zy, Tnt1) > 1 implies a(zy, z) > 1 (resp. a(z,x,) > 1) for all n € N.

Theorem 2.9. Let (X,d) be left Smyth complete T-quasi metric space, T : X — X be an («, Fy)-
contraction. Assume that T is a-admissible and X has (Aq), (Ag-1), (Bg) or (Bg-1) property. If there
exists xog € X such that a(xo,Txo) > 1, then T has a fixed point in X.

Proof. As in the proof of Theorem we can get the iterative sequence {x,} is left K-Cauchy. Since
(X, d) left Smyth complete, there exists z € X such that {x,} is d°-converges to z, that is, d*(x,, z) — 0 as
n — oo.

If X has (Aq) or (A4-1) property, we get oy, z) > 1. Therefore, considering Remark [2.4] we have

d(z,Tz) <d(z,zp+1) + d(Txp, T2)
< d(z,xps1) + d(zpn,z) — 0 as n — oo.

If X has (By) or (By-1) property, we get a(z,z,) > 1. Therefore, considering Remark [2.4] we have

d(Tz,z) < d(Tz,Txy) + d(xn41, 2)
<d(z,zy) + d(xn41,2) = 0 as n — oo.

Since X is Th-quasi metric space, we get z = T'z. O
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The following example emphasizes the importances of the continuity of 7' in Theorem and (Ag),
(Ag-1), (Bq) or (Bg-1) properties on X in Theorem [2.9

Example 2.10. Let X = [0,1] and d(z,y) = |z — y| for all z,y € X. Now define T : X — X as

1, z=0
Ty =
5, T#0
and a: X x X — [0,00) as
1, zy#0
Oé(l‘,y):

0, otherwise.

Since (X, d) is complete metric space then it is left Smyth complete T}-quasi metric space. Observe that
T is a-admissible and also for 2o = 1, we have a(zo, Tzo) = a(1,T1) = a(1,3) > 1. On the other hand,
since

To ={(z,y) € X x X : a(z,y) > 1 and d(Tz,Ty) > 0}
={(z,y) € X x X : 2y # 0 and = # y},

then ,
d(T.%', Ty) = 5d(l’, y)7

for all (x,y) € T,. That is, T' is (a, F)-contraction with F'(A) =In\ and 7 = In 2.
Note that T is not 74 (and 74-1)-continuous. Also note that X has not (Ay) (and (By)) property. To
see this we can consider the sequence x,, = %

Remark 2.11. Taking into account the right completeness (in the sense of IC, M and Smyth), we can provide
similar fixed point results on quasi metric space.
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