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Abstract

In the present paper, we introduce a new concept of (α, Fd)-contraction on quasi metric space. Then we
provide some new fixed point theorems for such type mappings on left K, left M and left Smyth-complete
quasi metric spaces. c©2016 All rights reserved.
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1. Introduction and Preliminaries

A quasi-pseudo metric on a nonempty set X is a function d : X ×X → R+ such that for all x, y, z ∈ X:

• d(x, x) = 0,

• d(x, y) ≤ d(x, z) + d(z, y).

If a quasi-pseudo metric d satisfies:

∗Corresponding author
Email addresses: ishakaltun@yahoo.com (Ishak Altun), nalarifi@ksu.edu.sa (Nasir Al Arifi), jleli@ksu.edu.sa

(Mohamed Jleli), arlashin@ksu.edu.sa (Aref Lashin), bsamet@ksu.edu.sa (Bessem Samet)

Received 2016-01-28



I. Altun, et al., J. Nonlinear Sci. Appl. 9 (2016), 3354–3361 3355

• d(x, y) = d(y, x) = 0⇒ x = y,

then d is said to be quasi metric, in addition if a quasi metric d satisfies

• d(x, y) = 0⇒ x = y,

then d is said to be T1-quasi metric. It is clear that, every metric is a T1-quasi metric, every T1-quasi metric
is a quasi metric and every quasi metric is a quasi-pseudo metric. In this case the pair (X, d) is said to be
quasi-pseudo (resp. quasi, T1-quasi) metric space.

Let (X, d) be a quasi-pseudo metric space. Given a point x0 ∈ X and a real constant ε > 0, the sets

Bd(x0, ε) = {y ∈ X : d(x0, y) < ε} ,

and
Bd[x0, ε] = {y ∈ X : d(x0, y) ≤ ε} ,

are called open ball and closed ball, respectively, with center x0 and radius ε.
Each quasi-pseudo metric d on X generates a topology τd on X which has a base the family of open

balls {Bd(x, ε) : x ∈ X and ε > 0}. The closure of a subset A of X with respect to τd is denoted by cld(A).
If d is a quasi metric on X, then τd is a T0 topology, and if d is a T1-quasi metric, then τd is a T1 topology
on X.

If d is a quasi metric and τd is T1 topology, then d is T1-quasi metric.
If d is a quasi-pseudo metric on X, then the functions d−1, ds and d+ defined by

d−1(x, y) = d(y, x),

ds(x, y) = max
{
d(x, y), d−1(x, y)

}
,

and
d+(x, y) = d(x, y) + d−1(x, y),

are also quasi-pseudo metrics on X. If d is a quasi metric, then ds and d+ are (equivalent) metrics on X.
Let (X, d) be a quasi metric space and x ∈ X. The convergence of a sequence {xn} to x with respect to

τd called d-convergence and denoted by xn
d→ x, is defined

xn
d→ x⇔ d(x, xn)→ 0.

Similarly, the convergence of a sequence {xn} to x with respect to τd−1 called d−1-convergence and

denoted by xn
d−1

→ x, is defined

xn
d−1

→ x⇔ d(xn, x)→ 0.

Finally, the convergence of a sequence {xn} to x with respect to τds called ds-convergence and denoted

by xn
ds→ x, is defined

xn
ds→ x⇔ ds(xn, x)→ 0.

It is clear that xn
ds→ x ⇔ xn

d→ x and xn
d−1

→ x. More and detailed information about some important
properties of quasi metric spaces and their topological structures can be found in [8, 16, 17].

Definition 1.1 ([23]). Let (X, d) be a quasi metric space. A sequence {xn} in X is called

• left K-Cauchy (or forward Cauchy) if for every ε > 0, there exists n0 ∈ N such that

∀n, k, n ≥ k ≥ n0, d(xk, xn) < ε,
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• right K-Cauchy (or backward Cauchy) if for every ε > 0, there exists n0 ∈ N such that

∀n, k, n ≥ k ≥ n0, d(xn, xk) < ε,

• ds-Cauchy if for every ε > 0, there exists n0 ∈ N such that

∀n, k ≥ n0, d(xn, xk) < ε.

It is clear that {xn} is ds-Cauchy if and only if it is both left K-Cauchy and right K-Cauchy. If a
sequence is left K-Cauchy with respect to d, then it is right K-Cauchy with respect to d−1. If {xn} is a
sequence in a quasi metric space (X, d) such that

∞∑
n=1

d(xn, xn+1) <∞,

then it is left K-Cauchy sequence.
It is well known that every convergent sequence is Cauchy in a metric space. In general, this situation

is not valid in a quasi metric space. That is, d-convergent or d−1-convergent sequences may not be Cauchy
(in the sense of ds, left K and right K) in a quasi metric space (see [23]).

Definition 1.2 ([5, 23]). Let (X, d) be a quasi metric space. Then (X, d) is said to be

• bicomplete if every ds-Cauchy sequence is ds-convergent,

• left (right) K-complete if every left (right) K-Cauchy sequence is d-convergent,

• left (right) M-complete if every left (right) K-Cauchy sequence is d−1-convergent,

• left (right) Smyth complete if every left (right) K-Cauchy sequence is ds-convergent.

One can find more detailed information about some kind of Cauchyness, completeness and some impor-
tant properties of quasi metric space in [5, 23, 24].

On the other hand, α-admissibility and F -contractivity of a mapping are popular concepts in recent
metrical fixed point theory. The concept of α-admissibility of a mapping on a nonempty set has been
introduced by Samet, et al. [25]. Let X be a nonempty set, T be a self mapping of X and α : X×X → [0,∞)
be a function. Then T is said to be α-admissible if

α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1.

Using α-admissibility of a mapping, Samet, et al. [25] provided some general fixed point results including
many known theorems on complete metric spaces.

The concept of F -contraction was introduced by Wardowski [26]. Let F be the family of all functions
F : (0,∞)→ R satisfying the following conditions:

(F1) F is strictly increasing,

(F2) For each sequence {λn} of positive numbers limn→∞ λn = 0 if and only if limn→∞ F (λn) = −∞,

(F3) There exists k ∈ (0, 1) such that limλ→0+ λ
kF (λ) = 0.

Let T be a self mapping of a metric space (X, d) and F ∈ F . Then, T is said to be F -contraction if for
all x, y ∈ X with d(Tx, Ty) > 0, there exists τ > 0 such that

τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Various fixed point results for α-admissible mappings and F -contractions on complete metric space can
be found in [3, 10, 12, 13, 14, 15] and [4, 6, 7, 9, 21, 22, 27], respectively.

The aim of this paper is to establish several new fixed point results on some kind of complete quasi metric
spaces by taking into account α-admissibility and a quasi metric version of F -contractivity of a mapping.

We can find some recent fixed point results for single valued and multivalued mappings on quasi metric
spaces in [1, 2, 11, 18, 19, 20].
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2. Fixed Point Result

Let (X, d) be a quasi metric space, T : X → X be a mapping and α : X ×X → [0,∞) be a function.
We will consider the following set to introduce a quasi metric version of F -contractivity of a mapping:

Tα = {(x, y) ∈ X ×X : α(x, y) ≥ 1 and d(Tx, Ty) > 0}.

Definition 2.1. Let (X, d) be a quasi metric space, T : X → X be a mapping satisfying

d(x, y) = 0⇒ d(Tx, Ty) = 0, (2.1)

α : X ×X → [0,∞) and F ∈ F be two functions. Then T is said to be an (α, Fd)-contraction if there exists
τ > 0 such that

τ + F (d(Tx, Ty)) ≤ F (d(x, y)) (2.2)

for all (x, y) ∈ Tα.

The following example shows the importance of condition (2.1).

Example 2.2. Let X = {0, 1} ∪A, where A = {2, 3, · · · } and let d be the quasi metric on X given by

d(n, n) = 0 for all n ∈ X
d(0, n) = d(n, 1) = 0 for all n ∈ X\{0}
d(n, 0) = 1 for all n ∈ X\{0}

d(n,m) =
1

2n+1
+

1

2m+1
, otherwise.

Now define T : X → X as Tn = n+ 1 for all n ∈ X and α : X ×X → [0,∞) as

α(n,m) =


1, (n,m) ∈ A×A

0, otherwise.

Note that Tα = {(n,m) : n,m ∈ A and n 6= m}. Now, we show that inequality (2.2) is satisfied with
F (λ) = lnλ and τ = ln 2 for all (n,m) ∈ Tα. Indeed, for n,m ∈ A with n 6= m, we have

ln d(Tn, Tm) = ln d(n+ 1,m+ 1)

= ln

(
1

2n+2
+

1

2m+2

)
= − ln 2 + ln

(
1

2n+1
+

1

2m+1

)
= − ln 2 + d(n,m).

However, T is not (α, Fd)-contraction, since the condition (2.1) does not hold. Indeed, d(0, 1) = 0 but
d(T0, T1) > 0.

Remark 2.3. If (X, d) is a T1-quasi metric space, then every mapping T : X → X satisfies the condition
(2.1).

Remark 2.4. It is clear from Definition 2.1 that if T is an (α, Fd)-contraction on a quasi metric space (X, d),
then

d(Tx, Ty) ≤ d(x, y),

for all x, y ∈ X with α(x, y) ≥ 1.

Our main fixed point result is as follows:
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Theorem 2.5. Let (X, d) be a Hausdorff left K-complete quasi metric space, T : X → X be an (α, Fd)-
contraction. Assume that T is α-admissible and τd-continuous. If there exists x0 ∈ X such that α(x0, Tx0) ≥
1, then T has a fixed point in X.

Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. Define a sequence {xn} in X by xn = Txn−1 for all n ∈ N.
Since T is α-admissible, then α(xn, xn+1) ≥ 1 for all n ∈ N. Now, let dn = d(xn, xn+1) for all n ∈ N.

If there exists k ∈ N with dk = d(xk, xk+1) = 0, then xk is a fixed point of T since d is T1-quasi metric.
Suppose dn > 0 for all n ∈ N. Since T is (α, Fd)-contraction, we get

F (dn) ≤ F (dn−1)− τ ≤ F (dn−2)− 2τ ≤ · · · ≤ F (d0)− nτ. (2.3)

From (2.3), we get limn→∞ F (dn) = −∞. Thus, from (F2), we have

lim
n→∞

dn = 0.

From (F3) there exists k ∈ (0, 1) such that

lim
n→∞

dknF (dn) = 0.

By (2.3), the following holds for all n ∈ N

dknF (dn)− dknF (d0) ≤ −dknnτ ≤ 0. (2.4)

Letting n→∞ in (2.4), we obtain that
lim
n→∞

ndkn = 0. (2.5)

From (2.5), there exits n1 ∈ N such that ndkn ≤ 1 for all n ≥ n1. So, we have, for all n ≥ n1

dn ≤
1

n1/k
. (2.6)

Therefore
∞∑
n=1

dn <∞. Now let m,n ∈ N with m > n ≥ n1, then we get

d(xn, xm) ≤ d(xn+1, xn+2) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

= dn + dn+1 + · · ·+ dm−1

≤
∞∑
k=n

dk.

Since
∞∑
k=1

dk is convergent, then we get {xn} is left K-Cauchy sequence in the quasi metric space (X, d).

Since (X, d) left K-complete, there exists z ∈ X such that {xn} is d-converges to z, that is, d(z, xn)→ 0 as
n→∞. Since T is τd-continuous, then d(Tz, Txn) = d(Tz, xn+1)→ 0 as n→∞. Since X is Hausdorff we
get z = Tz.

The following example shows that the Hausdorffness condition ofX can not be removed in above theorem.

Example 2.6. Let X = { 1n : n ∈ N} and

d(x, y) =


0, x = y

y, x 6= y.

Then (X, d) is a left K-complete T1-quasi metric space, but not Hausdorff since τd is cofinite topology. Define
a mapping T : X → X by Tx = x

2 , then T is (α, Fd)-contraction with α(x, y) = 1, F (λ) = lnλ and τ = ln 2.
Also T is α-admissible and τd-continuous. However, T has no fixed point.
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In Theorem 2.5, if we take τd−1 continuity of the mapping T instead of τd-continuity, we can take left
M-completeness of X.

Theorem 2.7. Let (X, d) be a Hausdorff left M-complete quasi metric space, T : X → X be an (α, Fd)-
contraction. Assume that T is α-admissible and τd−1-continuous. If there exists x0 ∈ X such that
α(x0, Tx0) ≥ 1, then T has a fixed point in X.

Proof. As in the proof of Theorem 2.5, we can get the iterative sequence {xn} is left K-Cauchy. Since (X, d)
left M-complete, there exists z ∈ X such that {xn} is d−1-converges to z, that is, d(xn, z)→ 0 as n→∞.
By τd−1-continuity of T, we have d(Txn, T z) = d(xn+1, T z) → 0 as n → ∞. Since X is Hausdorff we get
z = Tz.

The following theorems show that if we take into account the left Smyth completeness of X, we can
remove the Hausdorffness condition. However, we need the quasi metric d is still T1-quasi metric.

Theorem 2.8. Let (X, d) be left Smyth complete T1-quasi metric space, T : X → X be an (α, Fd)-
contraction. Assume that T is α-admissible and τd or τd−1-continuous. If there exists x0 ∈ X such that
α(x0, Tx0) ≥ 1, then T has a fixed point in X.

Proof. As in the proof of Theorem 2.5, we can get the iterative sequence {xn} is left K-Cauchy. Since
(X, d) left Smyth complete, there exists z ∈ X such that {xn} is ds-converges to z, that is, ds(xn, z)→ 0 as
n→∞.

If T is τd-continuous, then d(Tz, Txn) = d(Tz, xn+1)→ 0 as n→∞. Therefore, we get

d(Tz, z) ≤ d(Tz, xn+1) + d(xn+1, z)→ 0 as n→∞.

If T is τd−1-continuous, then d(Txn, T z) = d(xn+1, T z)→ 0 as n→∞. Therefore, we get

d(z, Tz) ≤ d(z, xn+1) + d(xn+1, T z)→ 0 as n→∞.

Since X is T1-quasi metric space, we obtain z = Tz.

One of the following properties of the spaces X, can be considered instead of τd or τd−1-continuity of T
in Theorem 2.8.

It is said that the quasi metric space (X, d) has (Ad) (resp. (Bd)) property whenever {xn} is a sequence

in X such that xn
d→ z and α(xn, xn+1) ≥ 1 implies α(xn, z) ≥ 1 (resp. α(z, xn) ≥ 1) for all n ∈ N.

Theorem 2.9. Let (X, d) be left Smyth complete T1-quasi metric space, T : X → X be an (α, Fd)-
contraction. Assume that T is α-admissible and X has (Ad), (Ad−1), (Bd) or (Bd−1) property. If there
exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a fixed point in X.

Proof. As in the proof of Theorem 2.5, we can get the iterative sequence {xn} is left K-Cauchy. Since
(X, d) left Smyth complete, there exists z ∈ X such that {xn} is ds-converges to z, that is, ds(xn, z)→ 0 as
n→∞.

If X has (Ad) or (Ad−1) property, we get α(xn, z) ≥ 1. Therefore, considering Remark 2.4, we have

d(z, Tz) ≤ d(z, xn+1) + d(Txn, T z)

≤ d(z, xn+1) + d(xn, z)→ 0 as n→∞.

If X has (Bd) or (Bd−1) property, we get α(z, xn) ≥ 1. Therefore, considering Remark 2.4, we have

d(Tz, z) ≤ d(Tz, Txn) + d(xn+1, z)

≤ d(z, xn) + d(xn+1, z)→ 0 as n→∞.

Since X is T1-quasi metric space, we get z = Tz.
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The following example emphasizes the importances of the continuity of T in Theorem 2.8 and (Ad),
(Ad−1), (Bd) or (Bd−1) properties on X in Theorem 2.9.

Example 2.10. Let X = [0, 1] and d(x, y) = |x− y| for all x, y ∈ X. Now define T : X → X as

Tx =


1, x = 0

x
2 , x 6= 0

and α : X ×X → [0,∞) as

α(x, y) =


1, xy 6= 0

0, otherwise.

Since (X, d) is complete metric space then it is left Smyth complete T1-quasi metric space. Observe that
T is α-admissible and also for x0 = 1, we have α(x0, Tx0) = α(1, T1) = α(1, 12) ≥ 1. On the other hand,
since

Tα = {(x, y) ∈ X ×X : α(x, y) ≥ 1 and d(Tx, Ty) > 0}
= {(x, y) ∈ X ×X : xy 6= 0 and x 6= y},

then

d(Tx, Ty) =
1

2
d(x, y),

for all (x, y) ∈ Tα. That is, T is (α, Fd)-contraction with F (λ) = lnλ and τ = ln 2.
Note that T is not τd (and τd−1)-continuous. Also note that X has not (Ad) (and (Bd)) property. To

see this we can consider the sequence xn = 1
n .

Remark 2.11. Taking into account the right completeness (in the sense of K,M and Smyth), we can provide
similar fixed point results on quasi metric space.
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