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Abstract

Recently, fractional k-integral operators have been investigated in the literature by some authors. Here,
we focus to prove some new fractional integral inequalities involving generalized fractional k-integral operator
due to Sarikaya et al. for the cases of synchronous functions as well as of functions bounded by integrable
functions are considered. c©2016 All rights reserved.
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1. Introduction

In 1882, P. L. Chebyshev[12] was established the Chebyshev functional (1.1), which has attracted many
researcher’s attention due mainly to diverse applications in numerical quadrature, transform theory, prob-
ability and statistical problems. Among those applications, the functional (1.1) has also been employed to
yield a number of integral inequalities (see, e.g., [1, 2, 3, 5, 9, 13, 14, 15, 16, 17, 20, 23, 25, 29, 33, 34]). This
is defined as (see [12]):
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T (f, g, p, q) =

∫ b

a
q(x) dx

∫ b

a
p(x) f(x) g(x) dx

+

∫ b

a
p(x)dx

∫ b

a
q(x) f(x) g(x)dx

−
(∫ b

a
q(x) f(x)dx

)(∫ b

a
p(x) g(x)dx

)
−
(∫ b

a
p(x) f(x)dx

)(∫ b

a
q(x) g(x)dx

)
,

(1.1)

where f, g : [a, b] → R are two integrable functions on [a, b] and p(x) and q(x) are positive integrable
functions on [a, b]. If f and g are synchronous on [a, b], i.e.,

(f(x)− f(y)) (g(x)− g(y)) ≥ 0 (1.2)

for any x, y ∈ [a, b], then we have (see [27]):

T (f, g, p, q) ≥ 0. (1.3)

The inequality in (1.2) is reversed if f and g are asynchronous on [a, b], i.e.,

(f(x)− f(y)) (g(x)− g(y)) ≤ 0 (1.4)

for any x, y ∈ [a, b]. If p(x) = q(x) for any x, y ∈ [a, b], we get the Chebyshev inequality (see [12]).
Ostrowski [30] established the following generalization of the Chebyshev inequality:
If f and g are two differentiable and synchronous functions on [a, b], and p is a positive integrable

function on [a, b] with |f ′(x)| ≥ m and |g′(x)| ≥ r for x ∈ [a, b], then we have

T (f, g, p) = T (f, g, p, p) ≥ mr T (x− a, x− a, p) ≥ 0. (1.5)

If f and g are asynchronous on [a, b], then we have

T (f, g, p) ≤ mr T (x− a, x− a, p) ≤ 0. (1.6)

If f and g are two differentiable functions on [a, b] with |f ′(x)| ≤M and |g′(x)| ≤ R for x ∈ [a, b] and p
is a positive integrable function on [a, b], then we have

|T (f, g, p)| ≤M RT (x− a, x− a, p) ≤ 0. (1.7)

Here, we begin with the following definitions.

Definition 1.1. Let k > 0, then the generalized k−gamma and k−beta functions defined by [18]:

Γk(x) =
lim

n→∞
n! kn(nk)

x
k − 1

(x)n,k
, (1.8)

where (x)n,k is a Pochhammer k-symbol defined by

(x)n,k = x(x+ k)(x+ 2k) · · · (x+ (n− 1)k) , (n ≥ 1).

Definition 1.2. The Mellin transform of the exponential function e−
tk

k is the k− gamma function defined
as:

Γk =

∫ ∞
0

tx−1e−
tk

k dt, <(x) > 0.

Clearly

Γ(x) =
lim
k → 1

Γk(x) = k
x
k
−1 and Γk(x+ k) = xΓk(x).
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The inequalities involving fractional integral operators has gained considerable popularity and impor-
tance during the past few years. In literature point of view many fractional integral operators already proved
their importance. Very recently, fractional operator, whose derivative has no singular kernel introduced by
Caputo and Fabrizio [10, 26]. Motivated by above work many researchers applied new derivative in certain
real world problems (see, e.g., [4, 6, 7, 8, 11, 19, 21, 22]). In the sequel, recently, k-extensions of some familiar
fractional integral operator like Riemann-Liouville have been investigated by many authors in interesting
and useful manners (see [31, 32]). Here, we begin with the following.

Definition 1.3. If k > 0, let f ∈ L1(a, b), then the Riemann-Liouville k-fractional integral Rαa,k of order
a ≥ 0 and α > 0 for a real-valued continuous function f(t) is defined by ([28], see also [32]):

Rαa,k {f(t)} =
1

kΓk(α)

∫ t

a
(t− τ)

α
k
−1f(τ)dτ, (α > 0, τ > a) . (1.9)

For k = 1, equation (1.9) reduces to the classical Riemann-liouville fractional integral.

Definition 1.4. If k > 0, let f ∈ L1,r[a, b] then the generalized Riemann-Liouville k-fractional integral Rα,ra,k
of order a ≥ 0, α > 0 and r ∈ R\{−1} for a real-valued continuous function f(t) is defined by ([31]):

Rα,ra,k {f(t)} =
(1 + r)1−α

k

kΓk(α)

∫ t

a
(tr+1 − τ r+1)

α
k
−1f(τ)dτ, (t ∈ [a, b]) , (1.10)

where Γk is the Euler gamma k-function.
For a = 0, it is easy to see that

Rα,ra,k {f(t)} = Rα,rk {f(t)} .

The (1.10) has the following properties

Rα,ra,k

{
Rβ,ra,kf(t)

}
= Rα+β,r

a,k {f(t)} = Rβ,ra,k

{
Rα,ra,kf(t)

}
(1.11)

and

Rα,ra,k {1} =
(tr+1 − τ r+1)

α
k
−1

(r + 1)
α
k Γk(α+ k)

, α > 0. (1.12)

Here, our purpose is to prove k-calculus analogous of some classical integral inequalities and prove k-
generalizations of the Chebyshev integral inequalities by using the generalized Riemann-Liouville fractional
k-integral operator. For our object we consider the case of synchronous functions as well as the case of
functions bounded by integrable functions.

We organize the paper as follows: in Section 2, we prove two inequalities involving a generalized Riemann-
Liouville k−fractional integral operators for synchronous functions and Section 3 contains some new in-
equalities involving generalized fractional k-integral operator in the case where the functions are bounded
by integrable functions and not necessary increasing or decreasing as are the synchronous functions.

2. Inequalities involving generalized fractional k-integral operator for synchronous functions

This section begins by presenting two inequalities involving generalized fractional k-integral operator
(1.10) stated in Lemmas 2.1 and 2.2.

Lemma 2.1. Let f and g be two continuous and synchronous functions on [0, ∞) and u, v : [0,∞)→ [0,∞)
be continuous functions. Then the following inequality holds true:

Rα,rk {u} (t)Rα,rk {v f g} (t) +Rα,rk {v} (t)Rα,rk {u f g} (t)

≥ Rα,rk {u f} (t)Rα,rk {v g} (t) +Rα,rk {v f} (t)Rα,rk {u g} (t)
(2.1)

for all t > 0, k > 0, α > 0 and r ∈ R\{−1}.
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Proof. Let f and g be two continuous and synchronous functions on [0, ∞). Then, for all τ , ρ ∈ (0, t) with
t > 0, we have

(f(τ)− f(ρ)) (g(τ)− g(ρ)) ≥ 0 (2.2)

or, equivalently,
f(τ)g(τ) + f(ρ)g(ρ) ≥ f(τ)g(ρ) + f(ρ)g(τ). (2.3)

Now, multiplying both sides of (2.3) by (1+r)1−
α
k (tr+1−τr+1)

α
k
−1

kΓk(α) u(τ), and integrating the resulting in-

equality with respect to τ from 0 to t, and using (1.10), we get

Rα,rk {u f g} (t) + f(ρ)g(ρ)Rα,rk {u} (t) ≥ g(ρ)Rα,rk {u f} (t) + f(ρ)Rα,rk . (2.4)

Next, multiplying both sides of (2.4) by (1+r)1−
α
k (tr+1−ρr+1)

α
k
−1

kΓk(α) v(ρ) and integrating the resulting inequal-

ity with respect to ρ from 0 to t and using (1.10), we are led to the desired result (2.1).

Lemma 2.2. Let f and g be two continuous and synchronous functions on [0, ∞) and let u, v : [0,∞) →
[0,∞) be continuous functions. Then the following inequality holds true:

Rβ,rk {v} (t)Rα,rk {u f g} (t) +Rβ,rk {v f g} (t)Rα,rk {u} (t)

≥ Rβ,rk {v g} (t)Rα,rk {u f} (t) +Rβ,rk {v f} (t)Rα,rk {u g} (t)
(2.5)

for all t > 0, k > 0, α > 0 and r ∈ R\{−1}.

Proof. Multiplying both sides of (2.4) by (1+r)1−
β
k (tr+1−ρr+1)

β
k
−1

kΓk(β) v(ρ), which remains nonnegative under the

conditions in (2.5) and integrating the resulting inequality with respect to ρ from 0 to t and using (1.10),
we get the desired result (2.5).

Theorem 2.3. Let f and g be two continuous and synchronous functions on [0,∞) and let l,m, n : [0,∞)→
[0,∞) be continuous functions. Then the following inequality holds true:

2Rα,rk {l} (t)
[
Rα,rk {m} (t)Rα,rk {n f g} (t) +Rα,rk {n} (t)Rα,rk {mf g} (t)

]
+ 2Rα,rk {m} (t)Rα,rk {n} (t)Rα,rk {l f g} (t)

≥ Rα,rk {l} (t)
[
Rα,rk {mf} (t)Rα,rk {n g} (t) +Rα,rk {n f} (t)Rα,rk {mg} (t)

]
+Rα,rk {m} (t)

[
Rα,rk {l f} (t)Rα,rk {n g} (t) +Rα,rk {n f} (t)Rα,rk {l g} (t)

]
+Rα,rk {n} (t)

[
Rα,rk {l f} (t)Rα,rk {mg} (t) +Rα,rk {mf} (t)Rα,rk {l g} (t)

]
(2.6)

for all t > 0, k > 0, α > 0 and r ∈ R\{−1}.

Proof. By setting u = m and v = n in Lemma 2.1, we get

Rα,rk {m} (t)Rα,rk {n f g} (t) +Rα,rk {n} (t)Rα,rk {mf g} (t)

≥ Rα,rk {mf} (t)Rα,rk {n g} (t) +Rα,rk {n f} (t)Rα,rk {mg} (t).
(2.7)

Since Rα,rk {l} (t) ≥ 0 under the given conditions, multiplying both sides of (2.7) by Rα,rk {l} (t), we have

Rα,rk {l} (t)
[
Rα,rk {m} (t)Rα,rk {n f g} (t) +Rα,rk {n} (t)Rα,rk {mf g} (t)

]
≥ Rα,rk {l} (t)

[
Rα,rk {mf} (t)Rα,rk {n g} (t) +Rα,rk {n f} (t)Rα,rk {mg} (t)

]
.

(2.8)

Similarly replacing u, v by l, n and u, v by l, m, respectively, in (2.1), and then multiplying both sides of
the resulting inequalities by Rα,rk {m} (t) and Rα,rk {n} (t) both of which are nonnegative under the given
assumptions, respectively, we get the following inequalities:

Rα,rk {m} (t)
[
Rα,rk {l} (t)Rα,rk {n f g} (t) +Rα,rk {n} (t)Rα,rk {l f g} (t)

]
≥ Rα,rk {m} (t)

[
Rα,rk {l f} (t)Rα,rk {n g} (t) +Rα,rk {n f} (t)Rα,rk {l g} (t)

] (2.9)
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and
Rα,rk {n} (t)

[
Rα,rk {l} (t)Rα,rk {mf g} (t) +Rα,rk {m} (t)Rα,rk {l f g} (t)

]
≥ Rα,rk {n} (t)

[
Rα,rk {l f} (t)Rα,rk {mg} (t) +Rα,rk {mf} (t)Rα,rk {l g} (t)

]
.

(2.10)

Finally, by adding (2.8), (2.9) and (2.10), sides by sides, we get the desired result (2.6).

Theorem 2.4. Let f and g be two continuous and synchronous functions on [0, ∞) and let l, m, n :
[0, ∞)→ [0, ∞) be continuous functions. Then the following inequality holds true:

Rα,rk {l} (t)
[

2Rα,rk {m} (t)Rβ,rk {n f g} (t) +Rα,rk {n} (t)Rβ,rk {mf g} (t)

+Rβ,rk {n} (t)Rα,rk {mf g} (t)
]

+Rα,rk {l f g} (t)
[
Rα,rk {m} (t)Rβ,rk {n} (t)

+Rα,rk {n} (t)Rβ,rk {m} (t)
]

≥ Rα,rk {l} (t)
[
Rα,rk {mf} (t)Rβ,rk {n g} (t) +Rα,rk {mg} (t)Rβ,rk {n f} (t)

]
+Rα,rk {m} (t)

[
Rα,rk {l f} (t)Rβ,rk {n g} (t) +Rα,rk {l g} (t)Rβ,rk {n f} (t)

]
+Rα,rk {n} (t)

[
Rα,rk {l f} (t)Rβ,rk {mg} (t) +Rα,rk {l g} (t)Rβ,rk {mf} (t)

]
(2.11)

for all t > 0, k > 0, α > 0, β > 0 and r ∈ R\{−1}.

Proof. Setting u = m and v = n in (2.5), we have

Rβ,rk {n} (t)Rα,rk {mf g} (t) +Rβ,rk {n f g} (t)Rα,rk {m} (t)

≥ Rβ,rk {n g} (t)Rα,rk {mf} (t) +Rβ,rk {n f} (t)Rα,rk {mg} (t).
(2.12)

Multiplying both sides of (2.12) by Rα,rk {l} (t), after a little simplification, we get

Rα,rk {l} (t)
[
Rβ,rk {n} (t)Rα,rk {mf g} (t) +Rβ,rk {n f g} (t)Rα,rk {m} (t)

]
≥ Rα,rk {l} (t)

[
Rβ,rk {n g} (t)Rα,rk {mf} (t) +Rβ,rk {n f} (t)Rα,rk {mg} (t)

]
.

(2.13)

Now, by replacing u, v by l, n and u, v by l, m in (2.5), respectively, and then multiplying both sides of the
resulting inequalities by Rα,rk {m} (t) and Rα,rk {n} (t), respectively, we get the following two inequalities

Rα,rk {m} (t)
[
Rβ,rk {n} (t)Rα,rk {l f g} (t) +Rβ,rk {n f g} (t)Rα,rk {l} (t)

]
≥ Rα,rk {m} (t)

[
Rβ,rk {n g} (t)Rα,rk {l f} (t) +Rβ,rk {n f} (t)Rα,rk {l g} (t)

] (2.14)

and
Rα,rk {n} (t)

[
Rβ,rk {m} (t)Rα,rk {l f g} (t) +Rβ,rk {mf g} (t)Rα,rk {l} (t)

]
≥ Rα,rk {n} (t)

[
Rβ,rk {mg} (t)Rα,rk {l f} (t) +Rβ,rk {mf} (t)Rα,rk {l g} (t)

]
.

(2.15)

Finally we find that the Inequality (2.11) follows by adding the Inequalities (2.13), (2.14) and (2.15), sides
by sides.

3. Inequalities involving generalized fractional k-integral operator for bounded functions

In this section we obtain some new inequalities involving fractional k-integral operator in the case where
the functions are bounded by integrable functions and not necessary increasing or decreasing as are the
synchronous functions.
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Theorem 3.1. Let f be an integrable function on [0,∞) and u, v : [0,∞)→ [0,∞) be continuous functions.
Assume that:

(H1) There exist two integrable functions ϕ1, ϕ2 on [0,∞) such that

ϕ1(t) ≤ f(t) ≤ ϕ2(t) for all t ∈ [0,∞).

Then, for all t > 0, k > 0, α > 0 and r ∈ R\{−1}, we have

Rα,rk {uϕ2} (t)Rα,rk {v f} (t) +Rα,rk {u f} (t)Rα,rk {v ϕ1} (t)

≥ Rα,rk {uϕ2} (t)Rα,rk {v ϕ1} (t) +Rα,rk {u f} (t) IRα,rk {v f} (t).
(3.1)

Proof. From (H1), for all τ ≥ 0, ρ ≥ 0, we have

(ϕ2(τ)− f(τ)) (f(ρ)− ϕ1(ρ)) ≥ 0.

Therefore

ϕ2(τ)f(ρ) + ϕ1(ρ)f(τ) ≥ ϕ1(ρ)ϕ2(τ) + f(τ)f(ρ). (3.2)

Multiplying both sides of (3.2) by
(1 + r)1−α

k (tr+1 − τ r+1)
α
k
−1

kΓk(α)
u(τ), τ ∈ (a, t) and integrating both sides

with respect to τ on (0, t), we obtain

Rα,rk {uϕ2} (t)f(ρ) +Rα,rk {u f} (t)ϕ1(ρ)

≥ Rα,rk {uϕ2} (t)ϕ1(ρ) +Rα,rk {u f} (t)f(ρ).
(3.3)

Multiplying both sides of (3.3) by
(1 + r)1−α

k (tr+1 − ρr+1)
α
k
−1

kΓk(α)
v(ρ), ρ ∈ (a, t), and integrating both sides

with respect to ρ on (0, t), we get inequality (3.1) as requested. This completes the proof.

As special cases of Theorem 3.1, we obtain the following results:

Corollary 3.2. Let f be an integrable function on [0,∞) satisfying m ≤ f(t) ≤ M for all t ∈ [0,∞),
u, v : [0,∞) → [0,∞) be continuous functions and m,M ∈ R. Then for all t > 0, k > 0, α > 0 and
r ∈ R\{−1}, we have

MRα,rk {u} (t)Rα,rk {v f} (t) +mRα,rk {u f} (t)Rα,rk {v} (t)

≥ mMRα,rk {u} (t)Rα,rk {v} (t) +Rα,rk {u f} (t)Rα,rk {v f} (t).

Corollary 3.3. Let f be an integrable function on [1,∞) and u, v : [0,∞)→ [0,∞) be continuous functions.
Assume that there exists an integrable function ϕ(t) on [0,∞) and a constant M > 0 such that

ϕ(t)−M ≤ f(t) ≤ ϕ(t) +M,

then for all t > 0, k > 0, α > 0 and r ∈ R\{−1}, we have

Rα,rk {uϕ} (t)Rα,rk {v f} (t) +Rα,rk {u f} (t)Rα,rk {v ϕ} (t)

+MRα,rk {u} (t)Rα,rk {v f} (t) +MRα,rk {v} (t)Rα,rk {uϕ} (t)

+M2Rα,rk {u} (t)Rα,rk {v} (t)

≥ Rα,rk {uϕ} (t)Rα,rk {v ϕ} (t) +Rα,rk {u f} (t)Rα,rk {v f} (t)

+MRα,rk {u} (t)Rα,rk {v ϕ} (t) +MRα,rk {u f} (t)Rα,rk {v} (t).
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Theorem 3.4. Let f be an integrable function on [0,∞), u, v : [0,∞) → [0,∞) be continuous functions
and θ1, θ2 > 0 satisfying 1/θ1 + 1/θ2 = 1. Suppose that (H1) holds. Then, for all t > 0, k > 0, α > 0 and
r ∈ R\{−1}, we have

1

θ1
Rα,rk {v} (t)Rα,rk

{
u (ϕ2 − f)θ1

}
(t) +

1

θ2
Rα,rk {u} (t)Rα,rk

{
v (f − ϕ1)θ2

}
(t)

+Rα,rk {uϕ2} (t)Rα,rk {v ϕ1} (t) +Rα,rk {u f} (t)Rα,rk {v f} (t)

≥ Rα,rk {uϕ2} (t)Rα,rk {v f} (t) +Rα,rk {u f} (t)Rα,rk {v ϕ1} (t).

(3.4)

Proof. According to the well-known Young’s inequality [27]

1

θ1
xθ1 +

1

θ2
yθ2 ≥ xy ∀x, y ≥ 0, θ1, θ2 > 0,

1

θ1
+

1

θ2
= 1,

setting x = ϕ2(τ)− f(τ) and y = f(ρ)− ϕ1(ρ), τ, ρ ≥ 0, we have

1

θ1
(ϕ2(τ)− f(τ))θ1 +

1

θ2
(f(ρ)− ϕ1(ρ))θ2 ≥ (ϕ2(τ)− f(τ))(f(ρ)− ϕ1(ρ)). (3.5)

Multiplying both sides of (3.5) by

(1+)2−2α
k (tr+1 − τ r+1)

α
k
−1 (tr+1 − ρr+1)

α
k
−1

(kΓk(α))2 u(τ)v(ρ)

for τ, ρ ∈ (0, t), and integrating with respect to τ and ρ from 0 to t, we deduce the desired result in (3.4).

Corollary 3.5. Let f be an integrable function on [0,∞) satisfying m ≤ f(t) ≤ M for all t ∈ [0,∞),
u, v : [0,∞) → [0,∞) be continuous functions and m,M ∈ R. Then for all t > 0, k > 0, α > 0 and
r ∈ R\{−1}, we have

(m+M)2Rα,rk {u} (t)Rα,rk {v} (t) + 2Rα,rk {u f} (t)Rα,rk {v f} (t)

+Rα,rk
{
v f2

}
(t)
(
Rα,rk {u} (t) +Rα,rk {v} (t)

)
≥ 2(m+M)

(
Rα,rk {u f} (t)Rα,rk {v} (t) +Rα,rk {u} (t)Rα,rk {v f} (t)

)
.

Theorem 3.6. Let f be an integrable function on [0,∞), u, v : [0,∞)→ [0,∞) be continuous functions and
θ1, θ2 > 0 satisfying θ1 + θ2 = 1. In addition, suppose that (H1) holds. Then, for all t > 0, k > 0, α > 0 and
r ∈ R\{−1}, we have

θ1R
α,r
k {uϕ2} (t)Rα,rk {v} (t) + θ2R

α,r
k {u} (t)Rα,rk {v f} (t)

≥ θ1R
α,r
k {u f} (t)Rα,rk {v} (t) + θ2R

α,r
k {u} (t)Rα,rk {v ϕ1} (t)

+Rα,rk

{
u (ϕ2 − f)θ1

}
(t)Rα,rk

{
v (f − ϕ1)θ2

}
(t).

(3.6)

Proof. From the well-known Weighted AM-GM inequality [27]

θ1x+ θ2y ≥ xθ1yθ2 ∀x, y ≥ 0, θ1, θ2 > 0, θ1 + θ2 = 1,

by setting x = ϕ2(τ)− f(τ) and y = f(ρ)− ϕ1(ρ), τ, ρ > 1, we have

θ1(ϕ2(τ)− f(τ)) + θ2(f(ρ)− ϕ1(ρ)) ≥ (ϕ2(τ)− f(τ))θ1(f(ρ)− ϕ1(ρ))θ2 . (3.7)

Multiplying both sides of (3.7) by

(1+)2−2α
k (tr+1 − τ r+1)

α
k
−1 (tr+1 − ρr+1)

α
k
−1

(kΓk(α))2 u(τ)v(ρ)

for τ, ρ ∈ (0, t), and integrating with respect to τ and ρ from 0 to t, we deduce inequality (3.6).
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Corollary 3.7. Let f be an integrable function on [0,∞) satisfying m ≤ f(t) ≤ M for all t ∈ [0,∞),
u, v : [0,∞) → [0,∞) be continuous functions and m,M ∈ R. Then for all t > 0, k > 0, α > 0 and
r ∈ R\{−1}, we have

(M −m)Rα,rk {u} (t)Rα,rk {v} (t) +Rα,rk {u} (t)Rα,rk {v f} (t)

≥ Rα,rk {u f} (t)Rα,rk {v} (t) + 2Rα,rk

{
u
√
M − f

}
(t)Rα,rk

{
v
√
f −m

}
(t).

Lemma 3.8 ([24]). Assume that a ≥ 0, p ≥ q ≥ 0 and p 6= 0. Then

a
q
p ≤

(
q

p
k
q−p
p a+

p− q
p

k
q
p

)
for any k > 0.

Theorem 3.9. Let f be an integrable function on [0,∞), u : [0,∞)→ [0,∞) be a continuous function and
constants p ≥ q ≥ 0, p 6= 0. In addition, assume that (H1) holds. Then for all t > 0, k > 0, α > 0 and
r ∈ R\{−1}, the following two inequalities hold:

(i) Rα,rk

{
u (ϕ2 − f)

q
p

}
(t) +

q

p
k
q−p
p Rα,rk {u f} (t)

≤ q

p
k
q−p
p Rα,rk {uϕ2} (t) +

p− q
p

k
q
pRα,rk {u} (t),

(ii) Rα,rk

{
u (f − ϕ1)

q
p

}
(t) +

q

p
k
q−p
p Rα,rk {uϕ1} (t)

≤ q

p
k
q−p
p Rα,rk {u f} (t) +

p− q
p

k
q
pRα,rk {u} (t).

(3.8)

Proof. By condition (H1) and Lemma 3.8, for p ≥ q ≥ 0, p 6= 0, it follows that

(ϕ2(τ)− f(τ))
q
p ≤ q

p
k
q−p
p (ϕ2(τ)− f(τ)) +

p− q
p

k
q
p , (3.9)

for any k > 0. Multiplying both sides of (3.9) by
(1+)1−α

k (tr+1 − τ r+1)
α
k
−1

kΓk(α)
u(τ), τ ∈ (0, t), and integrating

the resulting identity with respect to τ from 0 to t, one has inequality (i). Inequality (ii) is proved by setting
a = f(τ)− ϕ1(τ) in Lemma 3.8.

Corollary 3.10. Let f be an integrable function on [0,∞) satisfying m ≤ f(t) ≤ M, for all t ∈ [0,∞),
u, v : [0,∞) → [0,∞) be continuous functions and m,M ∈ R. Then for all t > 0, k > 0, α > 0 and
r ∈ R\{−1}, we have

(i) 2Rα,rk

{
u
√
M − f

}
(t) +Rα,rk {u f} (t) ≤ (M + 1)Rα,rk {u} (t),

(ii) 2Rα,rk

{
u
√
f −m

}
(t) + (m− 1)Rα,rk {u} (t) ≤ Rα,rk {u f} (t).

Theorem 3.11. Let f and g be two integrable functions on [0,∞) and u, v : [0,∞)→ [0,∞) be continuous
functions. Suppose that (H1) holds and moreover we assume that:

(H2) There exist ψ1 and ψ2 integrable functions on [0,∞) such that

ψ1(t) ≤ g(t) ≤ ψ2(t) for all t ∈ [0,∞).

Then, for all t > 0, k > 0, a ≥ 0, α > 0 and r ∈ R\{−1}, the following inequalities hold:

(i) Rα,rk {uϕ2} (t)Rα,rk {v g} (t) +Rα,rk {u f} (t)Rα,rk {v ψ1} (t)

≥ Rα,rk {uϕ2} (t)Rα,rk {v ψ1} (t) +Rα,rk {u f} (t)Rα,rk {v g} (t),
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(ii) Rα,rk {uψ2} (t)Rα,rk {v f} (t) +Rα,rk {u g} (t)Rα,rk {v ϕ1} (t)

≥ Rα,rk {uψ2} (t)Rα,rk {v ϕ1} (t) +Rα,rk {u g} (t)Rα,rk {v f} (t),

(iii) Rα,rk {uϕ2} (t)Rα,rk {v ψ2} (t) +Rα,rk {u f} (t)Rα,rk {v g} (t)

≥ Rα,rk {uϕ2} (t)Rα,rk {v g} (t) +Rα,rk {u f} (t)Rα,rk {v ψ2} (t),

(iv) Rα,rk {uϕ1} (t)Rα,rk {v ψ1} (t) +Rα,rk {u f} (t)Rα,rk {v g} (t)

≥ Rα,rk {uϕ1} (t)Rα,rk {v g} (t) +Rα,rk {u f} (t)Rα,rk {v ψ1} (t).

Proof. To prove (i), from (H1) and (H2), we have for t ∈ [0,∞) that

(ϕ2(τ)− f(τ)) (g(ρ)− ψ1(ρ)) ≥ 0.

Therefore

ϕ2(τ)g(ρ) + ψ1(ρ)f(τ) ≥ ψ1(ρ)ϕ2(τ) + f(τ)g(ρ). (3.10)

Multiplying both sides of (3.10) by
(1+)1−α

k (tr+1 − τ r+1)
α
k
−1

kΓk(α)
u(τ), τ ∈ (0, t) and integrating both sides

with respect to τ on (0, t), we obtain

g(ρ)Rα,rk {uϕ2} (t) + ψ1(ρ)Rα,rk {u f} (t) ≥ ψ1(ρ)Rα,rk {uϕ2} (t) + g(ρ)Rα,rk {u f} (t). (3.11)

Multiplying both sides of (3.11) by
(1+)1−α

k (tr+1 − ρr+1)
α
k
−1

kΓk(α)
v(ρ), ρ ∈ (0, t), and integrating both sides

with respect to ρ on (0, t), we get the desired inequality (i).
To prove (ii)-(iv), we use the following inequalities

(ii) (ψ2(τ)− g(τ)) (f(ρ)− ϕ1(ρ)) ≥ 0,
(iii) (ϕ2(τ)− f(τ)) (g(ρ)− ψ2(ρ)) ≤ 0,
(iv) (ϕ1(τ)− f(τ)) (g(ρ)− ψ1(ρ)) ≤ 0.

Theorem 3.12. Let f and g be two integrable functions on [0,∞), u, v : [0,∞) → [0,∞) be continuous
functions and θ1, θ2 > 0 satisfying 1/θ1 + 1/θ2 = 1. Suppose that (H1) and (H2) hold. Then, for all
t > 0, k > 0, α > 0 and r ∈ R\{−1}, the following inequalities hold:

(i)
1

θ1
Rα,rk

{
u (ϕ2 − f)θ1

}
(t)Rα,rk {v} (t) +

1

θ2
Rα,rk

{
v (ψ2 − g)θ2

}
(t)Rα,rk {u} (t)

+Rα,rk {uϕ2} (t)Rα,rk {v g} (t) +Rα,rk {u f} (t)Rα,rk {v ψ2} (t)

≥ Rα,rk {uϕ2} (t)Rα,rk {v ψ2} (t) +Rα,rk {u f} (t)Rα,rk {v g} (t),

(ii)
1

θ1
Rα,rk

{
u (ϕ2 − f)θ1

}
(t)Rα,rk

{
v (ψ2 − g)θ1

}
(t)

+
1

θ2
Rα,rk

{
u (ψ2 − g)θ2

}
(t)Rα,rk

{
v (ϕ2 − f)θ2

}
(t)

≥ Rα,rk {u (ϕ2 − f) (ψ2 − g)} (t)Rα,rk {v (ψ2 − g) (ϕ2 − f)} (t),

(iii)
1

θ1
Rα,rk

{
u (f − ϕ1)θ1

}
(t)Rα,rk {v} (t) +

1

θ2
Rα,rk

{
v (g − ψ1)θ2

}
(t)Rα,rk {u} (t)

+Rα,rk {u f} (t)Rα,rk {v ψ1} (t) +Rα,rk {uϕ1} (t)Rα,rk {v g} (t)

≥ Rα,rk {u f} (t)Rα,rk {v g} (t) +Rα,rk {uϕ1} (t)Rα,rk {v ψ1} (t),

(iv)
1

θ1
Rα,rk

{
u (f − ϕ1)θ1

}
(t)Rα,rk

{
v (g − ψ1)θ1

}
(t)
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+
1

θ2
Rα,rk

{
u (g − ψ1)θ2

}
(t)Rα,rk

{
v (f − ϕ1)θ2

}
(t)

≥ Rα,rk {u (f − ϕ1) (g − ψ1)} (t)Rα,rk {v (g − ψ1) (f − ϕ1)} (t).

Proof. The inequalities (i)-(iv) can be proved by choosing the parameters in the Young inequality [27]:

(i) x = ϕ2(τ)− f(τ), y = ψ2(ρ)− g(ρ),

(ii) x = (ϕ2(τ)− f(τ))(ψ2(ρ)− g(ρ)), y = (ψ2(τ)− g(τ))(ϕ2(ρ)− f(ρ)),

(iii) x = f(τ)− ϕ1(τ), y = g(ρ)− ψ1(ρ),

(iv) x = (f(τ)− ϕ1(τ))(g(ρ)− ψ1(ρ)), y = (g(τ)− ψ1(τ))(f(ρ)− ϕ1(ρ)).

Theorem 3.13. Let f and g be two integrable functions on [0,∞), u, v : [0,∞) → [0,∞) be continuous
functions and θ1, θ2 > 0 satisfying θ1 + θ2 = 1. Suppose that (H1) and (H2) hold. Then, for all t > 0, k > 0,
α > 0 and r ∈ R\{−1}, the following inequalities hold:

(i) θ1R
α,r
k {uϕ2} (t)Rα,rk {v} (t) + θ2R

α,r
k {v ψ2} (t)Rα,rk {u} (t)

≥ θ1R
α,r
k {u f} (t)Rα,rk {v} (t) + θ2R

α,r
k {v g} (t)Rα,rk {u} (t)

+Rα,rk

{
u (ϕ2 − f)θ1

}
(t)Rα,rk

{
v (ψ2 − g)θ2

}
(t),

(ii) θ1R
α,r
k {uϕ2} (t)Rα,rk {v ψ2} (t) + θ1R

α,r
k {u f} (t)Rα,rk {v g} (t)

+ θ2R
α,r
k {uψ2} (t)Rα,rk {v ϕ2} (t) + θ2R

α,r
k {u g} (t)Rα,rk {v f} (t)

≥ θ1R
α,r
k {uϕ2} (t)Rα,rk {v g} (t) + θ1R

α,r
k {u f} (t)Rα,rk {v ψ2} (t)

+ θ2R
α,r
k {uψ2} (t)Rα,rk {v f} (t) + θ2R

α,r
k {u g} (t)Rα,rk {v ϕ2} (t)

+Rα,rk

{
u (ϕ2 − f)θ1 (ψ2 − g)θ2

}
(t)Rα,rk

{
v (ψ2 − g)θ1 (ϕ2 − f)θ2

}
(t),

(iii) θ1R
α,r
k {u f} (t)Rα,rk {v} (t) + θ2R

α,r
k {v g} (t)Rα,rk {u} (t)

≥ θ1R
α,r
k {uϕ1} (t)Rα,rk {v} (t) + θ2R

α,r
k {v ψ1} (t)Rα,rk {u} (t)

+Rα,rk

{
u (f − ϕ1)θ1

}
(t)Rα,rk

{
v (g − ψ1)θ2

}
(t),

(iv) θ1R
α,r
k {u f} (t)Rα,rk {v g} (t) + θ1R

α,r
k {uϕ1} (t)Rα,rk {v ψ1} (t)

+ θ2R
α,r
k {u g} (t)Rα,rk {v f} (t) + θ2R

α,r
k {uψ1} (t)Rα,rk {v ϕ1} (t)

≥ θ1R
α,r
k {u f} (t)Rα,rk {v ψ1} (t) + θ1R

α,r
k {uϕ1} (t)Rα,rk {v g} (t)

+ θ2R
α,r
k {u g} (t)Rα,rk {v ϕ1} (t) + θ2R

α,r
k {uψ1} (t)Rα,rk {v f} (t)

+Rα,rk

{
u (f − ϕ1)θ1 (g − ψ1)θ2

}
(t)Rα,rk

{
v (g − ψ1)θ1 (f − ϕ1)θ2

}
(t).

Proof. The inequalities (i)-(iv) can be proved by choosing the parameters in the Weighted AM-GM [27]:

(i) x = ϕ2(τ)− f(τ), y = ψ2(ρ)− g(ρ),

(ii) x = (ϕ2(τ)− f(τ))(ψ2(ρ)− g(ρ)), y = (ψ2(τ)− g(τ))(ϕ2(ρ)− f(ρ)),

(iii) x = f(τ)− ϕ1(τ), y = g(ρ)− ψ1(ρ),

(iv) x = (f(τ)− ϕ1(τ))(g(ρ)− ψ1(ρ)), y = (g(τ)− ψ1(τ))(f(ρ)− ϕ1(ρ)).
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Theorem 3.14. Let f and g be two integrable functions on [0,∞), u, v : [0,∞) → [0,∞) be continuous
functions and constants p ≥ q ≥ 0, p 6= 0. Assume that (H1) and (H2) hold. Then, for all t > 0, k > 0,
α > 0 and r ∈ R\{−1}, the following inequalities hold:

(i) Rα,rk

{
u (ϕ2 − f)

q
p (ψ2 − g)

q
p

}
(t) +

q

p
k
q−p
p Rα,rk {uϕ2 g} (t) +

q

p
k
q−p
p Rα,rk {u f ψ2} (t)

≤ q

p
k
q−p
p Rα,rk {uϕ2 ψ2} (t) +

q

p
k
q−p
p Rα,rk {u f g} (t) +

p− q
p

k
q
pRα,rk {u} (t),

(ii) Rα,rk

{
u (ϕ2 − f)

q
p

}
(t)Rα,rk

{
v (ψ2 − g)

q
p

}
(t)

+
q

p
k
q−p
p Rα,rk {uϕ2} (t)Rα,rk {v g} (t) +

q

p
k
q−p
p Rα,rk {u f} (t)Rα,rk {v ψ2} (t)

≤ q

p
k
q−p
p Rα,rk {uϕ2} (t)Rα,rk {v ψ2} (t) +

q

p
k
q−p
p Rα,rk {u f} (t)Rα,rk {v g} (t)g(t)

+
p− q
p

k
q
pRα,rk {u} (t)Rα,rk {v} (t),

(iii) Rα,rk

{
u (f − ϕ1)

q
p (g − ψ1)

q
p

}
(t) +

q

p
k
q−p
p Rα,rk {uψ1 f} (t) +

q

p
k
q−p
p Rα,rk {uϕ1 g} (t)

≤ q

p
k
q−p
p Iη,µ,βq {u f g} (t) +

q

p
k
q−p
p Rα,rk {uϕ1 ψ1} (t) +

p− q
p

k
q
pRα,rk {u} (t),

(iv) Rα,rk

{
u (f − ϕ1)

q
p

}
(t)Rα,rk

{
v (g − ψ1)

q
p

}
(t)

+
q

p
k
q−p
p Rα,rk {u f} (t)Rα,rk {v ψ1} (t) +

q

p
k
q−p
p Rα,rk {uϕ1} (t)Rα,rk {v g} (t)

≤ q

p
k
q−p
p Rα,rk {u f} (t)Rα,rk {v g} (t) +

q

p
k
q−p
p Rα,rk {uϕ1} (t)Rα,rk {v ψ1} (t)

+
p− q
p

k
q
pRα,rk {u} (t)Rα,rk {v} (t).

Proof. The inequalities (i)-(iv) can be proved by choosing the parameters in the Lemma 3.8:
(i) a = (ϕ2(τ)− f(τ))(ψ2(τ)− g(τ)),
(ii) a = (ϕ2(τ)− f(τ))(ψ2(ρ)− g(ρ)),
(iii) a = (f(τ)− ϕ1(τ))(g(τ)− ψ1(τ)),
(iv) a = (f(τ)− ϕ1(τ))(g(ρ)− ψ1(ρ)).

Remark 3.15. It may be noted that the inequalities (2.6) and (2.11) in Theorems 2.3 and 2.4, respectively,
are reversed if the functions are asynchronous on [0, ∞). The special case of (2.11) in Theorem 2.4 when
β = δ, η = ζ and µ = ν is easily seen to yield the inequality (2.6) in Theorem 2.3.
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