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Abstract

In this paper, we perform a further investigation for the generalized Laguerre polynomials. By applying
the generating function methods and Padé approximation techniques, we establish some new identities for the
generalized Laguerre polynomials, and give some illustrative special cases as well as immediate consequences
of the main results. c©2016 All rights reserved.
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1. Introduction

The generalized Laguerre polynomials L
(α)
n (x) associated with non-negative integer n and real number

α > −1 are widely used in many problems of mathematical physics and quantum mechanics, for example,
in the integration of Helmholtz’s equation in paraboloidal coordinates, in the theory of the propagation of
electromagnetic oscillations along long lines, etc., as well as in physics in connection with the solution of the
second-order linear differential equation:

xy′′ + (α+ 1− x)y′ + ny = 0. (1.1)

These polynomials satisfy some recurrence relations. One very useful, when extracting properties of the
wave functions of the hydrogen atom, is the following three-term recurrence relation (see, e.g., [10, 19]):

L
(α)
n+1(x) =

2n+ 1 + α− x
n+ 1

L(α)
n (x)− n+ α

n+ 1
L

(α)
n−1(x) (n ≥ 1), (1.2)
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with the initial conditions L
(α)
0 (x) = 1 and L

(α)
1 (x) = 1 + α− x. In particular, the case α = 1 in (1.2) gives

the classical Laguerre polynomials Ln(x) satisfying

Ln+1(x) =
2n+ 2− x
n+ 1

Ln(x)− Ln−1(x) (n ≥ 1), (1.3)

with the initial conditions L0(x) = 1 and L1(x) = 2− x.
This family of generalized Laguerre polynomials form a complete orthogonal system in the weighted

Sobolev space L2
Ωα

(R+) with the weighted function Ωα(x) = xαe−x, as follows (see, e.g., [6, 10]),∫ ∞
0

L(α)
m (x)L(α)

n (x)xαe−xdx =
Γ(n+ α+ 1)

n!
δmn (m,n ≥ 0), (1.4)

where Γ(·) is the Gamma function and δij is the Kronecker delta symbol given by δij = 1 or 0 according
to i = j or i 6= j. In fact, the generalized Laguerre polynomials are eigenfunctions of the Sturm-Liouville
problem (see, e.g., [1, 13, 25]):

x−αex
(
xα+1e−x

(
L(α)
n (x)

)′)′
+µnL

(α)
n (x) = 0 (n ≥ 0), (1.5)

with the eigenvalues µn = n. Moreover, we actually have the following closed formula for the generalized
Laguerre polynomials (see, e.g., [8, 9, 20]):

L(α)
n (x) =

n∑
k=0

(−1)k
(
n+ α

n− k

)
xk

k!
(n ≥ 0), (1.6)

where
(
γ
k

)
is the binomial coefficients given by(

γ

0

)
= 1 and

(
γ

k

)
=
γ(γ − 1)(γ − 2) · · · (γ − k + 1)

k(k − 1)(k − 2) · · · 1
(1.7)

for positive integer k and complex number γ. It is well known that the formula (1.6) stems from Rodrigues’
formula for the generalized Laguerre polynomials:

L(α)
n (x) =

x−αex

n!
· dn

dxn
(e−xxn+α) = x−α

( d
dx − 1)n

n!
xn+α (n ≥ 0). (1.8)

But for the closed formula (1.6), it seems that none has studied it yet, at least we have not seen any
related results before. The formula (1.6) is very interesting, because it reveals good value distributions of
the generalized Laguerre polynomials.

In the present paper, we will be concerned with some generalizations of the above closed formula for the
generalized Laguerre polynomials. By making use of the generating function methods and Padé approxima-
tion techniques, we establish some new identities for the generalized Laguerre polynomials. As applications,
we give some illustrative special cases of the main results and show that the closed formula (1.6) for the
generalized Laguerre polynomials can be obtained in different directions.

This paper is organized as follows. In the second section, we recall the Padé approximation to the
exponential function. The third section is contributed to the statements of some new identities for the
generalized Laguerre polynomials.

2. Padé approximants

As is well known, Padé approximants have become more and more widely used in various fields of
mathematics, physics and engineering (see, e.g., [4, 17]). They provide rational approximations to functions
formally defined by a power series expansion. Padé approximants are also closely related to some methods
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which are used in numerical analysis to accelerate the convergence of sequences and iterative processes. We
now recall the definition of Padé approximation to general series and their expression in the case of the
exponential function. Let m,n be non-negative integers and let Pk be the set of all polynomials of degree
≤ k. Considering a function f with a Taylor expansion

f(t) =
∞∑
k=0

ckt
k, (2.1)

in a neighborhood of the origin, a Padé form of type (m,n) is a pair (P,Q) such that

P =

m∑
k=0

pkt
k ∈ Pm, Q =

n∑
k=0

qkt
k ∈ Pn (Q 6≡ 0), (2.2)

and
Qf − P = O(tm+n+1) as t→ 0. (2.3)

Clearly, every Padé form of type (m,n) for f(t) always exists and satisfies the same rational function.
The uniquely determined rational function P/Q is called the Padé approximant of type (m,n) for f(t), and
is denoted by [m/n]f (T ) or rm,n[f ; t]; see for example, [2, 5].

The study of Padé approximants to the exponential function was initiated by Hermite [11] and continued
by Padé [21]. Given a pair (m,n) of nonnegative integers, the Padé approximant of type (m,n) for et is the
unique rational function

Rm,n(t) =
Pm(t)

Qn(t)
(Pm ∈ Pm, Qn ∈ Pn, Qn(0) = 1), (2.4)

with the property that
et −Rm,n(t) = O(tm+n+1) as t→ 0. (2.5)

Unlike Padé approximants to most other functions, it is possible to give explicit formulas for Pm and Qn
in the following ways (see, e.g., [3] or [22, p. 245]):

Pm(t) =
m∑
k=0

(m+ n− k)! ·m!

(m+ n)! · (m− k)!
· t
k

k!
, (2.6)

Qn(t) =
n∑
k=0

(m+ n− k)! · n!

(m+ n)! · (n− k)!
· (−t)k

k!
, (2.7)

and

Qn(t)et − Pm(t) = (−1)n
tm+n+1

(m+ n)!

∫ 1

0
xn(1− x)mextdx. (2.8)

The polynomials Pm(t) and Qn(t) is referred to as the Padé numerator and denominator of type (m,n)
for et, respectively.

The above properties of these approximants have played important roles in Hermite’s proof of the
transcendency of e, Lindemann’s proof of the transcendency of π, continued fractions, and Orthogonal
polynomials; see [12, 23, 24] for details.

3. The restatements of results

It is clear that the generalized Laguerre polynomials can be defined by the following generating function
(see, e.g., [1, 7, 18]):

∞∑
n=0

L(α)
n (x)tn =

1

(1− t)α+1
e−

tx
1−t (|t| < 1). (3.1)
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In what follows, we shall make use of (3.1) and Padé approximation to the exponential function to
establish some new identities for the generalized Laguerre polynomials, and show that the closed formula
(1.6) for the generalized Laguerre polynomials is derived as special cases. We now denote the right hand
side of (2.8) by Sm,n(t) to obtain

et =
Pm(t) + Sm,n(t)

Qn(t)
. (3.2)

By multiplying both sides of (3.1) by e
tx
1−t and then substituting tx/(1− t) for t in (3.2), we discover(

Pm

(
tx

1− t

)
+Sm,n

(
tx

1− t

)) ∞∑
n=0

L(α)
n (x)tn =

1

(1− t)α+1
Qn

(
tx

1− t

)
. (3.3)

If we apply the exponential series ext =
∑∞

k=0 x
ktk/k! in the right hand side of (2.8), in view of the beta

function, we get

Sm,n(t) = (−1)n
tm+n+1

(m+ n)!

∞∑
k=0

tk

k!

∫ 1

0
xn+k(1− x)mdx =

∞∑
k=0

(−1)nm! · (n+ k)!

(m+ n)! · (m+ n+ k + 1)!
· t
m+n+k+1

k!
. (3.4)

Let pm,n;k, qm,n;k and sm,n;k be the coefficients of the polynomials

Pm(t) =

m∑
k=0

pm,n;kt
k, Qn(t) =

n∑
k=0

qm,n;kt
k and Sm,n(t) =

∞∑
k=0

sm,n;kt
m+n+k+1. (3.5)

Obviously, from (2.6), (2.7) and (3.4), pm,n;k, qm,n;k and sm,n;k obey

pm,n;k =
m! · (m+ n− k)!

k! · (m+ n)! · (m− k)!
, qm,n;k =

(−1)kn! · (m+ n− k)!

k! · (m+ n)! · (n− k)!
, (3.6)

and

sm,n;k =
(−1)nm! · (n+ k)!

k! · (m+ n)! · (m+ n+ k + 1)!
, (3.7)

respectively. We next apply (3.5) to (3.3) to get( m∑
k=0

pm,n;kx
k

(
t

1− t

)k) ∞∑
j=0

L
(α)
j (x)tj

+

( ∞∑
k=0

sm,n;kx
m+n+k+1

(
t

1− t

)m+n+k+1) ∞∑
j=0

L
(α)
j (x)tj (3.8)

=
1

(1− t)α+1

n∑
k=0

qm,n;kx
k

(
t

1− t

)k
.

Notice that for any complex number γ,

(1 + t)γ =
∞∑
n=0

(
γ

n

)
tn. (3.9)

It follows from (3.8) and (3.9) that

m∑
k=0

pm,n;kx
k

( ∞∑
j=0

(−1)j
(
−k
j

)
tk+j

)( ∞∑
j=0

L
(α)
j (x)tj

)

+

∞∑
k=0

sm,n;kx
m+n+k+1

( ∞∑
j=0

(−1)j
(
−k
j

)
tm+n+k+j+1

) ∞∑
j=0

L
(α)
j (x)tj (3.10)

=

n∑
k=0

qm,n;kx
k

( ∞∑
j=0

(−1)j
(
−α− k − 1

j

)
tk+j

)
,
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which together with the familiar Cauchy product yields

∞∑
l=0

∑
k+j=l
k,j≥0

pm,n;kx
k

j∑
i=0

(−1)j−i
(
−k
j − i

)
L

(α)
i (x)tl

+

∞∑
l=0

∑
k+j=l−m−n−1

k,j≥0

sm,n;kx
m+n+k+1

j∑
i=0

(−1)j−i
(
−k
j − i

)
L

(α)
i (x)tl (3.11)

=
∞∑
l=0

∑
k+j=l
k,j≥0

qm,n;kx
k(−1)j

(
−α− k − 1

j

)
tl.

Comparing the coefficients of tl in (3.11) gives that for 0 ≤ l ≤ m+ n,

∑
k+j=l
k,j≥0

pm,n;kx
k

j∑
i=0

(−1)j−i
(
−k
j − i

)
L

(α)
i (x) =

∑
k+j=l
k,j≥0

qm,n;kx
k(−1)j

(
−α− k − 1

j

)
. (3.12)

Hence, by applying (3.6) and (3.7) to (3.12), we obtain

l∑
k=0

(
m

k

)
(m+ n− k)!xk

l−k∑
i=0

(−1)l−k−i
(
−k

l − k − i

)
L

(α)
i (x)

=

l∑
k=0

(
n

k

)
(m+ n− k)!(−x)k(−1)l−k

(
−α− k − 1

l − k

)
. (3.13)

Observe that for complex number γ and non-negative integer k,

(−1)k
(
−γ + k − 1

k

)
=

(
γ

k

)
. (3.14)

It follows from (3.14) that (3.13) can be rewritten as

l∑
k=0

(
m

k

)
(m+ n− k)!xk

l−k∑
i=0

(
l − i− 1

l − k − i

)
L

(α)
i (x) =

l∑
k=0

(
n

k

)
(m+ n− k)!(−x)k

(
l + α

l − k

)
. (3.15)

If we substitute α+ β + 1 for α and x+ y for x in (3.1), in light of the Cauchy product, we obtain that
for complex numbers α, β and non-negative integer n,

L(α+β+1)
n (x+ y) =

n∑
k=0

L
(α)
k (x)L

(β)
n−k(y). (3.16)

It is easily seen from (3.1), (3.9) and (3.14) that L
(α)
n (0) =

(
n+α
n

)
for non-negative integer, so by taking

y = 0 and substituting β − α− 1 for β in (3.16), we have

L(β)
n (x) =

n∑
k=0

(
β − α+ n− k − 1

n− k

)
L

(α)
k (x) (n ≥ 0). (3.17)

Thus, by applying (3.17) to (3.15), we get the following result.
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Theorem 3.1. Let l,m, n be non-negative integers with 0 ≤ l ≤ m+ n. Then

l∑
k=0

(
m

k

)
(m+ n− k)!xkL

(α+k)
l−k (x) =

l∑
k=0

(
n

k

)
(m+ n− k)!(−x)k

(
l + α

l − k

)
. (3.18)

It follows that we show some special cases of Theorem 3.1. It is easily seen from (1.7) that
(
n
k

)
= 0 for

positive integers n, k with k > n. Thus, by taking l = m+ n in Theorem 3.1, we have

m∑
k=0

(
m

k

)
(m+ n− k)!xkL

(α+k)
m+n−k(x) =

n∑
k=0

(
n

k

)
(m+ n− k)!(−x)k

(
m+ n+ α

m+ n− k

)
(m,n ≥ 0). (3.19)

The case n = 0 in (3.19) gives

m∑
k=0

(
m

k

)
(m− k)!xkL

(α+k)
m−k (x) = m! ·

(
m+ α

m

)
(m ≥ 0). (3.20)

If we take m = 0 in (3.19), we get

n! · L(α)
n (x) =

n∑
k=0

(
n

k

)
(n− k)!(−x)k

(
n+ α

n− k

)
(n ≥ 0), (3.21)

which together with
(
n
k

)
= n!

k!·(n−k)! for non-negative integer n, k with k ≤ n, gives the closed formula (1.6).

It is interesting to point out that (3.20) is very analogue to the inverse formula of the generalized Laguerre
polynomials, namely (see, e.g., [15])

xm = m! ·
m∑
k=0

(
m+ α

m− k

)
(−1)kL

(α)
k (x) (m ≥ 0). (3.22)

For some nice applications of (3.22), one can refer to [14, 16].
We next present some other identities for the generalized Laguerre polynomials. By comparing the

coefficients of tl with l ≥ m+ n+ 1 in (3.11), we discover

∑
k+j=l
k,j≥0

pm,n;kx
k

j∑
i=0

(−1)j−i
(
−k
j − i

)
L

(α)
i (x)

+
∑

k+j=l−m−n−1
k,j≥0

sm,n;kx
m+n+k+1

j∑
i=0

(−1)j−i
(
−k
j − i

)
L

(α)
i (x) (3.23)

=
∑
k+j=l
k,j≥0

qm,n;kx
k(−1)j

(
−α− k − 1

j

)
,

which implies

l∑
k=0

pm,n;kx
k
l−k∑
i=0

(−1)l−k−i
(
−k

l − k − i

)
L

(α)
i (x)

+
l−m−n−1∑

k=0

sm,n;kx
m+n+k+1

l−m−n−k−1∑
i=0

(−1)l−m−n−k−i−1

(
−k

l −m− n− k − i− 1

)
L

(α)
i (x) (3.24)

=
l∑

k=0

qm,n;kx
k(−1)l−k

(
−α− k − 1

l − k

)
.



W.-K. Shao, Y. He, J. Pan, J. Nonlinear Sci. Appl. 9 (2016), 3388–3396 3394

Notice that from (3.14) and (3.17) we have

l−k∑
i=0

(−1)l−k−i
(
−k

l − k − i

)
L

(α)
i (x) = L

(α+k)
l−k (x) (0 ≤ k ≤ l). (3.25)

If we apply (3.6) and (3.7) to (3.24), with the help of (3.14) and (3.25), we obtain that for positive
integer l ≥ m+ n+ 1,

l∑
k=0

(
m

k

)
(m+ n− k)!xkL

(α+k)
l−k (x) + (−1)n

×
l−m−n−1∑

k=0

m! · (n+ k)!

k! · (m+ n+ k + 1)!
xm+n+k+1L

(α+k)
l−m−n−k−1(x) (3.26)

=
l∑

k=0

(
n

k

)
(m+ n− k)!(−x)k

(
l + α

l − k

)
Thus, by taking l = m + n + r with r being a positive integer in (3.26), in light of

(
n
k

)
= 0 for positive

integers n, k with k > n, we get the following result.

Theorem 3.2. Let m,n be non-negative integers. Then, for positive integer r,

m∑
k=0

(
m

k

)
(m+ n− k)!xkL

(α+k)
m+n+r−k(x)

+
(−1)n

(r − 1)!

r−1∑
k=0

(
r−1
k

)(
m+n+k

m

)(r − 1− k)!
xm+n+k+1

m+ n+ k + 1
L

(α+k)
r−1−k(x) (3.27)

=

n∑
k=0

(
n

k

)
(m+ n− k)!(−x)k

(
m+ n+ r + α

m+ n+ r − k

)
.

It becomes obvious that the case m = 0 in Theorem 3.2 gives that for non-negative integer n and positive
integer r,

n! · L(α)
n+r(x) + (−1)n

r−1∑
k=0

1

(n+ k + 1) · k!
xn+k+1L

(α+k)
r−1−k(x) =

n∑
k=0

(
n

k

)
(n− k)!(−x)k

(
n+ r + α

n+ r − k

)
. (3.28)

And the case r = 1 in Theorem 3.2 gives that for non-negative integers m,n,

m∑
k=0

(
m

k

)
(m+ n− k)!xkL

(α+k)
m+n+1−k(x) =

n∑
k=0

(
n

k

)
(m+ n− k)!(−x)k

(
m+ n+ 1 + α

m+ n+ 1− k

)
+ (−1)n+1 m! · n!

(m+ n+ 1)!
xm+n+1. (3.29)

In particular, the case r = 1 in (3.28) gives

n! · L(α)
n+1(x)− (−x)n+1

n+ 1
=

n∑
k=0

(
n

k

)
(n− k)!(−x)k

(
n+ 1 + α

n+ 1− k

)
(n ≥ 0), (3.30)

and the case m = 0 in (3.29) gives

n! · L(α)
n+1(x) =

n∑
k=0

(
n

k

)
(n− k)!(−x)k

(
n+ 1 + α

n+ 1− k

)
+

(−x)n+1

n+ 1
(n ≥ 0). (3.31)
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It is obvious that the formula (3.30) is the same to the formula (3.31). If we divide both sides of (3.31)
by n!, in view of

(
n
k

)
= n!

k!·(n−k)! for non-negative integers n, k with k ≤ n, we get

L
(α)
n+1(x) =

n∑
k=0

(−x)k

k!

(
n+ 1 + α

n+ 1− k

)
+

(−x)n+1

(n+ 1)!
=

n+1∑
k=0

(−x)k

k!

(
n+ 1 + α

n+ 1− k

)
(n ≥ 0), (3.32)

which together with L
(α)
0 (x) = 1 gives the closed formula (1.6).
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