
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 3433–3444

Research Article

Infinitely many solutions to boundary value problems
for a coupled system of fractional differential
equations

Peiluan Lia,∗, Hui Wangb, Zheqing Lic

aSchool of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, P. R. China.
bCollege of Information Engineering, Henan University of Science and Technology, Luoyang, 471003, P. R. China.
cNetwork and Information Center, Henan University of Science and Technology, Luoyang, 471003, P. R. China.

Communicated by C. Alaca

Abstract

Using the variational methods, we investigate the solutions to the boundary value problems for a coupled
system of fractional order differential equations. First, we obtain the existence of at least one weak solution
by the minimization result due to Mawhin and Willem. Then, the existence criteria of infinitely many
solutions are established by a critical point theorem due to Rabinowitz. At last, some examples are also
provided to illustrate the results. c©2016 All rights reserved.
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1. Introduction

Recently, a great attention has been focused on the study of boundary value problems (BVP) for frac-
tional differential equations. Fractional calculus provide a powerful tool for the description of hereditary
properties of various materials and memory processes [23, 24]. Fractional differential equations have also
recently proved to be strong tools in the modeling of medical, physics, economics and technical sciences. For
more details on fractional calculus theory, one can see the monographs of Kilbas et al. [11], Lakshmikantham
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et al. [12], Podlubny [16] and Tarasov [20]. Fractional differential equations involving the Riemann-Liouville
fractional derivative or the Caputo fractional derivative have been paid more and more attentions.

In recent years, some fixed point theorems and monotone iterative methods have been applied successfully
to investigate the existence of solutions for nonlinear fractional boundary-value problems, see for example,
[1–3, 5, 7, 14] and the references therein.

In [5], Bai and Fang studied the following singular coupled system of fractional differential equations{
Dα
T (u(t)) = f(t, v), 0 < t < 1,

Dβ
T (u(t)) = g(t, u), 0 < t < 1,

where 0 < α, β < 1, Dα, Dβ are two standard Riemann-Liouville fractional derivatives. By applying the
Krasnoselskiis fixed point theorem and the nonlinear alternative of Leray-Schauder theorem in a cone, the
authors have obtained the existence of positive solutions for the coupled system.

By means of the nonlinear alternative of Leray-Schauder theorem, Ahmad and Alsaedi in [1] established
the existence and uniqueness results for the following fractional differential equations{

cDρ
Tu(t)) = f(t, cDρ

T v(t)), u(k) = ηk, 0 < t < 1,

cDσ
Tu(t)) = g(t, cDσ

Tu(t)), v(k) = ξk, 0 < t < 1,

where cD denotes the Caputo fractional derivative, ρ, σ ∈ (m − 1,m), α, β ∈ (n − 1, n) with ρ > α, σ >
β, k = 0, 1, 2, . . . ,m− 1, ρ, σ, α, β 6∈ N , and ηk, ξk are suitable real constants.

On the other hand, critical point theory and the variational methods have been very useful in dealing
with the existence and multiplicity of solutions for integer order differential equations with some boundary
conditions. But until now, there are few works that deal with the fractional differential equations via the
variational methods; see [4, 6, 8–10, 13, 18, 19, 21]. It is often very difficult to establish a suitable space
and variational functional for fractional boundary value problem for several reasons. First and foremost,
the composition rule in general fails to be satisfied by fractional integral and fractional derivative operators.
Furthermore, the fractional integral is a singular integral operator and fractional derivative operator is non-
local. Besides, the adjoint of a fractional differential operator is not the negative of itself. By means of
critical point theory, Jiao and Zhou [10] first considered the following fractional boundary value problems{

tD
α
T (0D

α
t u(x)) = ∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where α ∈ (0, 1), 0D
α
t and tD

α
T are the left and right Riemann-Loiuville fractional derivatives respectively.

F : [0, T ] × RN → R ( with N ≥ 1) is a suitable given function and ∇F (t, x) is the gradient of F with
respect to x.

In [21], the authors investigated the existence of weak solution for the following coupled system of
fractional differential equations

tD
α
T (a(t) 0D

α
t u(x)) = λFu(t, u(t), v(t)), 0 < t < T,

tD
β
T (b(t) 0D

β
t v(x)) = λFv(t, u(t), v(t)), 0 < t < T,

u(0) = u(T ) = 0, v(0) = v(T ) = 0,

where λ is a positive real parameters, a, b ∈ L∞[0, T ] with a0 := ess inf
[0,T ]

a(t) > 0 and b0 := ess inf
[0,T ]

b(t) >

0, α, β ∈ (0, 1], 0D
γ
t and tD

γ
T are the left and right Riemann-Liouville fractional derivatives of order γ

respectively, and F : [0, T ] × R2 → R is a function such that F (·, x, y) is continuous in [0, T ] for every
(x, y) ∈ R2 and F (t, ·, ·) is a C1 function in R2 for any t ∈ [0, T ], and Fs denotes the partial derivative of F
with respect to s. By means of the variational methods and a critical point theorem due to Bonanno and
Marano, the authors get the existence of three distinct weak solutions.



P. Li, H. Wang, Z. Li, J. Nonlinear Sci. Appl. 9 (2016), 3433–3444 3435

Motivated by the works above, in this article, we consider the following coupled system of fractional
differential equations 

tD
α
T (a(t) 0D

α
t u(x)) = λv(t) + Fu(t, u(t), v(t)), 0 < t < T,

tD
β
T (b(t) 0D

β
t v(x)) = λu(t) + Fv(t, u(t), v(t)), 0 < t < T,

u(0) = u(T ) = 0, v(0) = v(T ) = 0.

(1.1)

First, we obtain the existence of at least one weak solution by the minimization result due to Mawhin
and Willem. Then, the existence criteria of infinitely many solutions are established by a critical point
theorem due to Rabinowitz. At last, some examples are given to illustrate the results.

The rest of this paper is organized as follows. In Section 2, some definitions and lemmas which are
essential to prove our main results are stated. In Section 3, we give the main results. And, two examples
are offered to illustrate the application of our main results.

2. Preliminaries

At first, we present the necessary definitions for the fractional calculus theory and several lemmas which
are used further in this paper.

Definition 2.1 ([11]). Let f be a function defined by [a, b]. The left and right Riemann-Liouville fractional
derivatives of order α for function f denoted by aD

α
t and tD

α
b respectively, are defined by

aD
α
t f(t) =

dn

dtn aD
α−n
t f(t) =

1

T (α)

dn

dtn

∫ t

a
(t− s)n−α−1f(s)ds,

tD
α
b f(t) = (−1)n

dn

dtn tD
α−n
b f(t) =

(−1)n

T (α)

dn

dtn

∫ t

a
(t− s)n−α−1f(s)ds, t ∈ [a, b], α > 0,

provide that the right-hand side integral is pointwise defined on [a, b].

Lemma 2.2 ([11]). The left and right Riemann-Liouville fractional integral operators have the property of
a semigroup; that is, ∫ b

a
[aD

−α
t f(t)]g(t)dt =

∫ b

a
[tD
−α
b g(t)]f(t)dt,

provided that f ∈ Lp([a, b], R), g ∈ Lq([a, b], R) and p ≥ q, q ≥ 1, 1
p + 1

q ≤ 1+α or p 6= 1, q 6= 1, 1
p + 1

q = 1+α.

Lemma 2.3 ([11]). The left and right Riemann-Liouville fractional integral operators have the property of
a semigroup; that is, ∫ b

a
[aD

−α
t f(t)]g(t)dt =

∫ b

a
[tD
−α
b g(t)]f(t)dt, α > 0,

provided that f(a) = f(b) = 0, f ′ ∈ L∞([a, b], RN ) and g ∈ L1([a, b], RN ) or g(a) = g(b) = 0, f ′ ∈
L∞([a, b], RN ) and f ∈ L1([a, b], RN ).

In order to establish a variational structure which enables us to reduce the existence of solutions of
problem (1.1) to one of finding critical points of corresponding functional, it is necessary to construct
appropriate function spaces.

Let us recall that for any fixed t ∈ [0, T ] and 1 ≤ p ≤ ∞,

‖u‖∞ = max
t∈[0,T ]

|u(t)|, ‖u‖Lp =

(∫ T

0
|u(s)|pds

) 1
p

.
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Let 0 < α ≤ 1, we define the fractional derivative spaces Eα0 by the closure of C∞0 ([0, T ], R) with respect
to the weighted norm

‖u‖α =

(∫ T

0
a(t)| 0Dα

t u(t)|2dt+

∫ T

0
|u(t)|2dt

) 1
2

, ∀u ∈ Eα0 , (2.1)

where C∞0 ([0, T ], R) = {u ∈ C∞([0, T ], R) : u(0) = u(T )}. Clearly, the fractional derivative space Eα0 is the
space of functions u ∈ L2[0, T ] having an α-order fractional derivative 0D

α
t u(t) ∈ L2[0, T ] and u(0) = u(T ).

Lemma 2.4 ([10]). Let 1
2 < α ≤ 1; for all u ∈ Eα0 , one has

(I) ‖u‖L2 ≤
Tα

Γ(α+ 1)
‖ 0D

α
t u(t)‖L2 , (II) ‖u‖∞ ≤

Tα−1/2

Γ(α)
√

2α− 1
‖ 0D

α
t u(t)‖L2 .

Let a0 = min
t∈J

a(t), from Lemma 2.4, one has

‖u‖L2 ≤
Tα

Γ(α+ 1)
√
a0

(∫ T

0
a(t)| 0Dα

t u(t)|2dt
) 1

2

, (2.2)

‖u‖∞ ≤
Tα−1/2

Γ(α)
√
a0(2α− 1)

(∫ T

0
a(t)| 0Dα

t u(t)|2dt
) 1

2

. (2.3)

By (2.2) and (2.3), we can also define

‖u‖α =

(∫ T

0
a(t)| 0Dα

t u(t)|2dt
) 1

2

, ∀u ∈ Eα0 . (2.4)

Then we can conclude that ‖u‖α defined in (2.1) is equivalent to the norm ‖u‖α defined in (2.4). In the
sequel, we will consider Eα0 with the norm ‖u‖α defined in (2.4). Obviously, Eα0 is a reflexive and separable
Banach space with the norm ‖u‖α.

It follows from (2.2)-(2.4) that

‖u‖L2 ≤
Tα

Γ(α+ 1)
√
a0
‖u‖α, ‖u‖∞ ≤

Tα−1/2

Γ(α)
√
a0(2α− 1)

‖u‖α. (2.5)

Similarly, let 0 < β ≤ 1, we define the fractional derivative spaces Eβ0 by the closure of C∞0 ([0, T ], R)
with respect to the weighted norm

‖v‖β =

(∫ T

0
b(t)| 0D

β
t v(t)|2dt+

∫ T

0
|v(t)|2dt

) 1
2

. (2.6)

Let b0 = min
t∈J

b(t). According to Lemma 2.4, one has

‖v‖L2 ≤
T β

Γ(β + 1)
√
b0

(∫ T

0
b(t)| 0D

β
t v(t)|2dt

) 1
2

, (2.7)

‖v‖∞ ≤
T β−1/2

Γ(β)
√
b0(2β − 1)

(∫ T

0
b(t)| 0D

β
t v(t)|2dt

) 1
2

. (2.8)

From (2.7) and (2.8), it is easy to see that Eβ0 is a Hilbert space with the norm

‖v‖β =

(∫ T

0
b(t)| 0D

β
t v(t)|2dt

) 1
2

, ∀v ∈ Eβ0 . (2.9)
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It is easy to see that the norm ‖v‖β defined in (2.9) is equivalent to the norm ‖v‖β defined in (2.6). In

the sequel, we will consider Eβ0 with the norm ‖v‖β defined in (2.9).
From (2.7) and (2.8), we have

‖v‖L2 ≤
T β

Γ(β + 1)
√
b0
‖v‖β, ‖v‖∞ ≤

T β−1/2

Γ(β)
√
b0(2β − 1)

‖v‖β. (2.10)

We denote X = Eα0 × E
β
0 equipped with the norm ‖(u, v)‖X = ‖u‖α + ‖v‖β, where ‖u‖α and ‖v‖β are

defined in (2.4) and (2.9).
Similar to some properties in [10], we have the following results.

Lemma 2.5. Let α ∈ (0, 1]. The fractional derivative space X = Eα0 × E
β
0 is a reflexive and separable

Banach space.

Lemma 2.6. Let α ∈ (0, 1] and the sequence {uk} converges weakly to u in Eα0 , the sequence {vk} converges

weakly to v in Eβ0 , then uk → u, vk → v in C([0, T ], R); that is ‖un − u‖∞ → 0, ‖vn − v‖∞ → 0, as k →∞.

Definition 2.7. By the solution of the coupled problem (1.1), we mean any (u, v) ∈ X such that

(i) tD
α−1
T (a(t) 0D

α
t u(x)), 0D

α−1
t u(x), tD

β−1
T (b(t) 0D

β
t v(x)), 0D

β−1
t v(x) are derivatives for every t ∈ [0, T ],

and

(ii) (u, v) ∈ X satisfies (1.1).

Definition 2.8. (u, v) ∈ X is called a weak solution of problem (1.1) if

∫ T

0
a(t) 0D

α
t u(t) 0D

α
t x(t)dt+

∫ T

0
b(t) 0D

β
t v(t) 0D

β
t y(t)dt

−λ
∫ T

0
(v(t)x(t) + u(t)y(t))dt−

∫ T

0
(Fu(t, u(t), v(t))x(t) + Fv(t, u(t), v(t))y(t))dt = 0

for all (x, y) ∈ X.

Similarly to the proof of Theorem 5.1 in [10], we have the following Lemma 2.9.

Lemma 2.9. Let 0 < α, β ≤ 1 and u ∈ Eα0 . If (u, v) ∈ X is a non-trivial weak solution of the problem
(1.1), then (u, v) ∈ X is also a non-trivial solution of the problem (1.1).

Throughout this paper, we assume that the following condition (H1) is satisfied.
(H1). λ > 0 is a real parameters, a, b ∈ L∞[0, T ], α, β ∈ (0, 1], and F : [0, T ] × R2 → R is a function such
that F (·, x, y) is continuous in [0, T ] for every (x, y) ∈ R2 with F (t, 0, 0) = 0, F (t, ·, ·) is a C1 function in R2

for any t ∈ [0, T ], and Fs denotes the partial derivative of F with respect to s.
We consider the functional ϕ : X → R, defined by

ϕ(u, v) =
1

2

∫ T

0
[a(t)| 0Dα

t u(t)|2 + b(t)| 0D
β
t v(t)|2 − λ(u2(t) + v2(t))]dt−

∫ T

0
F (t, u(t), v(t))dt. (2.11)

Then ϕ is continuously differentiable under the assumption (H1), and we have

〈ϕ′(u, v), (x, y)〉 =

∫ T

0
a(t) 0D

α
t u(t) 0D

α
t x(t)dt+

∫ T

0
b(t) 0D

β
t v(t) 0D

β
t y(t)dt

− λ
∫ T

0
(v(t)x(t) + u(t)y(t))dt

−
∫ T

0
(Fu(t, u(t), v(t))x(t) + Fv(t, u(t), v(t))y(t))dt,

(2.12)
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for all (x, y) ∈ X. Hence the critical point of ϕ is the weak solution of problem (1.1). Next, we consider the
critical point of ϕ.

Finally, we need the following results in critical point theory.

Definition 2.10. Let E be a real Banach space, and ϕ ∈ C1(E,R). We say that ϕ satisfies the Palais-Smale
condition if any {um} ⊂ E for which ϕ(um) is bounded and ϕ′(um) → 0 as m → 0 posses a convergent
subsequence.

The proofs of the main results in this paper are based on the following critical point theorems.

Lemma 2.11 ([15], Theorem 1.1). If Φ is weakly lower semi-continuous (w.l.s.c) on a reflexive Banach
space X and has a bounded minimizing sequence, then Φ has a minimum on X.

Lemma 2.12 ([17], Theorem 9.12). Let X be a real Banach space and let ϕ ∈ C1(X,R) be an even
functional, which satisfies the Palais-Smale condition and ϕ(0) = 0. Suppose that X = V ⊕ E, where
dim v <∞, and ϕ satisfies that:

(1) there exist a, ρ > 0 such that ϕ|∂Bρ∩E ≥ a, where Bρ = {u ∈ X : ‖u‖ < ρ},

(2) for any finite dimensional subspace W ⊂ X, there is R = R(W ) such that ϕ(u) ≤ 0 on W \BR(W ).

Then, ϕ possesses an unbounded sequence of critical values.

3. Main results

Lemma 3.1. (u, v) ⊂ X is bounded if and only if u ∈ Eα0 , v ∈ Eα0 are all bounded.

Proof. From ‖(u, v)‖X = ‖u‖α + ‖v‖β, for M > 0 is a constant, it is easy to proof

‖(u, v)‖X ≤M ⇔ ‖u‖α + ‖v‖β ≤M ⇔ ‖u‖α ≤M, ‖v‖β ≤M

which shows the conclusion of Lemma 3.1.

Next we give the first result which is based on the minimization theorem due to Mawhin and Willem.

Theorem 3.2. (H1) hold and λ < 1,

(H2). There exist a positive constant a1 < min{1
2(Γ2(α+1)a0

T 2α − λ), 1
2(Γ2(β+1)b0

T 2β − λ)} such that

lim sup
|x|→∞,|y|→∞

F (t, x, y)

|x|2 + |y|2
< a1,

uniformly for (x, y) ∈ R2, t ∈ [0, T ]. Then (1.1) possesses at least one weak solution.

Proof. First, we prove that ϕ is weakly lower semi-continuous. Since X is a separable and reflexive real
Banach space, we assume that {uk, vk} ⊂ X converges weakly to (u, v) ⊂ X. By Lemma 2.6, we can obtain
that uk → u, vk → k uniformly in C([0, T ], R), as k →∞, that is,

‖uk − u‖∞ → 0, ‖vk − v‖∞ → 0, as k →∞.

and

lim inf
k→∞

‖(uk, vk)‖X = lim inf
k→∞

( ‖uk‖α + ‖vk‖β) ≥ ‖u‖α + ‖v‖β = ‖(u, vk)‖X .
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Then it follows from (H1) that

lim inf
k→∞

ϕ(uk, vk) = lim inf
k→∞

{1

2

∫ T

0
[a(t)| 0Dα

t uk(t)|2 + b(t)| 0D
β
t vk(t)|2

− λ(u2
k(t) + v2

k(t))]dt−
∫ T

0
F (t, uk(t), vk(t))dt}

≥ 1

2

∫ T

0
[a(t)| 0Dα

t u(t)|2 + b(t)| 0D
β
t v(t)|2

− λ(u2(t) + v2(t))]dt−
∫ T

0
F (t, u(t), v(t))dt = ϕ(u, v),

which implies that is weakly lower semi-continuous.
Now, we are in the position to show that the functional ϕ is coercive.
From (H2), we know there exist two positive constants a2, a3 large enough such that

F (t, u, v) < a1(|u|2 + |v|2), for |u| > a2, |v| > a3, t ∈ [0, T ].

On the other hand, from the continuity of F (t, u, v), we con clued that F (t, u, v) is bounded for |u| ≤
a2, |v2| ≤ a3, t ∈ [0, T ]. Then there exists a constant b1 > 0 such that

F (t, u, v) < b1

for |u| ≤ a2, |v| ≤ a3 and t ∈ [0, T ].
Hence, for all (t, u, v) ∈ [0, T ]×R2, we can get

F (t, u, v) < a1(|u|2 + |v|2) + b1.

Together with (2.5), (2.10) and (2.11) one has

ϕ(u, v) =
1

2

∫ T

0
[a(t)| 0Dα

t u(t)|2 + b(t)| 0D
β
t v(t)|2 − λ(u2(t) + v2(t))]dt−

∫ T

0
F (t, u(t), v(t))dt

≥ 1

2

∫ T

0
[a(t)| 0Dα

t u(t)|2 + b(t)| 0D
β
t v(t)|2 − λ(u2(t) + v2(t))]dt−

∫ T

0
[a1(|u|2 + |v|2) + b1]dt

=
1

2
(‖u‖2α + ‖v‖2β)− (

λ

2
+ a1)

∫ T

0
[u2(t) + v2(t)]dt− b1T

≥ [
1

2
− (

λ

2
+ a1)

T 2α

Γ2(α+ 1)a0
]‖u‖2α + [

1

2
− (

λ

2
+ a1)

T 2β

Γ2(β + 1)b0
]‖v‖2β − b1T

In view of a1 < min{1
2(Γ2(α+1)a0

T 2α − λ), 1
2(Γ2(β+1)b0

T 2β − λ)}, we can conclude

ϕ(u, v)→∞, as ‖u‖α →∞, ‖v‖β →∞.

Then ϕ is coercive. Thus, by virtue of Lemma 2.11, the functional ϕ has a minimum, which is a critical
point of ϕ. It follows that the boundary value problem (1.1) has one weak solution.

Remark 3.3. If the asymptotically quadratic case in (H2) becomes the subquadratic case, that is

lim sup
|x|→∞,|y|→∞

F (t, x, y) < e|x|e1 + e0|y|e2 , 1 < e1, e2 < 2, e, e0 > 0,

we can get the similar result.

Our task is now to use Lemma 2.12 to find infinitely many critical points of functional ϕ on X.
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Theorem 3.4. Let (H1) holds. If the following assumptions (H3)− (H5) are satisfied.

(H3) There exists a positive constant c0 < min{1
2(Γ2(α+1)a0

T 2α − λ), 1
2(Γ2(β+1)b0

T 2β − λ)} such that

lim sup
|x|→0,|y|→0

F (t, x, y)

|x|2 + |y|2
< c0,

uniformly for (x, y) ∈ R2, t ∈ [0, T ].

(H4) There are constants µ > 2,M > 0, such that

0 < µF (t, x, y) ≤ xFx(t, x, y) + yFy(t, x, y), for all t ∈ [0, T ] and |x|2 + |y|2 ≥M.

Here, Fs denotes the partial derivative of F with respect to s.

(H5) F (t, u, v) = F (t,−u,−v).

Then for every λ ∈ (0,min{Γ2(α+1)a0
T 2α , Γ2(β+1)b0

T 2β }), the problem (1.1) has infinitely many solutions.

Proof. We note that (H4) implies there exist d0 ≥ 0, d1, d2, d3 > 0 such that

F (t, x, y) ≤ 1

µ
[xFx(t, x, y) + yFy(t, x, y)] + d0, for t ∈ [0, T ], (x, y) ∈ R2, (3.1)

F (t, x, y) ≥ d1|x|µ + d2|y|µ − d3, for t ∈ [0, T ], (x, y) ∈ R2. (3.2)

The assumption (H1) implies that ϕ is continuous and continuously differentiable. In view of the ex-
pression (2.11) and (H5), it is obvious that ϕ is even and ϕ(0) = 0.

we divide our proof into three steps.

Step 1. Let {uk, vk} ⊂ X such that ϕ(uk, vk) is bounded and ϕ′(uk, vk)→ 0, as k →∞. First, we show
{uk, vk} ⊂ X is bounded. It follows (2.10), (2.12) and (3.1) that

ϕ(uk, vk) =
1

2

∫ T

0
[a(t)| 0Dα

t uk(t)|2 + b(t)| 0D
β
t vk(t)|2 − λ(u2

k(t) + v2
k(t))]dt

−
∫ T

0
F (t, uk(t), vk(t))dt

≥1

2
(‖u‖2α + ‖v‖2β)− λ

2

∫ T

0
[u2
k(t) + v2

k(t)]dt

−
∫ T

0

1

µ
{[ukFuk(t, uk, vk) + vkFvk(t, uk, vk)] + d0}dt

≥1

2
(‖u‖2α + ‖v‖2β)− λ

2

∫ T

0
[u2
k(t) + v2

k(t)]dt−
1

µ
{
∫ T

0
a(t)| 0Dα

t uk(t)|2dt

+

∫ T

0
b(t)| 0D

β
t vk(t)|2dt− 〈ϕ′(uk, vk), (uk, vk)〉 − λ(u2

k(t) + v2
k(t))dt} − d0T

≥(
1

2
− 1

µ
)(‖u‖2α + ‖v‖2β)− λ(

1

2
− 1

µ
)(‖uk‖2L2 + ‖vk‖2L2)

+
1

µ
‖ϕ′(uk, vk)‖‖(uk, vk)‖ − d0T.
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For λ ∈ (0,min{Γ2(α+1)a0
T 2α , Γ2(β+1)b0

T 2β }), according to the condition ϕ(uk, vk) is bounded with

ϕ′(uk, vk)→ 0 as k →∞, it easy to proof that u ∈ Eα0 , v ∈ E
β
0 are all bounded. Then Lemma

3.1 shows {uk, vk} ⊂ X is bounded. From the reflexivity of X = Eα×Eβ, we know {uk, vk} ⊂ X
has a weakly convergent subsequence. Without loss of generality, we assume that {uk, vk} ⊂ X
converges weakly to (u, v) ⊂ X. By Lemma 2.6, we can obtain that uk → u, vk → v, in
C([0, T ], R), as k →∞ that is,

‖uk − u‖∞ → 0, ‖vk − v‖∞ → 0, as k →∞. (3.3)

From (2.12), we have

〈ϕ′(uk, vk), (uk, vk)〉 =

∫ T

0
a(t)| 0Dα

t uk(t)|2dt+

∫ T

0
b(t)| 0D

β
t vk(t)|2dt

− λ
∫ T

0
(u2
k(t) + v2

k(t))dt−
∫ T

0
[ukFuk(t, uk(t), vk(t))

+ vkFvk(t, uk(t), vk(t))]dt,

Then, it follows that

‖uk − u‖2α + ‖vk − v‖2β
≤ 〈ϕ′(uk, vk)− ϕ′(u, v), (uk − u, vk − v)〉

+ λ(‖uk − u‖∞
∫ T

0
|uk(t) + u(t)|dt+ ‖vk − v‖∞

∫ T

0
|vk(t) + v(t)|dt)

+

∫ T

0
Fuk(t, (uk − u)(t), (vk − v)(t))dt‖uk − u‖∞

+

∫ T

0
Fvk(t, (uk − u)(t), (vk − v)(t))dt‖vk − v‖∞.

(3.4)

From (3.3) and ϕ′(uk, vk)→ 0 as k →∞, we have

〈ϕ′(uk, vk)− ϕ′(u, v), (uk − u, vk − v)〉
=〈ϕ′(uk, vk), (uk − u, vk − v)〉 − 〈ϕ′(u, v), (uk − u, vk − v)〉
≤‖ϕ′(uk, vk)‖‖uk − u, vk − v‖X − 〈ϕ′(u, v), (uk − u, vk − v)〉
→0, as k →∞.

(3.5)

In view of (3.3)-(3.5), we know that ‖uk − u‖2α + ‖vk − v‖2β → 0, as k → ∞, which shows
‖uk − u‖α → 0, ‖vk − v‖β → 0, as k → ∞. So we known ‖(uk − u, vk − v)‖X → 0 as k → ∞.
Then {uk, vk} converges strongly to (u, v) in X. Therefore ϕ satisfies Palais-Smale condition.

Step 2. We show that the condition (1) in Lemma 2.12 holds. From (H3), there exists a constant c > 0
small enough and a constant c0 > 0 such that

F (t, x, y) < c0(|x|2 + |y|2)

for (|u|2 + |v|2)
1
2 < c, t ∈ [0, T ].

Let

c1 = min{1

2
[1− (λ+ 2c0)

T 2α

Γ2(α+ 1)a0
,
1

2
[1− (λ+ 2c0)

T 2β

Γ2(β + 1)b0
]},

the assumption (H3) implies c1 > 0.
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Then for (|u|2 + |v|2)
1
2 < c, t ∈ [0, T ], it follows from (2.5), (2.10) and (2.11) that

ϕ(u, v) =
1

2

∫ T

0
[a(t)| 0Dα

t u(t)|2 + b(t)| 0D
β
t v(t)|2 − λ(u2(t) + v2(t))]dt−

∫ T

0
F (t, u(t), v(t))dt

≥1

2
(‖u‖2α + ‖v‖2β)− λ

2

∫ T

0
[u2(t) + v2(t)]dt−

∫ T

0
c0[u2(t) + v2(t)]dt

≥1

2
(‖u‖2α + ‖v‖2β)− (

λ

2
+ c0)[

T 2α

Γ2(α+ 1)a0
‖u‖2α +

T 2β

Γ2(β + 1)b0
‖v‖2β]

≥c1(‖u‖2α + ‖v‖2β),

For 0 < ρ ≤ c, let

‖(u, v)‖2 = (|u|2 + |v|2)
1
2 , Bρ = {u ∈ X : ‖(u, v)‖2 = (|u|2 + |v|2)

1
2 ≤ ρ}.

Then, we can easily choose a constant a1 > 0 such that ϕ|∂Bρ∩E ≥ a1.

Step 3. For any finite dimensional subspace W ⊂ X, we prove ϕ(u) ≤ 0 on W \BR(W ).

For any r > 0 and (u, v) ∈ W \ (0, 0) with ‖u‖α = ‖v‖β = 1, by the conditions µ > 2, λ ∈
(0,min{Γ2(α+1)a0

T 2α , Γ2(β+1)b0
T 2β }) and (3.2), we have

ϕ(ru, rv) =
r2

2

∫ T

0
[a(t)| 0Dα

t u(t)|2 + b(t)| 0D
β
t v(t)|2 − λ(u2(t) + v2(t))]dt

−
∫ T

0
F (t, ru(t), rv(t))dt

≤r2 −
∫ T

0
F (t, ru(t), rv(t))dt

≤r2 − d1r
µ

∫ T

0
|u|µdt− d2r

µ

∫ T

0
|v|µdt+ d3T

→−∞, as r → +∞.

Hence, there exists a constant r0 > 0 such that ‖(ru, rv)‖ > ρ and ϕ(ru, rv) < 0 for any r > r0.
Since W is a finite dimensional subspace of X, we know all the norms in W are equivalent. For
all (u, v) ∈ W \ (0, 0) with ‖u‖α = ‖v‖β = 1, similarly to the procedure in [22], we can choose
the same r0 > 0 such that there exists R(W ) > 0 and ϕ(u, v) ≤ 0 on W \BR(W ).

All the conditions in Lemma 2.12 hold. Then it follows Lemma 2.12 that the function ϕ has infinitely
many critical points. That is, the boundary value problem (1.1) has infinitely many weak solutions. As a
consequence of Lemma 2.9, we deduce that the boundary value problem (1.1) has infinitely many solutions.

Finally, we give two examples to illustrate the usefulness of our main result. Consider the following
coupled system of fractional differential equations

Example 3.5. 
tD

1
2
T (0D

1
2
t u(t)) =

v(t)

2
+ Fu(t, u(t), v(t)), 0 < t < 1,

tD
1
2
1 (0D

1
2
t v(t)) =

u(t)

2
+ Fv(t, u(t), v(t)), 0 < t < 1,

u(0) = u(1) = 1, v(0) = v(1) = 1.

(3.6)
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Let F (t, u(t), v(t)) = u2(t)+v2(t)
9 , we can easily verify that all the conditions of (H1) are satisfied. From

(3.6), we know α = β = 1
2 , a(t) = b(t) = 1, T = 1, λ = 1

2 .
We Choose a1 = 1

8 , it follows that

1

2
(
Γ2(α+ 1)a0

T 2α
− λ) =

1

2
(
Γ2(β + 1)b0

T 2β
− λ) =

1

2
(Γ2(

3

2
)− 1

2
) =

π

8
− 1

4
> a1 =

1

8
.

It is also easy to see that

lim sup
|u|→∞,|v|→∞

F (t, u, v)

|u|2 + |v|2
= lim sup
|u|→∞,|v|→∞

1
9(|u|2 + |v|2)

|u|2 + |v|2
=

1

9
< a1 =

1

8
,

which implies condition (H2) holds.
Then the problem (3.6) satisfies all the conditions in Theorem 3.2. In view of Theorem 3.2, the problem

(3.6) has at least weak solution.

Example 3.6. 
tD

1
2
T (0D

1
2
t u(t)) = λv(t) + Fu(t, u(t), v(t)), 0 < t < 1,

tD
1
2
1 (0D

1
2
t v(t)) = λu(t) + Fv(t, u(t), v(t)), 0 < t < 1,

u(0) = u(1) = 1, v(0) = v(1) = 1.

(3.7)

Let F (t, u(t), v(t)) = u4(t) + v4(t), it is easy to check the hypothesis (H1) and (H5). Equation (3.7)
shows that α = β = 1

2 , a(t) = b(t) = 1, T = 1. A direct calculation shows

min{Γ2(α+ 1)a0

T 2α
,
Γ2(β + 1)b0

T 2β
} = Γ2(

3

2
) =

π

4
.

Then for each λ ∈ (0, π4 ), we choose c0 = 1
4(π4 − λ), which implies

c0 =
1

4
(
π

4
− λ) <

1

2
(
π

4
− λ) = min{1

2
(
Γ2(α+ 1)a0

T 2α
− λ),

1

2
(
Γ2(β + 1)b0

T 2β
− λ)}.

It is also easy to see

lim sup
|x|→0,|y|→0

F (t, x, y)

|x|2 + |y|2
= lim sup
|x|→0,|y|→0

|x|4 + |y|4

|x|2 + |y|2
= 0 < c0,

which holds uniformly for (x, y) ∈ R2, t ∈ [0, 1], and shows (H4) is satisfied.
Let µ = 3, for (x, y) ∈ R2, t ∈ [0, 1], we can get

0 < µF (t, x, y) = 3(u4 + v4) ≤ xFx(t, x, y) + yFy(t, x, y) = 12(x4 + y4).

Hence (H4) holds. Then all the conditions in Theorem 3.4 are satisfied. Owing to Theorem 3.4, for each
λ ∈ (0, π4 ) the coupled system (3.7) possesses infinitely many solutions.
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