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1. Introduction and Preliminaries

The pioneering research of impulsive differential equations via variational methods was initiated by Nieto
and O’Regan [5], and study on impulsive differential equations with derivative dependence via variational
methods was introduced by Nieto. In [4] the following boundary value problem was investigated

—i(t) + g(t)u(t) + Mu(t) = o(t), ae. t€]0,T],
' =1,2.....p,

where \,d; € R, 0 € C[0,1]. The author introduced a variational formulation for the damped linear
Dirichlet problem with impulses and the concept of a weak solution for this problem. Since then there is
a trend to study differential equation via variational methods which leads to many meaningful results, see

[14, 15, [16], 17] and the references therein.
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Motivated by the above mentioned work, in [2], we obtained the existence of at least one classical solution,
at least two classical solutions and infinitely many classical solutions of the following damped boundary value
problem with impulses

—i(t) + g(t)u(t) + Mu(t) = f(t,u), ae. te€]0,T],
—Au(t;) = Li(u(ty)), i=1,2,...,p,

i)
u(0) =0, au(T)+ pu(T) =0,
where A is a parameter, T > 0, g € C[0,T], f € C([0,T] x R,R) and I; : R — R(i = 1,2,...,p) are
continuous, o > 0,5 > 0 (or 8 = 0).

Just as what Nieto said in [5], “This approach is novel and it may open a new approach to deal with
nonlinear problems with some type of discontinuities such as impulses”. From then on, the second-order
Hamiltonian systems with impulsive effects are also surveyed by variational methods, we refer the readers
to [7, [8, 18] and the references therein.

Zhou and Li [I§] studied the existence of period solutions of the following impulsive second-order Hamil-
tonian systems

i(t) = VF(t,u), a.e.te[0,T],
AGH(t) = L (ui(t), i=1,2,...,N;5=1,2,..,p,
w(0) — u(T) = 4(0) — u(T) =0,
where 0 =ty < b1 < ... <tp <tpyr =T, Nil(ty) = a'(t]) —a'(t;) = lim, .+ (t) — lim,

[0,7] x RN — R and I;; : R — R are continuous.
In this paper, we consider the second-order Hamiltonian systems with impulsive damped vibration

- 0(t) and F :

k3

w(t) + g(t)u(t) — NA(t)u(t) = =VF(t,u), a.e.te0,T],
Aut(ty) = L (u'(ty), i=1,2,...,N;j=1,2,..,p, (1.1)
w(0) — u(T) = u(0) — u(T) = 0,

where A > 0,7 > 0, g € L'[0,T] fo s)ds = 0,A : [0,T] — RV*N is a continuous map from [0, 7] to the
set of N-order symmetric matrices, IZ] R —-R(GE=1,2,...N;j=1,2,...,p) are continuous, 0 =ty < t; <
L <ty < tppr =T, AU(t) = ui(tj) —a*(t;) = lim,_, a(t) — lim,_,,- a(t) and F € C([0,T] x RV, R)
satisfies the following assumption: ' '

(A) F(t,r) is measurable in ¢ for every z € RV and continuously differentiable in z for a.e. t € [0,T], and
there exists a € C(RT,R*) and b € L*([0, 7], R") such that

[E(t, 2)| < a([z))b(t), [VEE )] < a(|z])b(t)

for all z € RY and a.e. t € [0, T].
When ¢(t) = 0, A(t) is a zero matrix and I;; = 0, Hamiltonian systems (1.1]) has been studied extensively,
see [3, @, [10) 11} 12] T3] and the references therein.
More precisely, Mawhin and Willem [3] studied the following Hamiltonian systems
i(t) = VF(t,u), a.e. te0,T],
u(0) —u(T) =u(0) — u(T) =0,
they established existence of at least one period solution when satisfies the following assumption:

F(t,z) is measurable in ¢ for every x € RY and continuously differentiable in x for a.e. t € [0,T], and
there exist a € C(RT,R*) and b € L'(0, T;R*) such that

[E'(t, )| < allz))b(t), [VE(E x)] < al|z])b(t)
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for all z € RY and a.e. t € [0, 7] and there exists h € L(0,T) such that |[VF(t,x)| < h(t), and furthermore
f(;‘r F(t,x) — 400 when |z| — co(Ahmad-Lazer-Paul type coercive condition).

Tang [10] studied the same Hamiltonian systems by using the least action principle and minimax methods
when satisfying

T
\x]_zo‘/ F(s,xz)ds — 4o0(|z| = 00)
0
or

T
yx\—Qa/O F(s, 2)ds — —oo(jz| = o0).

For g(t) # 0, A(t) is not a zero matrix and I;; # 0 (i = 1,2,...,N;j = 1,2,...,p), the Hamiltonian
systems is an impulsive damped vibration Hamiltonian systems. In this paper, our aim is to study the
existence of second-order Hamiltonian systems with impulsive damped vibration differential equations. The
rest of the paper is organized as follows. In Section [2| we give several important lemmas and variational
structure. The main theorems are formulated and proved in Section In Section {4, some examples are
presented to illustrate our results.

2. Preliminaries and variational structure

Let H := H:(0,T;RY) = {u : [0,7] — R¥|u be absolutely continuous, & € L?(0,T;R"Y) and u(0) =
u(T)} with the inner product

T T
<u7v>o=/0 (ﬂ(t%@(t))d“r/o (u(t), v(t))dt

for all u,v € H, where (.,.) denotes the inner product in R¥.

Set H2(0,T;RN) = {u : [0,T] — R|u, @ are absolutely continuous, i € L?(0,T;RY)}.

For all u € H?(0,T;RY), we have Au(t) = u(tT) — u(t~) = 0 for any t € (0,T). If u € H, we have that
u is absolutely continuous and % € L?(0,T;R"), thus the one side derivatives u(t*), @(t~) may not exist,
which leads to the impulsive effects.

Let G(t) = fg g(s)ds. Noting that g € L'[0,7T], one has G'(t) = (f(;t g(s)ds) = g(t),a.e. t € [0,T],
thus G(t) is absolutely continuous, which leads to the boundedness of G(t), hence max,c(y e“® and
minepo 1) e“® exist, thus set M = max;e(o, 7] G m= mingeo 7 G,

Set

T T
(u,v) = / eCD (a(t), v(t))dt + / CONAM)u(t),v(t))dt ¥ u,ve H
0 0

and the corresponding norm is defined by

T T %
Hu||:</0 eG<t>|u(t)|2dt+/0 eG(t)()\A(t)u(t),u(t))dt> .

By the similar proof of the corresponding parts in [I], one has the above norm is equivalent to the usual one

fulo = ( [ o)t + / ' |u<t>\2dt)%
fullzs = ( ' \u<t>|2dt>é

U = max |u(t)|.
lulloe = mavx u(r)

Now we recall that

and

The Sobolev space H has some properties as follows.
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Lemma 2.1 ([3]). There exists C1 > 0 such that, if u € H, then
[ufloo < Cillull.

Moreover, if fO t)dt =0, then
[ulloo < Cull] 2.

Lemma 2.2 ([3]). If the sequence {uy} converges weakly to w in H, then {ux} converges uniformly to u on
[0,77].

Lemma 2.3 ([10]). Ifue H, letu—Tfo t)dt, @ =wu—u. Then one has

T2 T
3|72 < 42/ [u(t)|?dt  (Wirtinger's inequality)
™ Jo
and

T T

@)%, < 3 lu(t)|?dt  (Sobolev inequality).

In the following we give the varlatlonal structure.
Multiply the two sides of the first equality (I.1)) by e®) to get

e“Di(t) + e“Ogt)a(t) — AeCD At u(t) = —e“DVE(t,u).
By Remark 3 in P.7 of [3], one has 4 is classical derivative of u, thus the above equality implies
(e“D4(t) = AeCD A(t)u(t) — “OVF(t,u).
Now multiply by v(¢) € H at both sides and integrate from 0 to T,

T T
/ (COq(t)) ,vo(t))dt = / e“DNA(u(t) — VF(t,u),v(t))dt. (2.1)
0 0

Combining f(;[ g(s)ds = 0,74(0) = 4(T) and v(0) = v(T'), one has

p
_ Zec |t]+1 Z/ OO (4)i ()t

j=0
- - G(t) t [t G(t
i1 . .
=30 [ 0.0 7 =3 [ COawitar
3=0 | i=1 =0 t;
p N

. P ortin
S A ()0 (1) — 3 /t Oty (t)dt
=07t

p N T
SN G Ly () (t) — / e“ O (t)o(t)dt.

j=1i=1 0

Combining with (2.1]), one has

T T N
/ eCO (a(t), o(t))dt + / e“DNAu(t) — VE(t,u),v(t)dt + Y Y eI L;(ul (t)0'(t;) = 0. (2.2)
0 0

7j=11i=1

Thus, a weak solution to (1.1)) is given below and it is inspired by the weak solution defined in [4].
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Definition 2.4. u € H is a weak solution of (|1.1)) if

p

/OTeG(t)(u(t),qb(t))dt+/OTeG(t)(AA(t) (t) = VE(t,u), v(®)dt + > > S L5 (' (t)))v' (t;) = 0

7j=11i=1

holds for any v € H.

For the sake of convenience, we define A = {1,2,..., N}, B = {1,2,...,p}. Consider the functional
@ : H — R defined by

T T
pl =5 [ COloPa 3 [ SO0, un)a

T PN uwi(t;)
/ eG(t)F(t,u)dt+ZZth)/ I;(t)dt

0 j=1i=1
1
= S+ [ e RIS ”/
0 7j=11:i=1
we have the following two lemmas.

Lemma 2.5. The functional ¢ is continuously differentiable.

Proof. Let
b(u) = % /O ' eG(t)]u(t)\th—% /O " OO At u(t), u(t))dt — /O " OO ()t
Lit,2,) = 2e%OlyP — 2eSO(A(t)r, 2) — SO (1)
and

i(tj)

D elll /u I (t)dt.

1:i=1

p
]:

By assumption (A), L(t, z,y) satisfies all assumptions of Theorem 1.4 in [3]. Hence, by Theorem 1.4 in [3],
we know that ¢ is continuously differentiable. By the continuity of I;;, i € A, j € B, we know that 1) is
continuously differentiable. Thus ¢ is continuously differentiable and ¢ () is defined by

T T
(o (u),v) = / eSO (a(t), o(t))dt + / CONAR)u(t) — VE(t,u),v dt—i—ZZeG(t (Wt ()0 ().

0 0 7j=11i=1

0
Lemma 2.6. If u € H is a solution of the Euler equation ¢’ (u) =0, then u is a weak solution of ((1.1)).

Proof. Since ¢’ (u) = 0, thus for any v € H,
, T T
0= (p (u),v) = /0 GO (a(t), o(t))dt + /0 CCONA)u(t) — VE(t,u),v(t))dt
p N
+ 03 S L (W (1)’ (),

j=1i=1

thus by Definition u is a weak solution of ([1.1)). O]
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3. Main results

Theorem 3.1. Suppose that (A) and the following conditions are satisfied
(i) There exist f,e € L*(0,T;R*") and o € [0,1) such that

IVER, )| < f@)|2]" + e(t)

for all z € RN and a.e. t €[0,T);
(ii) A(t)x - a:>0f0rall:v€RN, ae. t€[0,T]; I;;(t)t >0 Vie A, jeB, teR;

(1i1) \x! —2a fo (s,x)ds — —o0, as |x| — oo.

Then (1.1)) has at least one weak solution in H when \ > 0.

Proof. Tt follows from (i) and Lemma [2.5| that

| /O Pt ult) — F(t,a))de] < | /0 ' /0 VE(t a4 si(t))a(t)dsd]
//f V@ + sit)|" |t \dsdt+// ()| dsdt

T T
2(!ﬂla+llﬂ|‘§o)llﬂlloo/0 f(t)dltﬂLllﬂloo/0 e(t)dt

< Stz + e ([ s

T T
1 2l / £t + i / e(t)dt
0 0

2

a+1
m T

T 2
< . 2 —2a . 2
<17 ; |a(t)|dt + Calu|*™ + Cs </0 [a(t)] dt>

e ( / ' \ﬂ(t)ﬁdt)é,

@:@f(fﬂwdt}a Gy =2()°F" /OTfu)dt, Cr = (13)} /OTea)dt.

SR uifty) 1
By (i), one has Y. > e%) [(“19) [;;(¢)dt > 0. Thus
j=1i=1

where

T T
p(u) = % /0 eG(t)|u(t)|2dt+% /0 YD (A(t)u(t), u(t))dt

P i(t))

—;/0 VF(tu)dt + > Gl /u I;;(t)dt

7j=11i=1
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T T
:% /O eG<t>|u<t)|2dt+g /O CO(Atyu(t), u(t)dt

tj)

T
/0 (F(t,u) — F(t,a))dt /O F(t,a)dt + Z Z / 1;;(t)dt

7j=11i=1
m T
> 5 t)[2dt — / t)[2dt — Cy M | (3.1)
0
T add T
—C’3M</ lat)| dt) —C4M</ () |dt> M/ Pt
0 0
I T e T 3
> " [ a)Pai - CoM (/ \u@)%) _ oM (/ ()| dt>
0 0 0
T
— (@M [ P a)dt+ Cod|al. (3.2)
0

Noting that
2

)2,

(/OT|u<t>|2dt+W)é =/OT (1) P+ g </T|u<t>\dt)
o = ( / o)t + / ' \u(t)thY

and ||ullp — oo if and only if (fOT |a(t)|?dt + |ul? )% — oo([l()]), furthermore, ||ul|p is equivalent to ||u||, thus
||u|| — oo if and only if ( fo |u(t)|?dt + |u|? )2 — 00, thus and (i47) imply that p(u) — 400 as |lul| — oco.

By Theorem 1.1 and Corollary 1.1 in [3], ¢ has a minimum point on H, which is a critical point of ¢ and
also is a weak solution of (1.1J). O

Theorem 3.2. Suppose that assumption (A) and (i) of Theorem hold, furthermore, the following con-
ditions are satisfied

() There exist b;j,c;j > 0 and B;; € [0,1), such that
11 (t)] < by |t|*P5 - ci5 Vi€ A, j€B, t €R;

(v) Lij(t)t <0 Vie A, jeB, teR,;
(vi) |x|~ 2f0 (s,z)ds — +o00, as |x| = oo;
(vii) (A(t)z,z) < F(t,z) Vo € RN, a.e. t € [0,T].

Proof. Let {uy} be a sequence in H such that {¢(uy,)} is bounded and ¢(u),) — 0, as n — +oo, then we
will prove {u,} possesses a convergent subsequence. We first prove that {u,} is bounded.

Let
- 1 T
o T™ Y Z llaijlloo </ ﬂt)dt)

j=1li=

2

In a way similar to the proof of Theorem [3.1] for all n, one has

T p N
~ ~ 12
|| (TPt e e)t] < TS S e o+ ——
j=11=1 TM Z
j=1i

(| Tf(t)dt)2

M=|=

”aljnoo
1

-
I
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T T
2| / FOdE + iin e / e(t)dt
0
T* P& 4 2 5 2
<MY sl / i (£) 2t + Cl 22 (3.3)
j:

=1
a+1

+ C3 (/OT \un(t)|2dt) N + Oy (/OT ]un(t)Pdt>;

T T
eG(t) U U eG(t) U U
| /0 (A tn(t), i) dt] < /0 (A(tun (1), )t

<3S ol / O\(in + n it

J=11i=1
p N p N
<TM Y Y aijllooll@inl3e + TM D >~ llaijllooln|l[@nlloo
j=11i=1 Jj=li=l1
T Ll
< TS e [ i 4TSS ol
j=1 i=1 j=1i=1
p N 1 (3-4)
+TMZZ \Iaz‘j\loo§\ﬂn\2
J=11i=1
T Ll T
< TS sl [ finPat
0
j=11:i=1
p N
F5TMY S laiglogy [ lin(0Pat + LS oo
j=1 1= j=11=1
T I
ST D NN (IATEIEY) 3) SN
j=11i=1 Jj=11=1
Let b = max;e 4, jen bij and ¢ = max;c 4 jes ¢ij. According to (iv), one has
P ' (t5)
323 [ sy < a3 [ e e
j=1 i=1 0 j=1i=1
p N L
< PN M ulloo + M Y Y
j=1 i=1
1 5] p N T it
1 4 .12
<cpNMU |u| dt)z + E MZZ(/O || dt>
J=11i=1
When A < p24”]3 , by (3.3), (3.4), (iv) and Young’s inequality, for large n one has
5T2M Zl Z llaijlloo
j=li=1

lnll = (¢ (un), @n)

T T
/ i (1) dt+/ CONA) un(t) — VE(t,up), Gy )dt
0 0



J. Liu, Z. Zhao, J. Nonlinear Sci. Appl. 9 (2016), 3459-3472 3467

i=1

p N
£33 O 1) (1)
=11

T ~
> /0 i (8) dtf*ATMZZHamuoo / i (1) 2t — oty 2

7j=11i=1
T

T T L
=Gl [ lin i) F — / |u<t>\2dt>5—A§TMuaijuoo | lintoae
CATMSS falelinf? + 303 S 1) 1)

j=11i=1 j=1i=1
> TeG(t)u t Zdt— )\TM ai U (8)[2dt — Co i, |
m 75 || oo m
0
7j=11i=1
T T ) 1 )
~ ([ liml0Pan* — ([ jate)Pany —*TMZZnamnoo / i (£) 2l
J=11i=1
- fTMZZ laizlloo in > — 3 S 7 G0 byl (t) + @ (85|50 + i) ()]
j=111=1 7j=11i=1
> [ SOt~ TN S agle [ a0 - Cofna
7j=11i=1
T T L T p N
—03(/0 i () [2dt) °F —04(/0 a(t) 2dt) b —8TMZZH%HOO/ ()2t (3.5)
7j=1 =1
A p N p N 5
- §TMZZ ”aij”oomnlz — cpN M ||| — 2bMZZ(|ﬂn|aﬁij + [anloc™) [[tnloo
j=1 i=1 j=1i=1
T T ~
G()|y, 20 T 29 — 2«
Z/o Dl (t)2dt 12ATM;;H%HOO/ [iin (1)t — Cotin

T T . p N T
Cal [ hin(Pi)*® = cu( [ panPant —agT ML | tiat P

A P , aBii 1
ST laglelan? - any [ o’ s 355 e

jZ’LZ j].’L].

p N 2 P
apB; ~ af;i+1
ﬂwZZmWﬂwamef
p N ~
> [ SO~ TATMSS gl [ a0 - Gt

7j=11i=1

T T
—cs</0 it () Pat) F* —c4</0 OROE TMZZII%IIOO / i (1) Pt

J=11i=1

AT fag e - cpNM\f Rt o33 g o

j=11=1 j=11=1
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pNTT.2216 e T[T )2 iyt
—2bMZZ(12/O i () 2dt) 275 — 2bM YD ( 12/0 Jiin (t)] dt)
7j=11=1 J=11=1
It follows from Wirtinger’s inequality that
2 T g 2
Jnl? < (14 5 [ linl0) Pt (36)
47 0
By (3.5) and (3.6, one has
T
/ i (8)2dt < Cstn|? + Coltn** + Crltn|* + Cs (3.7)
0

for all large n and some positive constants C5, Cg, C7 and Cs. It follows from (i) and Lemma that

T T
CG(t) U U €G(t) U U
| /0 (A n(t), un(1))dt] < /O A (£), 1 (£))|

p N T
<33 flayle / GO\ (1 + ) (it + )t

j=1i=1

T M»s

j=1i=1

p N
MY laijloolnl®
j=11i=1

w\ﬂ

N
Zl
i= 7j=11i=1
p N 1
LMY Y o oo
=1 =1

J
p N

+ TMZZ ||aij||00|an|2
j=1

=1 i=1
p N
2
< ST Y g / i (1) 2t
Jj=11i=1
p N
2
+ HTMZlZ:namnm / i (1)t
J 7

j=1i=1

1
p
j=1i=1 7j=1 =1

and

T T 1
|/0 (F(t,un(t)) — F(t,ay))dt| <| /0 /0 (VF(t, upn, + stp)undsdt|

p N p N

+ TMZZ ||aij||00|an|2 + TMZZ HainOO|an|2
j=1i=1

—TM

N p N
Z lasj lloollnllZe + 272D 7>~ [laij ool @nl [ | oo
=1

Jaislloo / it (1) dt+2TMZleawlloo I
1

N
S il / (O + 273" S g ol
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//f V[t + siin|® |un|dsdt+// [ (8) | dsclt

<2(un!°‘+\|unH“)|unHm/ f(t dt+\|unHoo/0 e(t)dt

) 1 oo (T )
<M 3 Y lalelinlt, + et ([ )

TM 3 3 o
j=li=1
T T
+ 2! / FE)dt + [0 / e(t)dt (3.9)
0
P
TS S lale [ titopa+ ofape
Jj=11i=1

atl

T o T 3
+ Cs (/ |u(t)|2dt) +Cy (/ u(t)|2dt> ,
0 0
Combining (v), (vi) . with ( ., one has

T
o) = % /0 eG(t)\un(t)\th—i—% /0 eSO (£), un (1))t

T T
. / eG(t)(F(t, un () — F(t,1y))dt — / eG(t)F(t, Up )dt
0 0

PN uh ()
+ Z Z €G(t / ij (t)dt

=11:=1

(3.10)

<.

T
< i |*(Cy — |an| 2 / COF(t,a,)dt) + Cig
0
for large n and some positive constants Cg and C1p. We claim that {u,} is bounded. Otherwise, suppose
|tn| = 4+00(n — 00). It follows from (vi) and (3.10]) that
o(up) = —o0 (n — 00),

which contradicts the boundedness of ¢(uy,).

Hence, it follows from (3.6)), (3.7), and the boundedness of {,} that {u,} is bounded in H, then there
exists a subsequence denoted by {uy, } of {u,} such that {u,,} weakly converges to some w in H, then the
sequence {uy, } converges uniformly to w in C[0,T]. Hence

(' (uny) — @' (w)) (tny, —u) — 0,
/ ’ O A)(VE(t, tn, (1) — VF(t,u(t))) (un, — u(t))dt — 0,
0

(i (up,, (1)) = Lig (u' (1)) (up, (85) — ' (t)) = O,
as n — 4o00. Thus, we have

T T
(@ (ttne) — & (), tmg — 1) = / €SO i, (1) — a(t)|2dt + A /0 €SO A() [, (1) — u(t) 2dt

0
T
+ /0 eSO AW)(VE (L, (£)) = VE(t, u(t))) (un () — ia(2)

+ i (ug,, (£:) = Lig(u (8))] (ugy, (t5) — ' (1)),
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which follows that w,, — uw in H. Thus, ¢ satifies the Palais-Smale condition.
Let H = {u € H|a=0}. Then H = H@R".
To use the saddle point theorem (Theorem 4.6 in [6]), we only need to verify
(Hy) o(u) — —o0 as |u| — oo in RY;
(Hy) ¢(u) = +00 as ||u]| = oo in H.

Firstly, we show that (H1) holds. By (vi), one has fOT GO R (t,u)dt — 400 as |u| — oo in RV,
When \ < 2, by (vii), one has

p(u) = % / ' O a(t) Pdt + % / ' PO NA(tyu(t), u(t))dt

0 0

T P wi(t;)
—/ eG(t)F(t,u)dt—i—ZZeG(tj)/ ’ I;;(t)dt
0 0

j=1i=1

A
§(§

—-1) /OT eCD(F(t,u))dt — —oo,

as |u| — oo in RV, .
Secondly, we verify (Hz) holds. For all u € H, then u = 0, by (i) and Sobolev inequality, for all n, one

T T 1
| ) =P =1 [ [ R su) uw)isa
T T
w(t)]et e(t)|lu
< [ rwhortaes [ el

T T
w|let e u .
< /0 FO)llulde + /0 () [l ot (3.11)

a+l

< | ) (/ T\u|2dt)2+ | Cewan Ly (/ det);

By (iv), one has

p N ui(ty)
33 [ a3 [ oo
Jj=11:=1 7j=1 =1
p N
< epNM[ullso +0M Y3 a0 (3.12)
=1 i=1
< cpNM\/ ( | dt>
p O‘/Bij+1
aﬁz +1 2
K MZZ(/ ]u!th>
7j=1 =1

It follows from (3.11)), (3.12) and X < e that
5T2M Zl Z Haw”oo
J i=

T T T
o(u) = % /0 eG(t)|u(t)|2dt+% /0 OO NA(E)up (1), u(t))dt — /0 GO (F(t,u) — F(t,0))dt
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—/0 tOdH—ZZ ”/

j=11=1
1T iy AT 2
25 | ) dt—ﬁmz Jaislloe | JatoPar (3.13)
t,j=1
a+1 1
T an1 T T o T2 T T T o 2
_(ﬁ) 2 /0 f(t)dt (/0 | dt> —\/12/0 e(t)dt </0 || dt>
p N Ligjﬂ T
aBi;+1
—cpNM\/ < |u\2dt> — (=) MZZ</ |u2dt) / eCOF(t,0)dt.
0

7j=11i=1

If uw € H, then @ = 0, by Wirtinger’s inequality, one has

Jully = ( / Uit + / ' |u<1t>\%ht)é
<<1 + f:) /T ]u(t)\zdtf ,

furthermore, ||ul|o is equivalent to |||, thus ||u|| — oo if and only if fOT |u(t)|?dt — oo, then ([3.13)) implies
that p(u) — 400 as ||ul]| = oo, i. e. (Hz) is verified. O

4. Examples

Example 4.1. Take T' = 1, N = 5, A(t) is a fifth-order unit matrix, t; =

L(0,T;R%), F(t,u) = (=t)|u|2 +a(t), I;(t) = t3 and a = L.

Consider the second-order Hamiltonian systems with impulsive effects

€ (0,1), g(t) = t, a(t) €

D=

(1) + g(H)i(t) — MA@u(t) = ~VF(Lu), ae. t e [0,T],

AU(t)) = L (ui(t;), i=1,2,...,N; j=1,2,...,p,
u(0) —u(T) =u(0) —u(T) =0,

when A > 0, the above Hamiltonian systems has at least one solution according to Theorem

Example 4.2. Take T' = 0.1, N = 5, A(t) is a fifth-order unit matrix, t; = 55 € (0,1), g(t) = ¢, a(t) €

L(0,T;R%), Ijj(t) = —t3,a = 1 and

ul? + la U
F(t,u):{ [ul* + la(®)], [ul > 1,

1, lu| < 1.
Consider the second-order Hamiltonian systems with impulsive effects

i(t) + g(t)alt) — NA(t)ult) = —VF(t,u), ace. te[0,T),
Au( ) =1Ii;(u 2( ), i=1,2,..,N; j=1,2,....p,
u(0) = u(T) = u(0) — w(T) =0,

when \ < 2, the above Hamiltonian systems has at least one solution according to Theorem 3.2
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