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Abstract

In this paper we study the oscillatory property of solutions for a class of partial difference equation with
constant coefficients. In order to study the oscillation results, we find the regions of nonexistence of positive
roots of its characteristic equation which is equivalent to the oscillation results. We derive some necessary
and sufficient conditions by means of the envelope theory. c©2016 All rights reserved.
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1. Introduction

In recent years, the oscillatory behavior of the partial difference equations have been one of the main
topics in the theory of partial difference equations [2–4, 6–10, 13, 14]. In particular, in [12], by means of the
z-transform, B. G. Zhang and R. P. Agarwa have investigated the oscillatory behavior of following delay
partial difference equation

Am+1,n +Am,n+1 − pAm,n +

µ∑
i=1

qiAm−ki,n−li = 0,

where p, qi are real numbers, ki and li ∈ N0, i = 1, 2, ..., µ, Nt = {t, t+1, ...}, and µ is a positive integer. Later
in [11], Chunhua Yuan and Shutang Liu apply the envelope theory to studying the behavior of oscillatory
for following partial difference equation

un+2,m + un,m+2 + aun+1,m + bun,m+1 + cun,m = 0,
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where a, b, c are real numbers, and m,n are nonnegative integers.
In this paper, we investigate the following partial difference equation

pum+2,n + qum,n+2 + um+1,n + um,n+1 + rum,n = 0, (1.1)

where p, q, r are real numbers and m,n are nonnegative integers.
The purpose of this paper is to apply a new method, based on the envelope theory of the family of

planes, to derive necessary and sufficient conditions for the partial difference equation (1.1) to be oscillatory.
Before stating our main results, we state some definitions used in this paper.

Definition 1.1. A solution of (1.1) is a real double sequence {um,n} which is defined for m ≥ 0,n ≥ 0 and
satisfies (1.1) for m ≥ 0 and n ≥ 0.

Definition 1.2. A solution {um,n} of (1.1) is said to be eventually positive (or negative) if um,n > 0 (or
um,n < 0 ) for large numbers m and n. It is said to be oscillatory if it is neither eventually positive nor
eventually negative. Equation (1.1) is called oscillatory if all of its nontrivial solutions are oscillatory.

2. Preliminaries

In this section, we give some lemmas that will be used in proof of the main results in section 3.

Lemma 2.1 ([15]). The following statements are equivalent:

(i) Every solution of equation (1.1) is oscillatory.

(ii) The characteristic equation of equation (1.1)

pλ2 + qµ2 + λ+ µ+ r = 0

has no positive roots.

Lemma 2.2 ([5]). Suppose that f(x, y), g(x, y), h(x, y) and v(x, y) are differentiable on (−∞,+∞) ×
(−∞,+∞). Let Γ be a two-parameter family of planes defined by the equation

f(λ, µ)x+ g(λ, µ)y + h(λ, µ)z = v(λ, µ),

where λ and µ are parameters. Let Σ be the envelope of the family Γ. Then the equation

f(λ, µ)a+ g(λ, µ)b+ h(λ, µ)c = v(λ, µ)

has no real roots if and only if there is no tangent plane of Σ passing through the point (a,b,c) in xyz-space.

Lemma 2.3 ([1]). For the linear homogeneous difference equation

un+k + a1un+k−1 + · · ·+ akun = 0, (2.1)

where n is an nonnegative integer, k is a positive integer and a1, a2, . . ., ak are real numbers, the following
statements are equivalent:

(i) Every solution of (2.1) is oscillatory.

(ii) The characteristic equation of (2.1)

λk + a1λ
k−1 + · · ·+ ak = 0

has no positive roots.
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3. Main results

In this section, some necessary and sufficient conditions for oscillations of all solutions of equation (1.1)
are established.

Theorem 3.1. Every solution of equation (1.1) oscillates if and only if p ≥ 0, q ≥ 0 and r ≥ 0 or p < 0, q <
0, and

r <
p+ q

4pq
.

Proof. The characteristic equation of equation (1.1) is

pλ2 + qµ2 + λ+ µ+ r = 0. (3.1)

Set
f(p, q, r, λ, µ) = pλ2 + qµ2 + λ+ µ+ r = 0. (3.2)

From (3.2), we can see that (3.1) has no positive roots if and only if (3.2) has no positive roots. Since
we mainly discuss the oscillatory solutions of equation (1.1), by Lemma 2.1, attention will be restricted
to the case where λ > 0 and µ > 0. We will consider (p, q, r) as a point in xyz-space, and try to search
for the exact regions including points (p, q, r) in xyz-space such that (3.2) has no positive roots. Actually,
f(x, y, z, λ, µ) = 0 can be regarded as an equation describing a two-parameter family of planes in xyz-space,
where x, y and z are the coordinates of point of the planes in xyz-space and λ, µ are parameters.

According to the envelop theory, the points of the envelope of the two-parameter family of planes defined
by (3.2) satisfy the following equations

f(x, y, z, λ, µ) = λ2x+ µ2y + λ+ µ+ z = 0,

fλ(x, y, z, λ, µ) = 2xλ+ 1 = 0,

fµ(x, y, z, λ, µ) = 2yµ+ 1 = 0,

(3.3)

where λ > 0 and µ > 0. Eliminating the two parameters λ and µ from (3.3), we get the equation of the
envelope

z(x, y) =
x+ y

4xy
, (3.4)

where x < 0, y < 0. From (3.4), we get

∂z

∂x
= − 1

4x2
,
∂z

∂y
= − 1

4y2
,

∂2z

∂x2
=

1

2x3
,
∂2z

∂y2
=

1

2y3
,

∂2z

∂x∂y
= 0,

when x < 0, y < 0, we have ∂2z/∂x2 < 0, ∂2z/∂y2 < 0, ∂2z/∂x2 · ∂2z/∂y2 − (∂2z/∂x∂y)2 = 1
4x3y3

> 0.

Hence, z(x, y) is a negative and strictly concave function on (−∞, 0) × (−∞, 0). Moreover, the envelope
defined by (3.4) is a strictly concave surface S over (−∞, 0) × (−∞, 0) as described in Figure 1. Thus we
can easily see that there are two cases for the point (p, q, r) through which there cannot be any tangent
plane of the envelope S which passes. The first case is when the point (p, q, r) is in the first closed octant,
namely, p ≥ 0, q ≥ 0 and r ≥ 0. The second case is when the point (p, q, r) is vertically below the envelope
S in the seventh octant, namely, p < 0, q < 0 and r < (p + q)/(4pq) is lied in somewhere else except the
above two cases, such a tangent plane can be drawn. Lemma 2.1 implies the statement of this theorem.
This completes the proof.
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Figure 1: Envelope surface for z(x, y) = x + y/4xy(x < 0, y < 0).

If we let µ = 0 in (3.2), then (3.2) reduces to the form

pλ2 + λ+ r = 0. (3.5)

The corresponding ordinary difference equations of (3.5) takes the form

pun+2 + un+1 + run = 0. (3.6)

Theorem 3.2. Every solution of equation (3.6) oscillates if and only if p ≥ 0, r ≥ 0 and p < 0, r < 1/4p.

Proof. Consider the family {Lλ|λ ∈ (0,+∞)} of straight lines defined by Lλ:

f(λ, x, y) = xλ2 + λ+ y = 0,

where λ ∈ (0,+∞). Since
fλ(λ, x, y) = 2xλ+ 1 = 0,

the determinant of the system f(λ, x, y) = 0 = fλ(λ, x, y) is −2λ which does not vanish for λ > 0. By [5,
Theorem 2.6], the C \(0,+∞)-characteristic region of f(λ, x, y) is just the dual set of order 0 of the envelope
G of the family {Lλ|λ ∈ (0,+∞)}. By [5, Theorem 2.3] , the parametric functions of G are given by

x(λ) = − 1

2λ
, y(λ) = −λ

2
, λ > 0.

But G can also be described by the graph of the function y = G(x) where

y = G(x) =
1

4x
.

Since

G′(x) = − 1

4x2
, G′′(x) =

1

2x3
,

G(x) is a negative and strictly decreasing, strictly concave function on (−∞, 0) such that G(0−) = −∞,
G(−∞) = 0. From the property of the function G(x), we can see that the equation f(λ, p, r) = 0 has no
positive roots if and only if p ≥ 0, r ≥ 0 and p < 0, r < 1/4p. The proof is complete.
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4. Illustrative examples

In this section, we give some examples to illustrate the results obtained in Section 3.

Example 4.1. Consider the partial difference equation

0.01um+2,n + 0.03um,n+2 + um+1,n + um,n+1 + 0.02um,n = 0. (4.1)

From (4.1), we have p = 0.01, q = 0.03 and r = 0.02. Since p = 0.01 > 0, q = 0.03 > 0 and r = 0.02 > 0,
according to Theorem 3.1, every solution of equation (4.1) is oscillatory. The oscillatory behavior of equation
(4.1) is demonstrated by Figure 2.
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Figure 2: Oscillatory behavior of (4.1)
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Figure 3: Oscillatory behavior of (4.2)
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Example 4.2. Consider the partial difference equation

− 0.6um+2,n − 0.7um,n+2 + um+1,n + um,n+1 − 0.8um,n = 0, (4.2)

From (4.2), we have p = −0.6, q = −0.7 and r = −0.8. Since p = −0.6 < 0, q = −0.7 < 0 and
r = −0.8 < (−0.6− 0.7)/4 · (−0.6) · (−0.7) = −65/84, according to Theorem 3.1, every solution of equation
(4.2) is oscillatory. The oscillatory behavior of equation (4.2) is demonstrated by Figure 3.
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