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Abstract

In the present paper, we study a new class of boundary value problems for Langevin quantum difference
equations with multi-quantum numbers q-derivative nonlocal conditions. Some new existence and uniqueness
results are obtained by using standard fixed point theorems. The existence and uniqueness of solutions is
established by Banach’s contraction mapping principle, while the existence of solutions is derived by using
Krasnoselskii’s fixed point theorem and Leray-Schauder’s nonlinear alternative. Examples illustrating the
results are also presented. c©2016 All rights reserved.
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1. Introduction

Quantum calculus (q-calculus) has a rich history and the details of its basic notions, results and methods
can be found in the literatures [17]. In recent years, the topic has attracted the attention of several researchers
and a variety of new results can be found in the papers [1, 2, 4, 6–8, 11–15].
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On the other hand, the Langevin equation (first formulated by Langevin in 1908) is found to be an
effective tool to describe the evolution of physical phenomena in fluctuating environments [9]. For some new
developments on the fractional Langevin equation, see, for example, [3, 5, 10, 18–23].

In this paper, we study the existence of solutions for quantum difference Langevin equation with multi-
quantum numbers q-derivatives nonlocal conditions of the form

Dq(Dq + λ)x(t) = f(t, x(t)), t ∈ J := [0, T ],

x(0) = αDpx(0),
m∑
i=1

βiDrix(ξi) = γ,
(1.1)

where quantum numbers 0 < p, q, ri < 1, λ, α, γ, βi ∈ R, i = 1, . . . ,m are given constants, f ∈ C(J × R,R)
and 0 < ξ1 < · · · < ξm < T .

Existence and uniqueness results are proved by using fixed point theorems.
The rest of the paper is organized as follows. In Section 2, we recall some preliminary results from

quantum calculus and prove some basic lemmas needed in the sequel. The main existence and uniqueness
results are contained in Section 3. In Subsection 3.1, we prove an existence and uniqueness result by
using Banach’s contraction principle, while in Subsections 3.2 and 3.3, we prove the existence results via
Krasnoselskii’s and Leray-Schauder’s nonlinear alternative respectively. Finally, in Section 4, examples
illustrating the obtained results are presented.

2. Preliminaries

Let us recall some basic concepts of q-calculus [7, 17].

Definition 2.1. For 0 < q < 1, we define the q-derivative of a real valued function f as

Dqf(t) =
f(t)− f(qt)

(1− q)t
, t ∈ J \ {0}, Dqf(0) = lim

t→0
Dqf(t).

The higher order q-derivatives are given by

D0
qf(t) = f(t), Dn

q f(t) = DqD
n−1
q f(t), n ∈ N.

For x ≥ 0, we set Jx = {xqn : n ∈ N ∪ {0}}∪{0} and define the definite q-integral of a function f : Jx → R
by

Iqf (x) =

∫ x

0
f (s) dqs =

∞∑
n=0

x(1− q)qnf (xqn) ,

provided that the series converges.
For a, b ∈ Jx, we set∫ b

a
f(s)dqs = Iqf(b)− Iqf(a) = (1− q)

∞∑
n=0

qn [bf (bqn)− af (aqn)] .

Note that for a, b ∈ Jx, we have a = xqn1 , b = xqn2 for some n1, n2 ∈ N, thus the definite integral∫ b
a f(s)dqs is just a finite sum, so no question about convergence is raised.

We note that
DqIqf(x) = f(x),

while if f is continuous at x = 0, then

IqDqf(x) = f(x)− f(0).
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In q-calculus, the product rule and integration by parts formula are

Dq(gh)(t) = (Dqg(t))h(t) + g(qt)Dqh(t),

∫ x

0
f(t)Dqg(t)dqt =

[
f(t)g(t)

]x
0
−
∫ x

0
Dqf(t)g(qt)dqt.

Further, the reversing order of integration is given by∫ t

0

∫ s

0
f(r)dqrdqs =

∫ t

0

∫ t

qr
f(r)dqsdqr.

In the limit as q → 1 the above results correspond to their counterparts in standard calculus.

Lemma 2.2. Let f : J → R be a continuous function and 0 < p, q < 1. Then, we have:

(i)

Dp

[∫ t

0
f(s)dqs

]
=

1

(1− p)t

∫ t

pt
f(s)dqs, t 6= 0,

and

lim
t→0

Dp

[∫ t

0
f(s)dqs

]
= f(0).

(ii)

Dp

[∫ t

0

∫ r

0
f(s)dqsdqr

]
=

∫ pt

0
f(s)dqs+

∫ t

pt

(t− qs)
(1− p)t

f(s)dqs, t 6= 0,

and

lim
t→0

Dp

[∫ t

0

∫ r

0
f(s)dqsdqr

]
= 0.

Proof. To prove (i), using the definition of p-derivative, we have

Dp

[∫ t

0
f(s)dqs

]
=

1

(1− p)t

[∫ t

0
f(s)dqs−

∫ pt

0
f(s)dqs

]
=

1

(1− p)t

∫ t

pt
f(s)dqs, t 6= 0.

For t→ 0, we obtain

lim
t→0

Dp

[∫ t

0
f(s)dqs

]
= lim

t→0
Dp

[
t(1− q)

∞∑
n=0

qnf(tqn)

]

= lim
t→0

(1− q)
(1− p)

[ ∞∑
n=0

qnf(tqn)− p
∞∑
n=0

qnf(ptqn)

]
= f(0).

Next, we will show that (ii) holds. From the reversing order of integration, the double q-integral can be
reduced to a single integral as ∫ t

0

∫ r

0
f(s)dqsdqr =

∫ t

0
(t− qs)f(s)dqs.
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Taking the p-derivative to the both sides of the above equation, it follows that

Dp

[∫ t

0

∫ r

0
f(s)dqsdqr

]
= Dp

[∫ t

0
(t− qs)f(s)dqs

]
=

1

(1− p)t

[∫ t

0
(t− qs)f(s)dqs+

∫ pt

0
(qs− pt)f(s)dqs

]
=

1

(1− p)t

[ ∫ t

0
(t− qs)f(s)dqs−

∫ pt

0
(t− qs)f(s)dqs

+

∫ pt

0
(t− pt)f(s)dqs

]
=

∫ pt

0
f(s)dqs+

∫ t

pt

(t− qs)
(1− p)t

f(s)dqs.

Since ∫ t

pt

(t− qs)
(1− p)t

f(s)dqs =
1

(1− p)

∫ t

pt
f(s)dqs−

q

(1− p)t

∫ t

pt
sf(s)dqs

=
(1− q)
(1− p)

∞∑
n=0

qn [tf(tqn)− ptf(ptqn)]

− q(1− q)
(1− p)t

∞∑
n=0

qn
[
t2qnf(tqn)− (pt)2qnf(ptqn)

]
,

it is easy to see that

lim
t→0

Dp

[∫ t

0

∫ r

0
f(s)dqsdqr

]
= 0.

This completes the proof.

Lemma 2.3. Let (1 +λα)
m∑
i=1

βi 6= 0, and 0 < p, q, r < 1 be given constants. Then the boundary value (1.1)

is equivalent to the integral equation

x(t) = −λ
∫ t

0
x(s)dqs+

∫ t

0
(t− qs)f(s, x(s))dqs

+
t(1 + λα) + α

(1 + λα)
m∑
i=1

βi

[
γ + λ

m∑
i=1

βi
(1− ri)ξi

∫ ξi

riξi

x(s)dqs

−
m∑
i=1

βi

∫ riξi

0
f(s, x(s))dqs−

m∑
i=1

βi

∫ ξi

riξi

ξi − qs
(1− ri)ξi

f(s, x(s))dqs

]
. (2.1)

Proof. From the first equation of (1.1), we can modify as

D2
qx(t) = −λDqx(t) + f(t, x(t)), t ∈ J. (2.2)

Taking the double q-integral to both sides of the above equation, we get

x(t) = −λ
∫ t

0
x(s)dqs+

∫ t

0

∫ ν

0
f(s, x(s))dqsdqν + C1t+ C2, (2.3)
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where C1, C2 ∈ R. Changing the order of q-integration, (2.3) can be expressed by

x(t) = −λ
∫ t

0
x(s)dqs+

∫ t

0
(t− qs)f(s, x(s))dqs+ C1t+ C2. (2.4)

It easy to see that x(0) = C2. From Lemma 2.2, it follows by p-derivative of equation (2.4) that

Dpx(t) = − λ

(1− p)t

∫ t

pt
x(s)dqs+

∫ pt

0
f(s, x(s))dqs

+

∫ t

pt

t− qs
(1− p)t

f(s, x(s))dqs+ C1. (2.5)

From the first condition of (1.1), we have

(1 + λα)C2 = αC1. (2.6)

From (2.5) and the second condition of (1.1), we obtain

γ =
m∑
i=1

βi

[
− λ

(1− ri)ξi

∫ ξi

riξi

x(s)dqs+

∫ riξi

0
f(s, x(s))dqs

+

∫ ξi

riξi

ξi − qs
(1− ri)ξi

f(s, x(s))dqs

]
+ C1

m∑
i=1

βi. (2.7)

Solving (2.6) and (2.7) for the constants C1 and C2, we deduce that

C1 =
1

m∑
i=1

βi

[
γ + λ

m∑
i=1

βi
(1− ri)ξi

∫ ξi

riξi

x(s)dqs

−
m∑
i=1

βi

∫ riξi

0
f(s, x(s))dqs−

m∑
i=1

βi

∫ ξi

riξi

ξi − qs
(1− ri)ξi

f(s, x(s))dqs

]
,

and

C2 =
α

(1 + λα)
m∑
i=1

βi

[
γ + λ

m∑
i=1

βi
(1− ri)ξi

∫ ξi

riξi

x(s)dqs

−
m∑
i=1

βi

∫ riξi

0
f(s, x(s))dqs−

m∑
i=1

βi

∫ ξi

riξi

ξi − qs
(1− ri)ξi

f(s, x(s))dqs

]
.

Substituting the values of C1 and C2 in (2.4), we obtain the integral equation (2.1). Conversely, it can
easily be shown by direct computation that the integral equation (2.1) satisfies the boundary value problem
(1.1). This completes the proof.

Remark 2.4. The condition (1 + λα)

m∑
i=1

βi 6= 0 implies that λ 6= − 1

α
and

m∑
i=1

βi 6= 0.
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3. Main Results

In this section, we study the problems (1.1) of quantum difference Langevin equation with multi-quantum
numbers q-derivative nonlocal conditions.

Let C = C(J,R) denote the Banach space of all continuous functions from J to R with the norm defined
by ‖u‖ = supt∈J |u(t)|. In view of Lemma 2.3, we define an operator F : C → C by

Fx(t) = −λ
∫ t

0
x(s)dqs+

∫ t

0
(t− qs)f(s, x(s))dqs

+
t(1 + λα) + α

(1 + λα)
m∑
i=1

βi

[
γ + λ

m∑
i=1

βi
(1− ri)ξi

∫ ξi

riξi

x(s)dqs (3.1)

−
m∑
i=1

βi

∫ riξi

0
f(s, x(s))dqs−

m∑
i=1

βi

∫ ξi

riξi

(ξi − qs)
(1− ri)ξi

f(s, x(s))dqs

]
,

where (1 + λα)
∑m

i=1 βi 6= 0. It should be noticed that the boundary value problem (1.1) has solutions if
and only if the operator equation x = Fx has fixed points.

In the following, for the sake of convenience, we set constants

Λ1 = |λ|T +
T (1 + |λα|) + |α|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣ · |λ|
m∑
i=1

|βi|, (3.2)

Λ2 =
T 2

1 + q
+
T (1 + |λα|) + |α|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣
(

m∑
i=1

|βi|riξi +
m∑
i=1

|βi|ξi(1− riq)
1 + q

)
, (3.3)

∆ =
T |γ|(1 + |λα|) + |γα|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣ . (3.4)

In the following subsections, we prove existence, as well as existence and uniqueness results, for the
boundary value problem (1.1) by using a variety of fixed point theorems.

3.1. Existence and uniqueness result via Banach’s fixed point theorem

Theorem 3.1. Assume that:

(H1) there exists a constant K > 0 such that |f(t, x)− f(t, y)| ≤ K|x− y|, for each t ∈ J and x, y ∈ R.

If
KΛ2 + Λ1 < 1, (3.5)

where Λ1,Λ2 are defined by (3.2) and (3.3), respectively, then the boundary value problem (1.1) has a unique
solution on J .

Proof. By transforming the boundary value problem (1.1) into a fixed point problem, that is x = Fx, where
the operator F is defined as in (3.1), we will show that the operator F has fixed points which are solutions
of problem (1.1). We use the Banach’s contraction mapping principle to show that F has a unique fixed
point.

Setting supt∈J |f(t, 0)| = N <∞, and choosing

R ≥ NΛ2 + ∆

1− (KΛ2 + Λ1)
, (3.6)
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we show that FBR ⊂ Br, where BR = {x ∈ C : ‖x‖ ≤ R}. For any x ∈ BR, we have

|Fx(t)| ≤ sup
t∈J

∣∣∣∣∣− λ
∫ t

0
x(s)dqs+

∫ t

0
(t− qs)f(s, x(s))dqs

+
t(1 + λα) + α

(1 + λα)
m∑
i=1

βi

[
γ + λ

m∑
i=1

βi
(1− ri)ξi

∫ ξi

riξi

x(s)dqs

−
m∑
i=1

βi

∫ riξi

0
f(s, x(s))dqs−

m∑
i=1

βi

∫ ξi

riξi

(ξi − qs)
(1− ri)ξi

f(s, x(s))dqs

]∣∣∣∣∣
≤ |λ|

∫ T

0
|x(s)|dqs+

∫ T

0
(T − qs)(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|)dqs

+
T (1 + |λα|) + |α|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣
[
|γ|+ |λ|

m∑
i=1

|βi|
(1− ri)ξi

∫ ξi

riξi

|x(s)|dqs

+
m∑
i=1

|βi|
∫ riξi

0
(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|)dqs

+
m∑
i=1

|βi|
∫ ξi

riξi

(ξi − qs)
(1− ri)ξi

(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|)dqs

]

≤ (K‖x‖+N)

[
T 2

1 + q
+
T (1 + |λα|) + |α|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣
(

m∑
i=1

|βi|riξi +
m∑
i=1

|βi|ξi(1− riq)
1 + q

)]

+ ‖x‖
[
|λ|T +

T (1 + |λα|) + |α|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣ · |λ|
m∑
i=1

|βi|
]

+
T |γ|(1 + |λα|) + |γα|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣
= (KΛ2 + Λ1)R+NΛ2 + ∆ ≤ R.

This means that ‖Fx‖ ≤ R which leads to FBR ⊂ BR.
Next, we let x, y ∈ C. Then for t ∈ J, we have

|Fx(t)−Fy(t)| ≤ |λ|
∫ T

0
|x(s)− y(s)|dqs+

∫ T

0
(T − qs)|f(s, x(s))− f(s, y(s))|dqs

+
T (1 + |λα|) + |α|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣
[
|λ|

m∑
i=1

|βi|
(1− ri)ξi

∫ ξi

riξi

|x(s)− y(s)|dqs

+

m∑
i=1

|βi|
∫ riξi

0
|f(s, x(s))− f(s, y(s))|dqs

+

m∑
i=1

|βi|
∫ ξi

riξi

(ξi − qs)
(1− ri)ξi

|f(s, x(s))− f(s, y(s))|dqs

]

≤ K‖x− y‖

[
T 2

1 + q
+
T (1 + |λα|) + |α|

|1 + λα|
∣∣∣∣ m∑
i=1

βi

∣∣∣∣
(

m∑
i=1

|βi|riξi +
m∑
i=1

|βi|ξi(1− riq)
1 + q

)]

+ ‖x− y‖
[
|λ|T +

T (1 + |λα|) + |α|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣ · |λ|
m∑
i=1

|βi|
]
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= (KΛ2 + Λ1)‖x− y‖,

which implies that ‖Fx−Fy‖ ≤ (KΛ2 + Λ1)‖x−y‖. Since KΛ2 + Λ1 < 1, F is a contraction. Therefore, by
the Banach’s contraction mapping principle, we get that F has a fixed point which is the unique solution of
the boundary value problem (1.1). The proof is completed.

3.2. Existence result via Krasnoselskii’s fixed point theorem

Theorem 3.2 (Krasnoselskii’s fixed point theorem). Let M be a closed and bounded convex and nonempty
subset of a Banach space X. Let A,B be operators such that

(a) Ax+By ∈M where x, y ∈M ;

(b) A is compact and continuous;

(c) B is a contraction mapping.

Then there exists z ∈M such that z = Az +Bz.

Theorem 3.3. Let f : J × R → R be a continuous function satisfying (H1) in Theorem 3.1. In addition,
assume that:

(H2) |f(t, x)| ≤ µ(t), ∀(t, x) ∈ J × R and µ ∈ C(J,R+).

Then the boundary value problem (1.1) has at least one solution on J , provided

Λ1 < 1, (3.7)

where Λ1 is defined by (3.2).

Proof. We decompose the operator F defined in (3.1), into two operators F1 and F2 on Br = {x ∈ C : ‖x‖ ≤
r} by

F1x(t) = −λ
∫ t

0
x(s)dqs+

t(1 + λα) + α

(1 + λα)
m∑
i=1

βi

λ

m∑
i=1

βi
(1− ri)ξi

∫ ξi

riξi

x(s)dqs,

F2x(t) =

∫ t

0
(t− qs)f(s, x(s))dqs+

t(1 + λα) + α

(1 + λα)
m∑
i=1

βi

[
γ −

m∑
i=1

βi

∫ riξi

0
f(s, x(s))dqs

−
m∑
i=1

βi

∫ ξi

riξi

(ξi − qs)
(1− ri)ξi

f(s, x(s))dqs

]
,

with r such that

r ≥ ‖µ‖Λ2 + ∆

1− Λ1
, (3.8)

and ‖µ‖ = supt∈J |µ(t)|. Note that the ball Br is a closed and bounded convex subset of a Banach space C.
To show that F1x+ F2y ∈ Br, we let x, y ∈ Br. Then, we have

|F1x(t) + F2y(t)| ≤ sup
t∈J

∣∣∣∣|λ|‖x‖ ∫ t

0
1dqs+ ‖µ‖

∫ t

0
(t− qs)dqs

+
t(1 + |λα|) + |α|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣
[
|λ|‖y‖

m∑
i=1

|βi|
(1− ri)ξi

∫ ξi

riξi

1dqs
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+ ‖µ‖
m∑
i=1

|βi|
∫ riξi

0
1dqs+ ‖µ‖

m∑
i=1

|βi|
∫ ξi

riξi

(ξi − qs)
(1− ri)ξi

dqs

]

+
|γ|t(1 + |λα|) + |α|

(|1 + λα|)
∣∣∣ m∑
i=1

βi

∣∣∣
∣∣∣∣

≤
[
|λ|T‖x‖+

T (1 + |λα|) + |α|

|1 + λα|
∣∣∣∣ m∑
i=1

βi

∣∣∣∣ · |λ|
m∑
i=1

|βi|‖y‖
]

+ ‖µ‖
[
T 2

1 + q
+
T (1 + |λα|) + |α|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣
(

m∑
i=1

|βi|riξi +
m∑
i=1

|βi|ξi(1− riq)
1 + q

)]

+
T |γ|(1 + |λα|) + |γα|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣
≤ rΛ1 + ‖µ‖Λ2 + ∆ ≤ r.

It follows that F1x+ F2y ∈ Br. This claim that the condition (a) of Theorem 3.2 holds. To prove that
F1 is a contraction mapping, for x, y ∈ Br, we have

|F1x(t)− F1y(t)| ≤ |λ|
∫ t

0
|x(s)− y(s)|dqs

+
T (1 + |λα|) + |α|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣ |λ|
m∑
i=1

|βi|
(1− ri)ξi

∫ ξi

riξi

|x(s)− y(s)|dqs

≤

{
|λ|T +

T (1 + |λα|) + |α|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣ · |λ|
m∑
i=1

|βi|

}
‖x− y‖

= Λ1‖x− y‖,

which is a contraction, since Λ1 < 1. Therefore, the condition (c) of Theorem 3.2 is satisfied.
Using the continuity of the function f , we get that the operator F2 is continuous. For x ∈ Br, it follows

that

‖F2x‖ ≤ ‖µ‖

{
T 2

1 + q
+
T (1 + |λα|) + |α|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣
[

m∑
i=1

|βi|riξi +
1

1 + q

m∑
i=1

|βi|ξi(1− riq)

]}
,

which implies that the operator F2 is uniformly bounded on Br. Now, we are going to prove that F2 is
equicontinuous. Setting supt∈J |f(t, x(t))| = f , for each t1, t2 such that t2 < t1 and for x ∈ Br, we have

|F2x(t1)− F2x(t2)|

=

∣∣∣∣∣
∫ t1

0
(t1 − qs)f(s, x(s))dqs−

∫ t2

0
(t2 − qs)f(s, x(s))dqs

+
t1(1 + λα) + α

(1 + λα)
m∑
i=1

βi

[
−

m∑
i=1

βi

∫ riξi

0
f(s, x(s))dqs−

m∑
i=1

βi

∫ ξi

riξi

(ξi − qs)
(1− ri)ξi

f(s, x(s))dqs

]

− t2(1 + λα) + α

(1 + λα)
m∑
i=1

βi

[
−

m∑
i=1

βi

∫ riξi

0
f(s, x(s))dqs−

m∑
i=1

βi

∫ ξi

riξi

(ξi − qs)
(1− ri)ξi

f(s, x(s))dqs

]∣∣∣∣∣
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≤ f

{∫ t2

0
(t1 − t2)dqs+

∫ t1

t2

(t1 − qs)dqs+
|t1 − t2|∣∣∣ m∑
i=1

βi

∣∣∣
(

m∑
i=1

|βi|riξi +

m∑
i=1

|βi|ξi(1− riq)
1 + q

)}

≤ f

{
(t1 − t2)t2 +

(t1 − t2)(t1 − t2q)
1 + q

+
|t1 − t2|∣∣∣ m∑
i=1

βi

∣∣∣
(

m∑
i=1

|βi|riξi +
m∑
i=1

|βi|ξi(1− riq)
1 + q

)}
,

which is independent of x and tends to zero as t2 → t1. Hence F2 is equicontinuous. Therefore F2 is relatively
compact on Br, and by Arzelá-Ascoli theorem, F2 is compact on Br. Thus the condition (b) of Theorem
3.2 is satisfied. Therefore all conditions of Theorem 3.2 are satisfied, and consequently, the boundary value
problem (1.1) has at least one solution on J . This completes the proof.

3.3. Existence result via Leray-Schauder’s Nonlinear Alternative

Theorem 3.4 (Nonlinear alternative for single valued maps, [16]). Let E be a Banach space, C a closed
and convex subset of E,U an open subset of C and 0 ∈ U. Suppose that F : Ū → C is a continuous, compact
(that is, F(Ū) is a relatively compact subset of C) map. Then either

(i) F has a fixed point in Ū , or

(ii) there is a x ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with x = λF(x).

Theorem 3.5. Assume that:

(H3) there exist a continuous nondecreasing function ψ : [0,∞)→ (0,∞) and a function ϕ ∈ C([0, T ],R+)
such that

|f(t, x)| ≤ ϕ(t)ψ(‖x‖) for each (t, x) ∈ J × R;

(H4) there exists a constant M > 0 such that

(1− Λ1)M

ψ(M)‖ϕ‖Λ2 + ∆
> 1, Λ1 < 1,

where Λ1, Λ2, ∆ are defined by (3.2), (3.3) and (3.4), respectively.

Then the boundary value problem (1.1) has at least one solution on J.

Proof. Consider the operator F defined by (3.1). We will show that the boundary value problem (1.1) has
at least one solution on J . To accomplish this, firstly, we shall show that F maps bounded sets (balls) into
bounded sets in C. For a number ρ > 0, let Bρ = {x ∈ C(J,R) : ‖x‖ ≤ ρ} be a bounded ball in C(J,R).
Then for t ∈ J, we have

|Fx(t)| ≤ sup
t∈J

{∣∣∣∣∣− λ
∫ t

0
x(s)dqs+

∫ t

0
(t− qs)f(s, x(s))dqs

+
t(1 + λα) + α

(1 + λα)
m∑
i=1

βi

[
γ + λ

m∑
i=1

βi
(1− ri)ξi

∫ ξi

riξi

x(s)dqs

−
m∑
i=1

βi

∫ riξi

0
f(s, x(s))dqs−

m∑
i=1

βi

∫ ξi

riξi

(ξi − qs)
(1− ri)ξi

f(s, x(s))dqs

]∣∣∣∣∣
}

≤ ‖x‖

|λ|T +
T (1 + |λα|) + |α|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣ · |λ|
m∑
i=1

|βi|


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+ ψ(‖x‖)‖ϕ‖

[
T 2

1 + q
+
T (1 + |λα|) + |α|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣
(

m∑
i=1

|βi|riξi +

m∑
i=1

|βi|ξi(1− riq)
1 + q

)]

+
T |γ|(1 + |λα|) + |γα|

|1 + λα|
∣∣∣ m∑
i=1

βi

∣∣∣
≤ ρΛ1 + ψ(ρ)‖ϕ‖Λ2 + ∆,

and consequently,
‖Fx‖ ≤ ρΛ1 + ψ(ρ)‖ϕ‖Λ2 + ∆.

After that, we will show that the operator F maps bounded sets into equicontinuous sets of C. Let t1,
t2 ∈ J such that t1 < t2 and x ∈ Bρ. Then, we have

|Fx(t2)−Fx(t1)|

≤ |λ|
∫ t2

t1

|x(s)|dqs+

∫ t2

0
(t2 − t1)|f(s, x(s))|dqs+

∫ t2

t1

(t2 − qs)|f(s, x(s))|dqs

+
|t2 − t1|∣∣∣∣ m∑
i=1

βi

∣∣∣∣
[
|λ|

m∑
i=1

|βi|
(1− ri)ξi

∫ ξi

riξi

|x(s)|dqs

+
m∑
i=1

|βi|
∫ riξi

0
|f(s, x(s))|dqs+

m∑
i=1

|βi|
∫ ξi

riξi

(ξi − qs)
(1− ri)ξi

|f(s, x(s))|dqs

]

≤ ρ

(
|λ||t2 − t1|+

|λ||t2 − t1|∣∣∣ m∑
i=1

βi

∣∣∣
m∑
i=1

βi(1− ri)ξi
(1− ri)ξi

)

+ ‖ϕ‖ψ(ρ)

{
(t1 − t2)t2 +

(t1 − t2)(t1 − t2q)
1 + q

+
|t1 − t2|∣∣∣ m∑
i=1

βi

∣∣∣
(

m∑
i=1

|βi|riξi +
m∑
i=1

|βi|ξi(1− riq)
1 + q

)}
.

As t2 − t1 → 0, the right-hand side of the above inequality tends to zero independently of x ∈ Bρ.
Therefore, by the Arzelá-Ascoli theorem, the operator F : C → C is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative (Theorem 3.4) once we have proved
the boundedness of the set of the solutions to equations x = νFx for ν ∈ (0, 1).

Let x be a solution. Then for t ∈ J, and following the similar computations as in first step, we have

|x(t)| ≤ ‖x‖Λ1 + ψ(‖x‖)‖ϕ‖Λ2 + ∆,

which leads to
(1− Λ1)‖x‖

ψ(‖x‖)‖ϕ‖Λ2 + ∆
≤ 1.

In view of (H4), there exists a constant M such that ‖x‖ 6= M. Setting the set

U = {x ∈ C([0, T ],R) : ‖x‖ < M},

we see that the operator F : U → C(J,R) is continuous and completely continuous. From the choice of U ,
there is no x ∈ ∂U such that x = νFx for some ν ∈ (0, 1). Consequently, by the nonlinear alternative of
Leray-Schauder type, we get that the operator F has a fixed point x ∈ U which is a solution of the boundary
value problem (1.1). This completes the proof.
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4. Examples

In this section, we present three examples to illustrate our results.

Example 4.1. Consider the following quantum difference Langevin equation with multi-quantum numbers
q-derivatives nonlocal conditions

D1/4

(
D1/4 +

1

17

)
x(t) =

e−t

5(17− t)

(
x2(t) + 4|x(t)|
|x(t)|+ 3

)
+

1

2
, t ∈ [0, 4],

x(0) =
2

5
D1/8x(0),

1

7
D1/3x

(
3

8

)
+

3

10
D2/11x

(
1

6

)
+

2

9
D1/9x

(
3

11

)
=

3

5
.

(4.1)

Here q = 1/4, p = 1/8, λ = 1/17, α = 2/5, m = 3, γ = 3/5, T = 4, β1 = 1/7, β2 = 3/10, β3 = 2/9,
r1 = 1/3, r2 = 2/11, r3 = 1/9, ξ1 = 3/8, ξ2 = 1/6, ξ3 = 3/11 and f(t, x) = (e−t/5(17 − t))((x2 +
4|x|)/(|x| + 3)) + (1/2). Since |f(t, x) − f(t, y)| ≤ (2/65)|x − y|, then (H1) is satisfied with K = 2/65. By
direct computation, we have that Λ1 ' 0.33941, Λ2 ' 13.22127, and (1 + λα)

∑m
i=1 βi ' 0.68073 6= 0. Thus

KΛ2 + Λ1 ' 0.74622 < 1. Hence, by Theorem 3.5, the problem (4.1) has a unique solution on [0, 4].

Example 4.2. Consider the following quantum difference Langevin equation with multi quantum numbers
q-derivatives nonlocal conditions

D1/3

(
D1/3 +

1

15

)
x(t) =

9 sin2 t

(6− t)2

(
|x(t)|
|x(t)|+ 1

+ 1

)
, t ∈ [0, 4],

x(0) =
1

5
D1/4x(0),

1

6
D2/5x

(
3

4

)
+

2

7
D3/8x

(
3

7

)
+

3

5
D1/7x

(
1

9

)
=

1

2
.

(4.2)

Here q = 1/3, p = 1/4, λ = 1/15, α = 1/5, m = 3, γ = 1/2, T = 4, β1 = 1/6, β2 = 2/7, β3 = 3/5,
r1 = 2/5, r2 = 3/8, r3 = 1/7, ξ1 = 3/4, ξ2 = 3/7, ξ3 = 1/9 and f(t, x) = (9 sin2 t/((6−t)2))((|x|/(|x|+1))+1).

By direct computation, we have Λ1 ' 0.54649262 < 1, and (1 + λα)
∑m

i=1 βi ' 1.0664127 6= 0. Clearly,

|f(t, x)| =
∣∣∣∣ 9 sin2 t

(6− t)2

(
|x|
|x|+ 1

+ 1

)∣∣∣∣
≤ 9 sin2 t

(6− t)2
+ 1.

Hence, by Theorem 3.3 the problem (4.2) has at least solution on [0, 4].

Example 4.3. Consider the following quantum difference Langevin equation with multi quantum numbers
q-derivatives nonlocal conditions

D1/3

(
D1/3 +

1

18

)
x(t) =

cos2 t

(17− t)2

(
x2(t)

|x(t)|+ 1
+

|x(t)|
3|x(t)|+ 2

+
2

3

)
, t ∈ [0, 5],

x(0) =
1

8
D1/2x(0),

1

5
D1/4x

(
1

6

)
+

3

7
D2/9x

(
2

5

)
+

2

11
D3/8x

(
1

7

)
+

1

9
D3/13x

(
3

14

)
=

3

4
.

(4.3)

Here q = 1/3, p = 1/2, λ = 1/18, α = 1/8, m = 4, γ = 3/4, T = 5, β1 = 1/5, β2 = 3/7, β3 = 2/11,
β4 = 1/9, r1 = 1/3, r2 = 2/9, r3 = 3/8, r4 = 3/13, ξ1 = 1/6, ξ2 = 2/5, ξ3 = 1/7, ξ4 = 3/14 and
f(t, x) = (cos2 t/(17 − t)2)((x2/(|x| + 1)) + (|x|/(3|x| + 2)) + (2/3)). By direct computation, we have
Λ1 ' 0.55556, Λ2 ' 4.17049, and (1 + λα)

∑m
i=1 βi ' 0.927898 6= 0. Clearly,

|f(t, x)| =
∣∣∣∣ cos2 t

(17− t)2

(
x2

|x|+ 1
+

|x|
3|x|+ 2

+
2

3

)∣∣∣∣
≤ cos2 t

(17− t)2
(|x|+ 1) .

Choosing ϕ(t) = cos2 t/(17− t)2 and ψ(|x|) = |x|+ 1, we can show that there exists M > 22.37033 such
that (H4) is satisfied. Hence, by Theorem 3.5, the problem (4.3) has at least solution on [0, 5].
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